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Abstract 

We study the critical points of complex-valued polynomials of the 

form ( ) ( ) ( ) ( )211 rzrzzzp k −−−=  with 121 == rr  and .N∈k  

The Gauss-Lucas theorem guarantees that the critical points of such a 
polynomial will lie within the unit disk. This paper further explores the 
location and structure of these critical points. For example, there is a 

‘desert’, the open disk ,22
2:

⎭⎬
⎫

⎩⎨
⎧

+
<

+
−∈ k

k
kzz C  in which the 

critical points cannot occur. Furthermore, a critical point of such a 
polynomial almost always determines the polynomial uniquely. 

Several recent papers [1, 2, 4] have studied the geometry of polynomials 
with three roots. Frayer et al. [1] studied the critical points of the family of 
polynomials 

( ) ( ) ( ) ( ){ }.1,1: 2121 ==−−−=|→ rrrzrzzzpp CC  
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The Gauss-Lucas theorem guarantees that the critical points of such a 
polynomial will lie in the unit disk. The results of [1] include that a           
critical point almost always determines p uniquely, and there is a desert, 

,3
1

3
2:





 <−∈ zz C  in which the critical points cannot occur. 

For ,,, N∈nmk  a natural extension of [1] is to study 

( ) { ( ) ( ) ( ) ( ) }.1,1:,, 2121 ==−−−=|→= rrrzrzzzppnmkP nmkCC  

The family ( )kkP ,,1  is characterized in [2]. Similar to [1], a critical point 

almost always determines ( )kkPp ,,1∈  uniquely, and the unit disk contains a 

desert in which critical points cannot occur. 

Marden’s text, The Geometry of Polynomials [3], provides an interesting 
physical interpretation. The critical points of a polynomial are the 
equilibrium points of a force field. The field is generated by particles placed 
at the roots of the polynomial, the particles having masses equal to the 
multiplicity of the roots and attracting with a force inversely proportional       
to the distance from the particle. Stated differently, the critical points are 
somehow both “attracted to” and “repelled by” the roots. Except in the case 
of repeated roots, critical points try to stay as far away from the zeros of the 
polynomial as possible. For ( ),,,1 kkPp ∈  the repeated roots at 1r  and ,2r  

force the critical points not occurring at the repeated roots to be as far away 
from 1r  and 2r  as possible. This allows the critical points to become close to 

the single root at .1=z  In fact, as k approaches infinity, the desert region 
vanishes. In Figure 1, the left image corresponds to polynomials in 
( ).7,7,1P  The interior of the white disk is the desert. 

At the opposite extreme is the family of polynomials ( ).1,1,kP  We used 

Geogebra to graphically investigate the critical points of polynomials in 
( ).1,1,kP  We set the roots in motion around the unit circle and traced the 

loci of the critical points. In Figure 1, the right image corresponds to 
polynomials in ( ).1,1,7P  The large number of repeated roots at ,1=z  
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forces the critical points not occurring at 1=z  to be as far away from 1=z  
as possible. As k approaches infinity, the desert region expands to fill the 
interior of the unit disk. See Corollary 10. This paper characterizes where the 
critical points of a ( )1,1,kPp∈  can lie, and to what extent they determine p. 

 

Figure 1. We set the roots in motion around the unit circle and traced the loci 
of the critical points in grey. Left, corresponds to polynomials in ( ).7,7,1P  

Right, corresponds to polynomials in ( ).1,1,7P  

Preliminary Information 

We let αT  denote the circle of diameter α  passing through 1 and α−1  

in the complex plane. That is, 

.221:




 α=





 α−−∈=α zzT C  

For C∈z  with ( ) ,1≠zRe  the following lemma provides a method of 

calculating the value of α  for which .α∈ Tz  

Lemma 1 [1]. Let C∈z  with ( ) .1≠zRe  We have α∈ Tz  if and only if 

.1
11








−
=

α zRe  

An additional fact of interest is related to Möbius transformations. 

Functions of the form ( ) 1−α
α−= θ

z
zezf i  with 1<α  are the only one-to-
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one analytic mappings of the unit disk onto itself [5, p. 334]. This leads to the 
following useful theorem. 

Theorem 2. A Möbius transformation T sends the unit circle to the unit 

circle if and only if ( )
α−β
β−α= z

zzT  for some C∈βα,  with .1≠
β
α  

Critical Points 

A polynomial of the form 

( ) ( ) ( ) ( )211 rzrzzzp k −−−=  

with 121 == rr  and N∈k  has 1+k  critical points: 1−k  critical 

points at ,1=z  and the two additional critical points in the unit disk. 
Differentiation gives 

( ) ( ) [( ) ( ) ( )( ) ].2111 212121
21 rrrkrzrrkzkzzp k +++−++−+−=′ −  

We define the nontrivial critical points of p to be the two roots of 

( ) ( ) ( ) ( )( ) .211 212121
2 rrrkrzrrkzkzq +++−++−+=  

Example 1. Let ( )1,1,kPp ∈  have a nontrivial critical point at .1=z  

Then, by the Gauss-Lucas theorem, the root at 1=z  has multiplicity greater 
than k. Therefore, ( )1,1,kPp∈  has a nontrivial critical point at 1=z  if and 

only if ( ) ( ) ( )rzzzp k −−= +11  for some .2Tr ∈  

Since we know which ( )1,1,kPp ∈  have a nontrivial critical point at 

,1=z  we will assume 1≠c  as necessary throughout the paper. 

Example 2. Let ( )1,1,kPp∈  have a nontrivial critical point at 2Tc ∈  

with .1≠c  Then, by the Gauss-Lucas Theorem, c must be a repeated root of 
p. Therefore, 

( ) ( ) ( )21 czzzp k −−=  

is the only polynomial in ( )1,1,kP  with a nontrivial critical point at 2Tc ∈  
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with .1≠c  In this case, ( ) ( ) ( ) ( ) ( )( ),221 1 +−+−−=′ − kczkczzzp k  and 

the second nontrivial critical point is 

.22
2

2
22
+

∈
+

+
+

=
k

kTck
k

kc  

To characterize the critical points of ( ),1,1,kPp ∈  we will investigate 

how the roots are related to a nontrivial critical point. Let ( ) =zp  

( ) ( ) ( )211 rzrzz k −−−  with ,121 == rr  ,N∈k  and c a nontrivial 

critical point of p. Then 

( ) ( ) ( ) ( )( ) 212121
2 2110 rrrkrcrrkckcq +++−++−+==  

and it follows that 

( )( ) ( )
( ) .11

2211
2

2
2

1 −++−
−+++−= ckkr

cckrckr  (1) 

Equation (1) represents the relationship between a nontrivial critical point 
and the roots 1r  and .2r  With this in mind, we define 

( ) ( )( ) ( )
( ) 11

2211 2

−++−
−+++−= ckkz

cckzckzfc  

and let ( ).2TfS cc =  

Let .C∈c  Then cf  is a Möbius transformation with ( ) .12 rrfc =  When 

,1=c  ( ) ,11 =
+−
+−= kkz

kkzzf  and 1f  is not invertible. When ,1≠c  cf  is 

invertible with 

( ) ( ) ( )( ) (( ) )
( )ckkz

cckzckzfc 11
2211 2

1
+−+

−+−−+=−  

( )( ) ( )
( ) ( ).11

2211 2
zfckkz

cckzck
c=

−++−
−+++−=  

Therefore, ( ) 21 rrfc =  implies ( ).21 rfr c=  
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Theorem 3. Suppose 1≠c  and ( ) ( ) ( ) ( ) ∈−−−= 211 rzrzzzp k  

( ).1,1,kP  Then p has a nontrivial critical point at c if and only if ( )1rfc  

2r=  and ( ) .12 rrfc =  

Because 2T  is a circle, and Möbius transformations send circles to circles 

or lines, cS  is a circle or a line. In fact, cS  is a line whenever there exists a 

2Tz ∈  with ( ) .011 =−++− ckkz  That is, 

.1
1

1
111

+
−=

+
↔−+== kck

k
kck

kz  (2) 

Therefore, cS  is a line if and only if .
1

2
+

∈
k

kTc  

Example 3. Let .
1

2
+

∈
k

kTc  Then cS  is a line passing through 

( ) ( )
1

121
+

−+= k
ckfc  and ( ) ( ) ( )

( ) .11
1121

2

−++
−−++=− kck

ckckfc  

Algebraic manipulation gives 

( ) ( ) ( ) ( )( ) .111
2211

−+++
+−=−− kckk

cff cc  (3) 

Since ,
1

2
+

∈
k

kTc  

( ) ( )θ
+

+θ
+

+
+

=
+

+
+

= θ sin1cos11
1

11
1

k
kik

k
kek

k
kc i  

for some [ ].2,0 π∈θ  Substituting into equation (3), we obtain 

( ) ( )( ) .011 =−− cc ffRe  Therefore, when ,
1

2
+

∈
k

kTc  cS  is a vertical line 

through ( ).1cf  

Since ,, 221 Rrr ∈  ( ) cc Srrf ∈= 21  and ( ) .12 cc Srrf ∈=  Therefore, 

{ } ., 221 TSrr c ∩⊆  This fact combined with Theorem 3 leads to the 

following result. Our proof generalizes Theorem 7 in [2]. 
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Theorem 4. Suppose .1≠c  

(1) If ,2 ∅=TSc ∩  then no ( )1,1,kPp ∈  has a critical point at c. 

(2) If { },2,12 ∈TSc ∩  then there is a unique ( )1,1,kPp ∈  with a 

nontrivial critical point at c. 

(3) If ,22 TTSc =∩  then c is a nontrivial critical point of ( ) =zp  

( ) ( ) ( )( )rfzrzz c
k −−− 1  for each .2Tr ∈  

Proof. Suppose .1≠c  In the first case, if ,2 ∅=TSc ∩  there are no 

candidates for 1r  and .2r  Hence, no ( )1,1,kPp ∈  has a critical point at c. 

If { },2 rTSc =∩  then it follows from the definition of cf  and cS  that 

( ) .rrfc =  By Theorem 3, c is a nontrivial critical point of ( ) =zp  

( ) ( ) .1 2rzz k −−  Furthermore, as { },2 rTSc =∩  no other ( )1,1,kPp ∈  

has a nontrivial critical point at c. 

Suppose { }baTSc ,2 =∩  with .ba ≠  There are two possibilities: 

( ) aafc =  or ( ) .bafc =  If ( ) ,aafc =  then by definition of ( ) ., bbfS cc =  

By Theorem 3, c is a nontrivial critical point of ( ) ( ) ( )21 1 azzzp k −−=        

and ( ) ( ) ( ) ,1 2
2 bzzzp k −−=  which contradicts the Gauss-Lucas theorem. 

Therefore, ( ) .bafc =  Since ( ) ,1
cc ff =−  we have ( ) ,abfc =  and             

Theorem 3 implies that c is a nontrivial critical point of ( ) =zp  

( ) ( ) ( ).1 bzazz k −−−  Moreover, as { },,2 baTSc =∩  no other ∈p  

( )1,1,kP  has a nontrivial critical point at c. 

Lastly, suppose 22 TTSc =∩  and .2Tr ∈  By Theorem 3, c is a 

nontrivial critical point of ( ) ( ) ( ) ( )( ).1 rfzrzzzp c
k −−−=  ~ 

Center and Radius of cS  

To further characterize critical points of ( ),1,1,kPp ∈  we need a better 
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understanding of .cS  For ,1≠c  we will determine the center and radius of 

.cS  By definition of ,cS  cSz ∈  if and only if there exists a 2Tw ∈  with 

( ) .zwfc =  As ( ) ccc Szff ∈=− ,1  if and only if there exists a 2Tw ∈  with 

( ) .1== wzfc  That is, 

( )( ) ( )
( ) .111

2211 2
=

−++−
−+++−

ckkz
cckzck  (4) 

For ,1≠λ  it follows from introductory complex analysis that the 
solution set of 

vzuz −λ=−  

is a circle with center 
12 −λ

−+= uvvC  and radius R satisfying −= 22 CR  

.
12

222

−λ

−λ uv  Manipulating equation (4) gives 

( ) ( ) ( )
( ) .11

221111 2









+−
+−−+−=





 −+− ck

ckczk
ck

k
ckz  

Applying the change of variables ( )
1

12
+

−++= k
ckWz  yields 

( )
( )

( ) ( )( ) .111
111

1
1

ckk
cWk

ck
kk
cW

+−+
−−+−=

+
−−  (5) 

When ( ) ,111 =+−=λ k
ck  equation (2) implies 

1
2
+

∈
k

kTc  and it 

follows that cS  is a line. When α∈ Tc  with 1,1
2 ≠λ
+

≠α k
k  and the 

solution set of (5) is a circle with center 

( ) ( )( )
( ) ( )( ) ( )

( ) 111
1

1
111

1

111
1

2
−+−

+
−+

+−+
−

+
+−+

−=

k
ck

kk
c

ckk
c

ckk
cC  
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( )
( ) ( )( ) ( )

( ) 111
1

1
111

111

2

2

−+−

+
−+

+−+
−+−

=

k
ck

kk
c

ckk
c

k
ck

 

( ) ( ) ( )( ) ( )
( )

.
111

1
1

111
1111

2

2
2

−+−

+
−+

+−+
−+−







=

k
ck

kk
c

ckk
cckk  

Using the fact that ( ) ( )( ) ( ( ) )ckckck 111111 2 +−+−=+−  yields 

( ( ) ) ( ) ( )
( )

( ) 111
1

1111

2

2

−+−
+

−+−+−

=

k
ck

kk
ckcck

C  

( ) ( )( )
( )

( ) 111
1
111

2

2

−+−
+

++−−

=

k
ck

kk
kckc

 

( ) 111

11

2

2
2

−+−

−
=

k
ck

c
k  

.

111

1
22

c
k

c
kk

−
−

−
−+

=  

By Lemma 1, ,1 ikyk
c

k +
α

=
−

 and it follows that 

( ) ( )
.

121 2 +−α+
α=

kkk
C  
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Furthermore, 

( )
( ) ( )( ) ( )

( )
2

2

222

22

111
1

1
111

111

C

k
ck

kk
c

ckk
c

k
ck

CR =

−+−

+
−−

+−+
−+−

−=  

implies that .CR =  Resubstituting ( )
1

12
+

−++= k
ckWz  establishes the 

following result. 

Lemma 5. Let α∈≠ Tc1  with .1
2
+

≠α k
k  Then cS  is a circle with 

center γ  and radius r given by 

( )
( ) ( )1211

12
2 +−α+

α+
+

−+=γ
kkkk

ck  and 
( ) ( )

.
121 2 +−α+

α=
kkk

r  

We now investigate several examples for future reference. 

Example 4. For cSTc ,1 2∈≠  is a circle with center 

( )
( ) ( )

ck
k

kkkk
ck

1
2

1212
2

1
12

2 +
+=

+−+
+

+
−+=γ  

and radius 

( ) ( )
.1

1
1212

2
2 +

=
+−+

= kkkk
r  

Therefore, when cSTc ,1 2∈≠  is externally tangent to 2T  at c. 

Example 5. For ,C∈c  2TSc =  whenever cf  satisfies the conditions of 

Theorem 2. Since 

( ) ( )( ) ( )
( ) ,11

2211 2

−++−
−+++−= ckkz

cckzckzfc  

Theorem 2 implies ( ) kcck =−+ 22 2  and ( ) ( ) .1111 ckck +−=+−       
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The second equation implies ,R∈c  which reduces the first equation to 

( ) .022 2 =−−+ kcck  Therefore, 

( ) ( )( ) ( )12220 2 −++=−−+= ckckkcck  

and .2,1






+
−∈ k

kc  When ,1=c  ( ) 11 =zf  and hence the hypotheses of 

Theorem 2 are not satisfied. Therefore, 2TSc =  if and only if .2+
−= k

kc  

Where not to find the critical points 

We continue our analysis of cS  by determining when cS  is tangent to 

.2T  For α∈≠ Tc1  with ( ],2,0∈α  if cS  is internally tangent to ,2T then 

.1=+γ r  (6) 

See Figure 2. 

 

Figure 2. If cS  is internally tangent to ,2T  then .1=+γ r  

For α∈≠ Tc1  and 
( ) ( )

,
121 2 +−α+

α=
kkk

R  cS  is a circle with 

center ( ) Rk
ck +

+
−+=γ 1

11  and radius .Rr =  Substituting into equation 

(6) and setting iyxc +=  gives 

( ) ( )( ) ( ) ( ) ( ) .112112 22222 RkykRkxk −+=++++−+  (7) 

We denote equation (7) by .αI  Since ,0>r  equation (6) is satisfied if and 



Christopher Frayer 60 

only if cS  is internally tangent to 2T  or .2TSc =  Recalling that 2TSc =  if 

and only if 2+
−= k

kc  leads to the following lemma. 

Lemma 6. Let 






+
−∉ 2,1 k

kc  and ( ].2,0∈α  Then cS  is internally 

tangent to 2T  if and only if .αα∈ TIc ∩  

Observe that R is undefined when ,1
2
+

=α k
k  positive when 

,1
2
+

>α k
k  and negative when .1

2
+

<α k
k  With this in mind, we consider 

three cases: 

(1) ,1
20
+

<α< k
k  

(2) ,1
2
+

=α k
k  

(3) .21
2 ≤α<
+k
k  

In the first case, R is negative, which implies .RR −=  Equation (7) 

becomes 

( ) ( ) ( ) ,2
11

2
11 2

2
2








+
+++=+







+
++−− k

Rkkyk
Rkx  

which is equivalent to 

( ) ( ) ( ) ( ) .2
11

2
111

2
2

2







+
+++=+





 







+
+++−− k

Rkkyk
Rkkx  (8) 

Therefore, αI  is a circle tangent to the line ,1=x  centered at 

( ) ( )
2

111
+

+++−= k
Rkkx  with radius ( ) ( ) .2

11
+

+++
k

Rkk  Substituting 

( ) ( )121 2 +−α+
α=

kkk
R  gives 
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( ) ( )
( ) ( )

( ) ( )
2

121
11

2
11 2

+
+−α+

α+++
=

+
+++

k
kkk

kk

k
Rkk  

( ) ( )
( ) ( ) ( ) ,2221

12222

+−α++
+−α++= kkkk

kkkk  

which equals zero when ( )
( )

.
11

12
2 ++
+=α

k
kk  

• ( )
( )

( ) ( ) 02
11

11
120 2 >

+
+++⇒

++

+<α< k
Rkk

k
kk  and αI  is tangent to 

1=x  on the left. Therefore, αI  and αT  intersect ( )1at ≠c  precisely when 

.αα = TI  This occurs when the two circles have the same radius. That is, 

when 

( ) ( )
( ) ( ) ( ) .22221

12222 α=
+−α++
+−α++

kkkk
kkkk  (9) 

After simplification, this becomes ( )( ) ( ),2220 −α−α+= kk  which 

implies 2
2
+

=α k
k  or ( )

( )
.

11
12,02 2 









++
+∉=α

k
kk  By Lemma 6, when 

c
k

k STc ,
2

2
+

∈  is internally tangent to .2T  

• ( )
( )

( ) ( ) 02
11

1
2

11
12

2 ≤
+

+++⇒
+

<α≤
++

+
k

Rkk
k

k
k

kk  and αI  is tangent 

to 1=x  on the right. See Figure 3. By Lemma 6, when α∈≠ Tc1  with 

( )
( )

,1
2

11
12

2 +
<α≤

++
+

k
k

k
kk  cS  is not internally tangent to .2T  
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Figure 3. When ( )
( )

,1
2

11
12

2 +
<α<

++
+

k
k

k
kk  αI  is tangent to 1=x  on        

the right. 

In the second case, 1
2
+

=α k
k  and cS  is a vertical line passing through 

( ) ( )
1

121
+

−+= k
ckfc  which is not tangent to .2T  See Example 3. 

In the third case, R is positive, so .RR =  Equation (7) becomes 

( ) ( ) ( ) ,2
11

2
11 2

2
2








+
+−+=+







+
+−− k

Rkkyk
Rkx  

which is equivalent to 

( ) ( ) ( ) ( ) .2
11

2
11

2

2
2

2







+
+−+=+





 







+
+−++

+
−− k

Rkkyk
Rkk

k
kx  

Therefore, αI  is a circle tangent to the line ,2+
−= k

kx  centered at =x  

( ) ( )
2

11
2 +

+−++
+
−

k
Rkk

k
k  with radius ( ) ( ) .2

11
+

+−+
k

Rkk  Substituting 

( ) ( )121 2 +−α+
α=

kkk
R  gives 

( ) ( )
( ) ( )

( ) ( )
2

121
11

2
11 2

+
+−α+

α+−+
=

+
+−+

k
kkk

kk

k
Rkk  
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( ) ( )
( ) ( ) ( ) ,2221

122
+−α++

+−α+= kkkk
kkkk  

which equals zero when .2
22

+
+=α k

k  

• ( ) ( ) 02
11

2
22

1
2 <

+
+−+⇒

+
+<α<

+ k
Rkk

k
k

k
k  and αI  is tangent to 

2+
−= k

kx  on the left. When ,2
22

+
+=α k

k  αT  intersects the negative real 

axis at .2+
−= k

kx  Therefore, for ,1
22

1
2

+
+<α<

+ k
k

k
k  ,∅=αα TI ∩  and 

by Lemma 6, cS  is not internally tangent to .2T  

• ( ) ( ) 02
11

2
22 =

+
+−+⇒

+
+=α k

Rkk
k
k  and αI  is the single point 

.2+
−= k

kx  Therefore, .2





+
−=αα k

kTI ∩  By Example 5, 2
2

TS
k

k =
+
−  and 

it follows that cS  is not internally tangent to .2T  

• ( ) ( )
22

11022
22

+
<

+
+−+<⇒<α<

+
+

k
k

k
Rkk

k
k  and αI  is tangent 

to 2+
−= k

kx  on the right. When ,2
22

+
+=α k

k  αT  intersects the negative 

real axis at 2+
−= k

kx  and .2





+
−=α k

kI  When ,2=α  αI  is centered at 

the origin with radius .2+k
k  Therefore, for ,22

22 <α<
+
+

k
k  αI  lies inside 

.αT  See Figure 4. By Lemma 6, when α∈ Tc  with ,22
22 <α<

+
+

k
k  cS  is 

not internally tangent to .2T  
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Figure 4. When ,22
22 <α<

+
+

k
k  αI  lies inside .αT  

Our analysis of αI  has established the following result. 

Lemma 7. Let .1 C∈≠ c  Then cS  is internally tangent to 2T  if and 

only if .
1

2
+

∈
k

kTc  

Furthermore, for α∈ Tc  with ,20 ≤α<  cS  will be externally tangent 

to 2T  if and only if 

.1=−γ r  

A similar, but less involved, analysis leads to the following result. See 
Example 3. 

Lemma 8. Let .1 C∈≠ c  Then cS  is externally tangent to 2T  if and 

only if .2Tc ∈  

The unit disk contains a desert region in which the critical points of 
( )1,1,kPp ∈  cannot occur. 

Theorem 9. No polynomial in ( )1,1,kP  has a critical point strictly 

inside .
1

2
+k
kT  

Proof. Let α∈ Tc  with .2
20
+

<α< k
k  Then, from equations (8) and 
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(9), βα = TI  with 

[( ) ( )]
( ) ( ) ( ) .2221

12222 2

+−α++
+−α++=β kkkk

kkkk  

Furthermore, α=β  when 2
2
+

=α k
k  or ,2=α  and β  is undefined when 

.1
2
+

=α k
k  When ( ) 02

12,0 >
+
+=β=α k

k  and it follows that α>β  when 

.2
20
+

<α< k
k  Therefore, when ,2

20
+

<α< k
k  αT  lies inside .αI  See 

Figure 5. Setting ,iyxc +=  it follows from equation (8) that 

( ) ( ) ( ) ( ) .2
11

2
111

2
2

2







+
+++<+





 







+
+++−− k

Rkkyk
Rkkx  

 

Figure 5. When α+
<α< Tk

k ,2
20  lies inside .αI  

Equivalently, equations (6) and (7) imply that .1<+γ r  Therefore, 

∅=2TSc ∩  and by Theorem 4, no ( )1,1,kPp ∈  has a critical point 

strictly inside .
2

2
+k
kT  ~ 

Observe that as k approaches infinity, the diameter of 
2

2
+k
kT  approaches 

2. 
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Corollary 10. The desert region bounded by 
2

2
+k
kT  expands to fill the 

interior of the unit disk as k approaches infinity. 

Main Result 

We are now able to characterize the critical points of ( ).1,1,kPp ∈  

Theorem 11. Let .C∈c  

(1) If c lies strictly inside 
2

2
+k
kT  or strictly outside ,2T  then no 

( )1,1,kPp∈  has a critical point at c. 

(2) ( )1,1,kPp ∈  has a nontrivial critical point at 1=c  if and only if 

( ) ( ) ( )rzzzp k −−= +11  for some .2Tr ∈  

(3) ( )1,1,kPp ∈  has a nontrivial critical point at 2+
−= k

kc  if and 

only if ( ) ( ) ( ) ( ( ))rfzrzzzp
k

k
k

2
1

+
−−−−=  for some .2Tr ∈  

(4) If 






+
−∉ 2,1 k

kc  lies on αT  for some ,2,2
2







+
∈α k

k  then there is 

a unique ( )1,1,kPp ∈  with a nontrivial critical point at c. 

Proof. Let c lie strictly inside 
2

2
+k
kT  or strictly outside .2T  Theorem 9 

and the Gauss-Lucas theorem imply that no ( )1,1,kPp ∈  has a critical 

point at c. 

By Example 1, ( )1,1,kPp ∈  has a nontrivial critical point at 1=c  if 

and only if ( ) ( ) ( )rzzzp k −−= +11  for some .2Tr ∈  

By Example 5, ( ) 22 TTfc =  if and only if .2+
−= k

kc  By Theorems 3 
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and 4, ( )1,1,kPp ∈  has a nontrivial critical point at 2+
−= k

kc  if and only 

if ( ) ( ) ( ) ( ( ))rfzrzzzp
k

k
k

2
1

+
−−−−=  for some .2Tr ∈  

If α∈ Tc  with 2
2
+

=α k
k  or ,2=α  it follows by Lemmas 7 and 8 that 

cS  is tangent to .2T  By Theorem 3, there is a unique ( )1,1,kPp ∈  with a 

nontrivial critical point at c. Now, suppose 






+
−∉ 2,1 k

kc  lies on αT  for 

some .2,2
2








+
∈α k

k  Then { }.2,02 ∈TSc ∩  Without loss of generality, 

suppose ∅=2TSc ∩  and cS  lies inside .2T  As we drag c to 2T  along              

a line segment contained in ,2,1\2,2
2







+
−













+
∈α|∈ α k

k
k

kTc  cS  is 

continuously transformed into a circle externally tangent to .2T  See Example 

4. By the Intermediate Value Theorem, there exists a 0c  on the line segment 

with cS  internally tangent to .2T  As c does not cross ,
2

2
+k
kT  this contradicts 

Lemma 7. Therefore, ,22 =TSc ∩  and by Theorem 4, there exists a 

unique ( )1,1,kPp ∈  with a nontrivial critical point at c. ~ 

For ,N∈m  one can easily extend Theorem 11 to the family 

( ).,, mmkP  The main result restated for this general case is as follows. 

Theorem 12. Let .C∈c  

(1) If c lies strictly inside 
km

kT
+2

2  or strictly outside ,2T  then no 

( )mmkPp ,,∈  has a critical point at c. 

(2) ( )mmkPp ,,∈  has a nontrivial critical point at 1=c  if and only if 

( ) ( ) ( )mmk rzzzp −−= +1  for some .2Tr ∈  
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(3) ( )mmkPp ,,∈  has a nontrivial critical point at km
kc
+

−= 2  if and 

only if ( ) ( ) ( ) ( ( ))m
km

k
mk rfzrzzzp

+
−−−−=

2
1  for some .2Tr ∈  

(4) If 






+
−∉ km

kc 2,1  lies on αT  for some ,2,2
2







+
∈α km

k  then 

there is a unique ( )mmkPp ,,∈  with a nontrivial critical point at c. 
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