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Abstract 

We first show how to construct the linear operator equations 
corresponding to Tikhonov regularization problems for solving image 
denoising problem, and then we propose how to apply the global 

preconditioned conjugate gradient (G -PCG) method with Kronecker 

product preconditioners to the linear operator equations. Next, we 
propose a coarse-grained parallel image denoising algorithm using the 

G -PCG with Kronecker product preconditioner. Finally, we provide 

numerical experiments for several image denoising problems to 

evaluate the effectiveness of the G -PCG with Kronecker product 

preconditioner. 
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1. Introduction 

Digital images generated by various digital devices or used in practical 
applications usually contain some noises, so denoising is necessary before 
analyzing the images. Over the last decade, a number of image denoising 
techniques preserving important image information such as edges have been 
proposed to obtain the true image from the noisy (known) image [1-3, 8, 9]. 

Let nmB ×∈ R  be an observed noisy image and nmZ ×∈ R  be an 
unknown noise array. Then, we would like to construct the true image 

nmX ×∈ R  from the observed noisy image B such that 

.ZXB +=  

Image denoising problem is to reconstruct X from B which contains the 
additive noise Z. It is well-known that image denoising problem is an              
ill-conditioned problem, so that regularization techniques should be used          
to approximate X from B. The problem of image denoising problem usually 
reduces to solving the following Tikhonov regularization problem: 

 { ( )},min 22 XBX F
X nm

Rλ+−
×∈R

 (1.1) 

where 0>λ  is a regularization parameter, F⋅  denotes the Frobenius 

norm, the first term 2
FBX −  is called the data fitting term, and the second 

term ( )XR  is called a regularization term. If ( )XR  is chosen to be a 

discrete total variation (TV) semi-norm of X, then the problem (1.1) is called 
the discrete TV-based image denoising problem [1-3]. Notice that original 
version of the TV-based image denoising model has been introduced by 
Rudin, Osher and Fatemi (ROF) in [9] as a regularization approach for 
preserving edges while removing noises. Another common choice of ( )XR  

is ,2
2Dx  where ( ) mnXvecx R∈=  denotes a column vector obtained          

by stacking the columns of X into a long vector x, and mnmnD ×∈ R             
is a discrete approximation of the first or second order partial derivative 



Parallel Image Denoising Using G -PCG Method … 1117 

operators [4]. In this paper, we are interested in solving the following 
discrete image denoising problem: 

 { }.min 2
2

22 DxBX F
X N

λ+−
∈R

 (1.2) 

In 2006, the global conjugate gradient (G -CG) method for solving a 

linear system with multiple right hand sides of the form BAX =  has been 
proposed by Salkuyeh [10], where A is a symmetric positive definite matrix. 

Big advantage of the G -CG method is that they have a rich parallelism 

which is very suitable for advanced parallel supercomputers. Recently, Yun 
[11] proposed an application of the global preconditioned conjugate gradient 

(G -PCG) method to the discrete image denoising problem (1.2). 

This paper is organized as follows. In Section 2, we introduce some 
definitions and properties which are used in this paper. In Section 3, we first 
show how to construct the linear operator equations for the discrete image 
denoising problem (1.2) corresponding to two cases of regularization 
matrices D, and then we propose how to choose Kronecker product 

preconditioners which are required for accelerating the G -PCG method. In 

Section 4, we provide how to apply the G -PCG method with Kronecker 

product preconditioner to the linear operator equations. In Section 5, we 

propose a coarse-grained parallel image denoising algorithm using the G -

PCG with Kronecker product preconditioner that is suitable for personal 
computers with multiple cores which need a lot of communication time 
among the cores and overhead (or startup) time. In Section 6, we provide 
numerical experiments for several image denoising problems to evaluate the 

effectiveness of the G -PCG with Kronecker product preconditioner. Lastly, 

some conclusions are drawn. 
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2. Preliminaries 

We need to represent images as arrays of numbers in order to use 

mathematical techniques for denoising. Let nmX ×∈ R  represent the desired 

true image, and let nmB ×∈ R  denote the noisy image or the observed image. 
Using the vec operator, x and b are defined by 

( ) ( ) ,...,,, 21
NTT

n
TT xxxXvecx R∈==  

( ) ( ) ,...,,, 21
NTT

n
TT bbbBvecb R∈==  

where ,mnN =  m
ix R∈  and m

ib R∈  are the ith columns of X and B, 

respectively. Then it is easy to show that the discrete image denoising 
problem (1.2) is mathematically equivalent to solving the following linear 
system: 

 ( ) ,2 bxDDI T
N =λ+  (2.1) 

where NI  denotes an identity matrix of order N. 

If the size of the original image X is nm ×  and, m and n are large, then 
the regularization matrix D is a very large and sparse matrix of order mn. 

Since the coefficient matrix DDI T
N

2λ+  is symmetric positive definite, the 

linear system (2.1) can be solved using the PCG (preconditioned conjugate 
gradient) method [5]. If D can be represented by the Kronecker product of 

rD  and ,cD  i.e., ,cr DDD ⊗=  where nn
rD ×∈ R  and ,mm

cD ×∈ R  then 

the large sparse linear system (2.1) can be transformed into the small size of 
matrix equations which are generated from rD  and .cD  For this reason, we 

want to study how to solve the small size of matrix equations using the       

G -PCG method instead of solving the large sparse linear system (2.1) using 

the PCG method. Constructing such matrix equations is discussed in the next 
section. 
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For matrices X and ,nmY ×∈ R  the Frobenius inner product of X and Y 

is defined by ( ),, YXtrYX T
F =  and the corresponding Frobenius norm 

of nmX ×∈ R  is defined by ,, FF XXX =  where ( )YXtr T  denotes 

the trace of YX T  which is the sum of its main diagonal entries. It is well-

known that if ,nmA ×∈ R  mnB ×∈ R  and ,nnC ×∈ R  then ( ) ( )BAtrABtr =  

and ( ) ∑ = λ= n
i iCtr 1 ,  where nλλλ ...,,, 21  are the eigenvalues of C [7]. 

A bounded linear operator HH →:T  is called self-adjoint if ,TT =∗  

where H is a Hilbert space and ∗T  is the adjoint operator of .T  That is, T  

is self-adjoint if and only if yxyx TT ,, =  for all ,, Hyx ∈  where ⋅⋅,  

is an inner product on H. A self-adjoint operator nmnm ×× → RR:T  is 

called positive definite if ( ) 0, >FXX T  for all OX ≠  in nm×R  [6]. 

In this paper, we have used two boundary conditions which are zero         
and reflexive boundary conditions. The zero boundary condition is to assume 
that the exact image is black outside the boundary. The reflexive boundary 
condition implies that the scene outside the image boundaries is a mirror 
image of the scene inside the image boundaries. 

3. Construction of Linear Operator Equation 

In this section, we study the construction of linear operator equations       
for the discrete image denoising problem (1.2) corresponding to two cases of 
matrices D. 

3.1. Operator equation for D corresponding to 2
2

2
2 ts xx +  (Case 1) 

We consider the discrete image denoising problem (1.2) for the case 

where D is an approximate matrix corresponding to ,2
2

2
2 ts xx +  where 
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sx  and tx  are the first order partial derivative operators of the image 

,R nmX ×∈  and s and t denote the variables in the vertical direction and the 

horizontal direction, respectively. Consider the regularization matrix D such 

that .2
2

2
2

2
2 ts xxDx +=  Let mm

mD ×∈ R,1  be an approximate matrix 

obtained by a finite difference approximation to the first order derivative 

operator [4]. More specifically, the matrix mm
mD ×∈ R,1  for zero boundary 

condition is given by 

,

1000
1100

0110
0011

,1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=mD  

and mm
mD ×∈ R,1  for reflexive boundary condition is given by 

.

0000
1100

0110
0011

,1

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=mD  

Then we can easily obtain 

( ) ( ) 2
2,1

2
2,1

2
2 xIDxDIDx mnmn ⊗+⊗=  

( )
( )

,
2

2,1

,1
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⊗

⊗
=

xID

xDI

mn

mn
 

where mm
mD ×∈ R,1  and .,1

nn
nD ×∈ R  Thus, (1.2) can be transformed into 

the following form: 
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{ }2
2,1

22
2,1

22
2min xIDxDIbx mnmn

x N
⊗λ+⊗λ+−

∈R
 

,

0

0min

2

2⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

λ

λ=
∈

b

x

D

D

I

t

s

N

x NR
 (3.1) 

where mns DID ,1⊗=  and .,1 mnt IDD ⊗=  It is easy to show that the 

minimization problem (3.1) is equivalent to solving the following equation: 

 ( ) .22 bxDDDDI t
T
ts

T
sN =λ+λ+  (3.2) 

Since mns DID ,1⊗=  and ,,1 mnt IDD ⊗=  the linear system (3.2) can be 

rewritten as 

 { ( ) ( )} .,1,1
2

,1,1
2 bxIDDDDIII mn

T
nm

T
mnmn =⊗λ+⊗λ+⊗  (3.3) 

From (3.3), the following matrix equation can be obtained: 

 ( ) ,,1,1,1,1
2 BDXDXDDX n

T
nm

T
m =+λ+  (3.4) 

where nmB ×∈ R  is a matrix such that ( ).Bvecb =  Let us define the linear 

operator nmnm ×× → RR:1A  given by 

( ) ( ).,1,1,1,1
2

1 n
T

nm
T

m DXDXDDXX +λ+=A  (3.5) 

Then (3.4) can be expressed as the following linear operator equation: 

 ( ) .1 BX =A  (3.6) 

The following theorem shows that 2A  is self-adjoint and positive 

definite. 

Theorem 3.1. The operator 1A  is self-adjoint and positive definite. 
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Proof. For all X and Y in ,nm×R  

( ) ( ) Fn
T

nm
T

mF YDXDXDDXYX ,, ,1,1,1,1
2

1 +λ+=A  

( ( ))YXDDYDDXYXtr T
n

T
nm

T
m

TT
,1,1,1,1

2 +λ+=  

( ) ( ( ) ( ))n
T

n
T

m
T

m
TT DDYXtrYDDXtrYXtr ,1,1,1,1

2 +λ+=  

( ( ))n
T

nm
T

m
TT DDYYDDXYXtr ,1,1,1,1

2 +λ+=  

( ) Fn
T

nm
T

m DDYYDDYX ,1,1,1,1
2, +λ+=  

( ) ., 1 FYX A=  

Hence, the operator 1A  is self-adjoint. For each nmX ×∈ R  and ,OX ≠  

( ) FXX 1, A  

( ( ))XXDDXDDXXXtr T
n

T
nm

T
m

TT
,1,1,1,1

2 +λ+=  

( ) ( ( ) ( ))T
n

T
nm

T
m

TT XDDXtrXDDXtrXXtr ,1,1,1,1
2 +λ+=  

( ) { (( ) ( )) (( ) ( ))}T
n

TT
nm

T
m

T XDXDtrXDXDtrXXtr ,1,1,1,1
2 +λ+=  

( ) .02
,1

2
,1

22 >+λ+= F
T

nFmF XDXDX  

Hence, the operator 1A  is positive definite. 
 

From the left side of the linear system (3.3), one can obtain the following 
approximate relation: 

( ( ) ( )) xIDDDDIII mn
T

nm
T

mnmn ⊗λ+⊗λ+⊗ ,1,1
2

,1,1
2  

( ) ( ) .,1,1
2

,1,1
2 xDDIDDI m

T
mmn

T
nn λ+⊗λ+≈  (3.7) 
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From (3.7), we can choose a preconditioner of the form 

,1 cr MMM ⊗=  

where 

,,1,1
2

n
T

nnr DDIM λ+=  

.,1,1
2

m
T

mmc DDIM λ+=  

Clearly, nn
rM ×∈ R  and mm

cM ×∈ R  are tridiagonal matrices. Now we 

define a preconditioner operator nmnm ×× → RR:1M  by 

 ( ) .1
T
rc XMMX =M  (3.8) 

Theorem 3.2. The preconditioner operator 1M  in (3.8) is self-adjoint 

and positive definite. 

Proof. It is clear that rM  and cM  are symmetric positive definite. For 

all ,, nmYX ×∈ R  

( ) ( )YMXMtrYXMMYX T
c

T
rF

T
rcF == ,,1M  

( ) ( ) ., 2 Fr
T
c

T YXYMMXtr M==  

Hence, the preconditioner operator 1M  is self-adjoint. Next, we show that 

2M  is positive definite. For each nmX ×∈ R  and ,OX ≠  one obtains 

( ) ( ) ( ) ( ).,1 rc
T

r
T
c

TT
c

T
rF XMMXtrXMMXtrXMXMtrXX ===M  

Since rc
T XMMX  is similar to 2

1
2
1

rc
T

r XMMXM  which is symmetric 

positive semidefinite, all eigenvalues of rc
T XMMX  are nonnegative and so 

( ) .0≥rc
T XMMXtr  Since rM  and cM  are symmetric positive definite, 
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02
1

≠rXM  and so ( ) ( )2
1

2
1

2
1

2
1

rc
T

rrc
T

r XMMXMXMMXM =  is a non-zero 

symmetric matrix. Thus, all eigenvalues of rc
T XMMX  are not zero, which 

implies ( ) .0>rc
T XMMXtr  Hence, 1M  is positive definite. ~ 

3.2. Operator equation for D corresponding to 2
2

2
2 ttss xx +  (Case 2) 

We consider the discrete image denoising problem (1.2) for the case 

where D is an approximate matrix corresponding to .2
2

2
2 ttss xx +  

Consider the regularization matrix D such that ,2
2

2
2

2
2 ttss xxDx +=  

where ssx  and ttx  are the second order partial derivative operators of the 

image .nmX ×∈ R  Let mm
mD ×∈ R,2  be an approximate matrix obtained by 

a finite difference approximation to the second order derivative operator [4]. 

More specifically, the matrix mm
mD ×∈ R,2  for zero boundary condition is 

given by 

,

2100
121

01
210

00121
0012

,2

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−
−

−−
−

=mD  

and mm
mD ×∈ R,2  for reflexive boundary condition is given by 

.

1100
121

01
210

00121
0011

,2

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−
−

−−
−

=mD  
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Then we can easily obtain 

( ) ( ) 2
2,2

2
2,2

2
2 xIDxDIDx mnmn ⊗+⊗=  

( )

( )
,

2

2,2

,2

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⊗

⊗
=

xID

xDI

mn

mn
 

where mm
mD ×∈ R,2  and .R,2

nn
nD ×∈  Thus, (1.2) can be transformed 

into the following form: 

{ }2
2,2

22
2,2

22
2min xIDxDIbx mnmn

x N
⊗λ+⊗λ+−

∈R
 

,
0
0min

2

2
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

λ
λ=

∈

b
x

D
D

I

t

s

N

x NR
 (3.9) 

where mns DID ,2⊗=  and .,2 mnt IDD ⊗=  It is easy to show that the 

minimization problem (3.9) is equivalent to solving the following equation: 

 ( ) .22 bxDDDDI t
T
ts

T
sN =λ+λ+  (3.10) 

Since mns DID ,2⊗=  and ,,2 mnt IDD ⊗=  the linear system (3.10) can 

be rewritten as 

{ ( ) ( )} .,2,2
2

,2,2
2 bxIDDDDIII mn

T
nm

T
mnmn =⊗λ+⊗λ+⊗  (3.11) 

From (3.11), the following matrix equation can be obtained: 

 ( ) ,,2,2,2,2
2 BDXDXDDX n

T
nm

T
m =+λ+  (3.12) 

where nmB ×∈ R  is a matrix such that ( ).Bvecb =  Let us define the linear 

operator nmnm ×× → RR:2A  given by 

 ( ) ( ).,2,2,2,2
2

2 n
T

nm
T

m DDXXDDXX +λ+=A  (3.13) 
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Then (3.12) can be expressed as the following linear operator equation 

 ( ) .2 BX =A  (3.14) 

In the similar way as was done in the proof of Theorem 3.1, the 
following theorem can be easily obtained. 

Theorem 3.3. The operator 2A  is self-adjoint and positive definite. 

From the left side of the linear system (3.11), one can obtain the 
following approximate relation: 

( ( ) ( )) xIDDDDIII mn
T

nm
T

mnmn ⊗λ+⊗λ+⊗ ,2,2
2

,2,2
2  

( ) ( ) .,2,2
2

,2,2
2 xDDIDDI m

T
mmn

T
nn λ+⊗λ+≈  (3.15) 

From (3.15), we can choose a preconditioner of the form ,2 cr MMM ⊗=  

where 

n
T

nnr DDIM ,2,2
2λ+=    and   .,2,2

2
m

T
mmc DDIM λ+=  

Now we define a preconditioner operator nmnm ×× → RR:2M  by 

( ) .2
T
rc XMMX =M  Then the following theorem can be easily obtained as 

was done in the proof of Theorem 3.2. 

Theorem 3.4. The preconditioner operator 2M  is self-adjoint and 

positive definite. 

Remark 3.1. We have shown that the linear operators ( )2,1=iiA  and 

the preconditioner operators ( )2,1=iiM  are self-adjoint and positive 

definite since these conditions are required for applying the G -PCG method 

to the linear operator equations. 
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4. G -PCG Method for Linear Operator Equations 

In this section, we propose the global preconditioned conjugate gradient 

(G -PCG) algorithm for solving the linear operator equations ( ) BXi =A  

( ),2,1=i  where iA ’s are the linear operators defined in Section 3. 

By combining the ideas of the PCG method [5] and the G -CG method 

[10], we can obtain the following G -PCG algorithm applied to the linear 

operator equations ( ) ( ).2,1== iBXiA  

Algorithm 1. G -PCG for solving linear operator equation ( ) BXi =A  

1. Compute ( ) ( ) .,,: 000
1

000 ZPRZXBR ii ==−= −MA  

2. For ...,,1,0=j  until convergence Do : 

( ) FjjiFjjj PPZR ,,: A=α  

jjjj PXX α+=+ :1  

( )jijjj PRR Aα−=+ :1  

( )1
1

1 : +
−

+ = jij RZ M  

FjjFjjj ZRZR ,,: 11 ++=β  

.: 11 jjjj PZP β+= ++  

3. End 

Notice that iA  and iM  are self-adjoint and positive definite operators 

defined in Section 3. If the operators iA  and iM  in Algorithm 1 are 

replaced by symmetric positive definite matrices A and M respectively, then 

Algorithm 1 reduces to the G -PCG algorithm for solving a linear system 

with multiple right hand sides of the form .BAX =  
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5. Parallel Image Denoising Using the G -PCG Method 

In this section, we propose a parallel image denoising algorithm using 
the G -PCG method with Kronecker product preconditioners when the pixel 

size of the noisy image B is large. Let  denote the number of processors (or 

cores) to be used. For simplicity of exposition, suppose that n is divisible by 

. Then the noisy image nmB ×∈ R  and the true image nmX ×∈ R  are 

partitioned into  equal column blocks of the form 

( ) ( ),, 2121 XXXXBBBB ==  

where iB  and iX  are arrays of the equal size nm ×  which is required           

for load-balancing of parallel computing. Then each processor k needs to 
execute the following operations: 

Construct the regularization matrix ( )kD  corresponding to kB  

Construct Kronecker preconditioner krM  and kcM  from ( )kD  

Compute kX  by applying the G -PCG to the linear operator equation 

generated from ( ).kD  

Finally, the true image X can be approximated by collecting kX  from 

each processor k. The parallel algorithm corresponding to the above 
operations can be written using the Matlab parfor statement as follows: 

parfor 1=k  to  

Construct ( )kD  corresponding to kB  

Construct krM  and kcM  from ( )kD  

Apply the G -PCG to the linear operator equation generated from 

( )kD  to compute kX  

end 
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Since the true image X is formed by collecting kX  from each processor 

k, the reflexive boundary condition should be used to improve the continuity 
of the image X at the boundary of .kX  

Since the G -PCG has a rich parallelism, we can easily parallelize the 

G -PCG algorithm itself, which is called a fine-grained parallelization that is 

suitable for advanced parallel supercomputers. In this section, we provided a 
coarse-grained parallel algorithm that is suitable for personal computers with 
multiple cores which need a lot of communication time among the cores and 
overhead (or startup) time. That is, we provided a coarse-grained parallel 
denoising algorithm based on matrix blocks of kB  instead of parallelizing 

the G -PCG working on the total image of B. 

6. Numerical Experiments 

In this section, we provide numerical experiments for several image 

denoising problems to estimate the efficiency of the G -PCG method with 

Kronecker product preconditioners which is applied to the linear operator 
equations ( ) ( )2,1== iBXiA  discussed in Section 3. 

The noisy images B are generated by adding Gaussian white noise to the 
clean images using the built-in MATLAB function randn. For example, 
adding 10% of Gaussian white noise to the true image X can be done as 
follows; 

( ) ,~10.0;~;,randn EXXBE
EEnmE F

F
⋅⋅+===  

where F⋅  refers to the Frobenius norm. 

All numerical tests have been performed using Matlab R2016a on               
a personal computer, which has 4 Cores, equipped with Intel Core i5-4570 
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3.2GHz CPU and 8GB RAM. The initial image 0X  is set to the noisy image 

B, and the stopping criterion for the G -PCG at the kth iterate is 

,10 3

0

−≤
F

Fk
R
R

 

where kR  represents the kth residual matrix corresponding to the kth 

iteration matrix kX  of the G -PCG with 0R  the initial residual matrix 

corresponding to .0X  

The restored images is measured by the PSNR (peak signal to noise 
ratio) and ISNR (improvement in signal to noise ratio) which are defined by 

,
ˆ

log10ISNR,
max

log10PSNR 2

2

102

2
,

10 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

⋅⋅
=

F

F

F

ij
ji

gf

ff
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Table 1. Numerical results for image denoising problem (Case 1) 

G -PCG BC Image Noise 0PSNR

ISNR PSNR λ Itime IT 

10% 25.55 3.07 28.62 0.50 0.024 3 
Pepper 

15% 22.03 4.50 26.52 0.65 0.030 4 

10% 25.51 2.57 28.08 0.45 0.024 3 
Cameraman 

15% 21.99 3.96 25.96 0.60 0.030 4 

10% 25.03 3.68 28.71 0.55 2.68 3 

 

 

 
Z 

Joomaks 
15% 21.51 5.21 26.72 0.75 3.40 4 

10% 25.55 3.46 29.01 0.55 0.024 3 
Pepper 

15% 22.03 5.01 27.04 0.75 0.030 4 

10% 25.51 2.68 28.20 0.47 0.024 3 
Cameraman 

15% 21.99 4.15 26.14 0.65 0.030 4 

10% 25.03 3.71 28.74 0.55 2.68 3 

 

 

 
R 

Joomaks 
15% 21.51 5.25 26.75 0.75 3.40 4 

Table 2. Numerical results for image denoising problem (Case 2) 

G -PCG BC Image Noise 0PSNR

ISNR PSNR λ Itime IT 

10% 25.55 3.31 28.86 0.35 0.028 4 
Pepper 

15% 22.03 4.79 26.82 0.50 0.037 6 

10% 25.51 2.61 28.12 0.30 0.028 4 
Cameraman 

15% 21.99 3.94 25.93 0.40 0.033 5 

10% 25.03 4.23 29.26 0.40 4.23 5 

 
 
 

Z 

Joomaks 
15% 21.51 5.63 27.15 0.60 5.75 7 

10% 25.55 3.68 29.23 0.40 0.033 5 
Pepper 

15% 22.03 5.21 27.23 0.55 0.037 6 

10% 25.51 2.81 28.32 0.30 0.028 4 
Cameraman 

15% 21.99 4.25 26.24 0.45 0.033 5 

10% 25.03 4.32 29.35 0.45 4.25 5 

 
 
 

R 

Joomaks 
15% 21.51 5.74 27.25 0.60 5.77 7 
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Table 3. Parallel performance results of G -PCG for Joomaks image 

Noise = 10% Noise = 15% D  
PSNR λ Itime S  IT PSNR λ Itime S  IT 

1 28.74 2.68 1 3 26.75 3.40 1 4 

2 28.74 2.27 1.18 3 26.75 2.83 1.20 4 

3 28.73 1.71 1.57 3 26.75 1.98 1.72 4 

 
 

Case 1 

4 28.73 

 
 

0.55 

1.67 1.60 3 26.75

 
 

0.75 

1.86 1.83 4 

1 29.35 4.25 1 5 27.25 5.77 1 7 

2 29.35 3.39 1.25 5 27.25 4.38 1.32 7 

3 29.34 2.42 1.76 5 27.25 3.01 1.92 7 

 
 

Case 2 

4 29.34 

 
 

0.45 

2.09 2.03 5 27.35

 
 

0.60 

2.70 2.14 7 

We have used 3 test images such as Pepper, Cameraman and Joomaks for 
numerical experiments. The pixel size of Pepper and Cameraman images is 

,256256 ×  and the pixel size of Joomaks image is .22002200 ×  For all test 

problems, we have used two boundary conditions - one is the zero boundary 
condition and the other is the reflexive boundary condition. Numerical 
experiments have been carried out for noisy images that are generated by 
adding 10% or 15% of Gaussian white noise to the true image. Numerical 

experiments for the parallel image denoising algorithm using the G -PCG 

have been carried out only for Joomaks image of large size (see Table 3). For 
small size of images, we do not have performance gains from parallel 
execution since personal computer needs a lot of overhead time and 
communication time among the processors (or cores). Thus, we do not 
provide parallel performance results for small size of images. 

In all tables, the column labeled with “Noise” represents the percentage 
of Gaussian white noise, “Itime” represents the elapsed CPU time in seconds 

required for iteration steps of G -PCG which includes the construction time 

for rM  and ,cM  “IT” represents the number of iterations for the G -PCG 

method, “BC” represents boundary condition being used, “Z” and “R” stand 
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for zero and reflexive boundary conditions, respectively, and “λ” represents a 

near optimal regularization parameter for the G -PCG method which is 

chosen by numerical tries. That is, the G -PCG uses an experimentally 

chosen regularization parameter λ. In Table 3, “ ” represents the number of 

cores to be used, and S  stands for the speedup of parallel execution on  

processors (or cores). 

Numerical results show that Case 2 of D denoises the image better than 
Case 1 of D and the reflexive boundary condition performs better than the 
zero boundary condition for the image denoising problem (see Tables 1-2 
and Figures 1-3). As can be seen in Table 3, the coarse-grained parallel 
denoising algorithm proposed in Section 5 performs quite efficiently on a 
personal computer with large parallel overhead time. Speedups of the 
personal computer with 4 cores range from 1.6 to 2.1 depending upon the 
amount of total computational time. If the coarse-grained parallel algorithm 
is performed on advanced parallel supercomputers with 4 processors, then        
its parallel speedup may be very close to 4. Notice that IT (i.e., the number  

of iterations) does not vary as  (i.e., the number of cores) increases. Also, 

notice that PSNR values are almost the same from parallel execution on the 
personal computer with 4 cores. This means that parallel execution does not 
deteriorate the quality of image denoising. 
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(a) True image (b) Noisy image 

 

 (c) Denoised image for Case 1 (d) Denoised image for Case 2 

 

 (e) Denoised image for Case 1 (f) Denoised image for Case 2 

Figure 1. Performance of G -PCG for Pepper image with 15% of noise ((c) 

and (d) : zero BC, (e) and (f) : reflexive BC). 
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(a) True image (b) Noisy image 

 

 (c) Denoised image for Case 1 (d) Denoised image for Case 2 

 

 (e) Denoised image for Case 1 (f) Denoised image for Case 2 

Figure 2. Performance of G -PCG for Cameraman image with 15% of noise 

((c) and (d) : zero BC, (e) and (f) : reflexive BC). 
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(a) True image (b) Noisy image 

 

   (c) Denoised image for Case 1 (d) Denoised image for Case 2 

 

 (e) Denoised image for Case 1  (f) Denoised image for Case 2 

Figure 3. Performance of G -PCG for Joomaks image with 15% of noise ((c) 

and (d) : zero BC, (e) and (f) : reflexive BC). 
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7. Conclusions 

Numerical results show that Case 2 of D denoises the image better than 
Case 1 of D and the reflexive boundary condition performs better than the 
zero boundary condition for the image denoising problem (see Tables 1-2 

and Figures 1-3). Hence, G -PCG with Kronecker product preconditioner 

corresponding to Case 2 of D using the reflexive boundary condition is 
recommended for the image denoising problem. 

As can be seen in Table 3, the coarse-grained parallel denoising 
algorithm proposed in Section 5 performs quite efficiently on a personal 
computer with large parallel overhead time. Speedups of the personal 
computer with 4 cores range from 1.6 to 2.1 depending upon the amount         
of total computational time. If the coarse-grained parallel algorithm is 
performed on advanced parallel supercomputers with 4 processors, then its 
parallel speedup may be very close to 4. Notice that IT (i.e., the number of 

iterations) does not vary as  (i.e., the number of cores) increases and PSNR 

values are almost the same from parallel execution on the personal computer 
with 4 cores. This means that parallel execution does not deteriorate the 

quality of image denoising. Since G -PCG contains a rich parallelism, future 

work will study development of a fine-grained parallel algorithm for G -PCG 

which is suitable for the advanced parallel supercomputers. 
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