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Abstract

We study the critical points of complex-valued polynomials of the
form p(z)=(z —1)k(z -n)(z-r) with | |=|rp|=1and k e N.
The Gauss-Lucas theorem guarantees that the critical points of such a
polynomial will lie within the unit disk. This paper further explores the
location and structure of these critical points. For example, there is a
-2
k+2
critical points cannot occur. Furthermore, a critical point of such a
polynomial almost always determines the polynomial uniquely.

‘desert’, the open disk {z eC:

k . .
< m} in which the

Several recent papers [1, 2, 4] have studied the geometry of polynomials
with three roots. Frayer et al. [1] studied the critical points of the family of
polynomials

{p:Co>Clpz)=z-D(z-n)z-n)|n[=[r|=1
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The Gauss-Lucas theorem guarantees that the critical points of such a
polynomial will lie in the unit disk. The results of [1] include that a
critical point almost always determines p uniquely, and there is a desert,

{ze(C: 2

273
For k, m, n € N, a natural extension of [1] is to study

3

1] . . .. .
< —}, in which the critical points cannot occur.

P(k,m,n)={p:C - C|p(z)= (-1 (z=n)"(z-n)|n|=|n|=1.

The family P(1, k, k) is characterized in [2]. Similar to [1], a critical point
almost always determines p e P(1, k, k) uniquely, and the unit disk contains a

desert in which critical points cannot occur.

Marden’s text, The Geometry of Polynomials [3], provides an interesting
physical interpretation. The critical points of a polynomial are the
equilibrium points of a force field. The field is generated by particles placed
at the roots of the polynomial, the particles having masses equal to the
multiplicity of the roots and attracting with a force inversely proportional
to the distance from the particle. Stated differently, the critical points are
somehow both “attracted to” and “repelled by” the roots. Except in the case
of repeated roots, critical points try to stay as far away from the zeros of the
polynomial as possible. For p € P(1, k, k), the repeated roots at 1 and ry,
force the critical points not occurring at the repeated roots to be as far away
from 7 and », as possible. This allows the critical points to become close to

the single root at z = 1. In fact, as k approaches infinity, the desert region
vanishes. In Figure 1, the left image corresponds to polynomials in
P(1, 7, 7). The interior of the white disk is the desert.

At the opposite extreme is the family of polynomials P(k, 1, 1). We used
Geogebra to graphically investigate the critical points of polynomials in
P(k, 1, 1). We set the roots in motion around the unit circle and traced the
loci of the critical points. In Figure 1, the right image corresponds to

polynomials in P(7, 1, 1). The large number of repeated roots at z =1,
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forces the critical points not occurring at z =1 to be as far away from z =1
as possible. As k approaches infinity, the desert region expands to fill the
interior of the unit disk. See Corollary 10. This paper characterizes where the

critical points of a p € P(k,1,1) can lie, and to what extent they determine p.

Figure 1. We set the roots in motion around the unit circle and traced the loci

of the critical points in grey. Left, corresponds to polynomials in P(1, 7, 7).

Right, corresponds to polynomials in P(7, 1, 1).
Preliminary Information

We let T,, denote the circle of diameter o passing through 1 and 1 - a

==(-3)|-5}

For z € C with Re(z) # 1, the following lemma provides a method of

in the complex plane. That is,

Taz{ze(C:

calculating the value of o for which z € Tj,.

Lemma 1[1]. Let z € C with Re(z) # 1. We have z € T, if and only if

1 1
a = Re(l — Zj.

An additional fact of interest is related to Maobius transformations.

Functions of the form f(z) = ™ é;al with | o | <1 are the only one-to-
-
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one analytic mappings of the unit disk onto itself [5, p. 334]. This leads to the
following useful theorem.

Theorem 2. A Mébius transformation T sends the unit circle to the unit
o

B

= 1.

az _5 for some o, B € C with

circle if and only if T(z) = Bz —

Critical Points

A polynomial of the form

p(2)= (- -n)z-n)

with | |=|rn|=1 and k€ N has k+1 critical points: k —1 critical
points at z =1, and the two additional critical points in the unit disk.

Differentiation gives
P(2) = =Dk +1)22 = ((k + 1) (1 + 1) = 2)z + kriry + 11 + 1],
We define the nontrivial critical points of p to be the two roots of
q(z) = (k +1)2% = (k + 1) (11 +ry) = 2)z + knyry + 11 + 1.

Example 1. Let p € P(k, 1, 1) have a nontrivial critical point at z = 1.

Then, by the Gauss-Lucas theorem, the root at z = 1 has multiplicity greater

than k. Therefore, p € P(k,1,1) has a nontrivial critical point at z = 1 if and
only if p(z) = (z = 1)**!(z = ) for some 7 € 7.
Since we know which p € P(k, 1, 1) have a nontrivial critical point at

z =1, we will assume ¢ # 1 as necessary throughout the paper.

Example 2. Let p e P(k,1,1) have a nontrivial critical point at ¢ € T,

with ¢ # 1. Then, by the Gauss-Lucas Theorem, ¢ must be a repeated root of
p. Therefore,

p(z) = (z =1 (z =)’

is the only polynomial in P(k, 1, 1) with a nontrivial critical point at ¢ € T5
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with ¢ # 1. In this case, p'(z) = (z = I} '(z = ¢)((k + 2)z — (ke + 2)), and
the second nontrivial critical point is

2

2= %y T hr2c T

k+2

To characterize the critical points of p € P(k, 1, 1), we will investigate

how the roots are related to a nontrivial critical point. Let p(z) =
(z-1)f(z- n)(z—r) with |n|=|rn|=1 keN, and ¢ a nontrivial
critical point of p. Then

0=qlc)=(k+1) =k +1)(n +r)=2)c+kiry + 1 + 1y

and it follows that

(= (k+1)e)r + (k+2)c? - 2¢ |
= —kry + (k+1)c—1 ‘ (1)

Equation (1) represents the relationship between a nontrivial critical point
and the roots 1 and r,. With this in mind, we define

(= (k+1)c)z + (k +2)c? -2
Jel2) = —kz + (k+1)c—1

andlet S, = f,.(D»).

Let ¢ € C. Then f, is a Mbius transformation with f.(r») = 1. When

c=1, fi(z)= % =1, and f; is not invertible. When ¢ # 1, f. is
invertible with
1y ((k+1)e=1)z—((k +2)c? - 2¢)
(fe) " (2) = kz+1-(k+1)c

(U —=(k+1)c)z+(k+2)c? —2¢
B e (k++ 1):: -1 = Je(2)

Therefore, f,(r1) = r, implies 1 = f,.(r).
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Theorem 3. Suppose ¢ #1 and p(z)=(z - l)k(z -n)(z—-n)e
P(k, 1,1). Then p has a nontrivial critical point at c if and only if f.(n)
=r and f.(rn)=H.

Because 75 is a circle, and Mobius transformations send circles to circles

or lines, S, is a circle or a line. In fact, S, is a line whenever there exists a

z € T, with —kz + (k +1)c — 1 = 0. That s,

B _|k+1 1 kK| 1
1‘|Z|“ ¢ k‘”kﬂ‘c k+1‘ )
Therefore, S, isalineifand only if ¢ € Ty .
k+1
Example 3. Let ¢ € T, . Then S, is a line passing through
K+l
(k+2)c—1 (k2 +(k-De-1
fe) = k+1 and f.(-1) = (k+1)c+k-1 '
Algebraic manipulation gives
—2c+2
SO =S = G s e k=) 3
Since c € Ty, ,
K+l
1 ko 1 k . k.
= Tt Er1C T a1 T aareos® i ysin(0)

for some 0 e[0, 2n]. Substituting into equation (3), we obtain

Re(f.(1) = f.(-1)) = 0. Therefore, when ¢ € T, , S, is a vertical line
k+1

through f.(1).

Since 1, » € Ry, f.(n)=r €S, and f.(rn) =n € S,. Therefore,
{n, n} = S, NT,. This fact combined with Theorem 3 leads to the

following result. Our proof generalizes Theorem 7 in [2].
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Theorem 4. Suppose c # 1.

(W IfS.NT, =D, thenno p € P(k, 1,1) has a critical point at c.

Q) If |S. N1 | €{l, 2}, then there is a unique p e P(k,1,1) with a
nontrivial critical point at c.

(3) If S.NTy, =T, then c is a nontrivial critical point of p(z) =
- Gz=-r)(z- fo(r)) foreach r € T».

Proof. Suppose ¢ # 1. In the first case, if S, (17, =, there are no
candidates for 1 and r,. Hence, no p € P(k, 1, 1) has a critical point at c.

If S, N T, ={r}, then it follows from the definition of f. and S, that
f.(r) =r. By Theorem 3, ¢ is a nontrivial critical point of p(z) =
(z- 1)k(z — r)%. Furthermore, as S, NT, ={r}, no other p e P(k, 1, 1)
has a nontrivial critical point at c.

Suppose S. N7, = {a, b} with a = b. There are two possibilities:
fo(a)=a or f.(a)=0>b.If f.(a)= a, then by definition of S, f.(b) = b.
By Theorem 3, ¢ is a nontrivial critical point of p;(z) = (z — l)k(z - a)2
and py(z) = (z - 1Y*(z — b)?, which contradicts the Gauss-Lucas theorem.

Therefore, f.(a) =b. Since (f.)™' = f., we have f.(b)=a, and

Theorem 3 implies that ¢ is a nontrivial critical point of p(z)=
(z—l)k(z—a)(z—b). Moreover, as S. 7T, ={a, b}, no other pe

P(k, 1, 1) has a nontrivial critical point at c.

Lastly, suppose S. (17, =7, and r € T,. By Theorem 3, ¢ is a

nontrivial critical point of p(z) = (z = 1 (z = ) (z = £.(r)). O
Center and Radius of S,

To further characterize critical points of p € P(k, 1, 1), we need a better
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understanding of S.. For ¢ # 1, we will determine the center and radius of

S.. By definition of S., z € S, if and only if there exists a w € T, with

fe(w) = z. As (fc)_l = f., z € S, if and only if there exists a w € T, with
| fu(z)| =| w| = 1. Thatis,

(1—(k+1)c)z+(k+2)c? —2¢|
Tk + (k+ De -1 =1 “)

For A # 1, it follows from introductory complex analysis that the

solution set of

|Z—u|=k|z—v|

is a circle with center C = v + Vz_ L and radius R satisfying R* =|C[* -
A -1
2112 2
A |v|2 ] . Manipulating equation (4) gives
A =1
(G De =1\ _|1=(k+Del| 2¢ — (k +2)c?
k - k 1-(k+1)c ||
. . (k+2)c—1 .
Applying the change of variables z = W + Y yields
w1 |_ 1-(k+1)c W l-¢ 5)
k(k+1)| k (k+1)(A-(k+1)c)]|
1-(k+1)c . o .
When A =|——————|=1, equation (2) implies c € T,; and it

k L
k+1

follows that S, is a line. When ¢ € T, with a # 2k1 , A %=1 and the

k +
solution set of (5) is a circle with center

-1

l-c¢ l-c¢
o 1—c +(k+1)(1—(k+1)c)+k(k+1)
~(k+ 1) (1= (k+1)c) ‘1—(k+1)c2

k
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2

1-(k+1)c l-¢ l-¢
‘ 3 GrD0—(k+Do)  kk+1)
2

-1

1—(k+1)c
k

1 l-c l-c
(E) [1= G+ Def? EDEEDEAED)
r—@+mﬂ_ '
k

1

Using the fact that |1 - (k + 1)c |2 =(1-(k+1)c)(1-(k+1)c) yields

(I=(k+De)(1-c)+k(1-c)
K2 (k +1)
‘1—(k+1)c
k

C = 5
-1

(1-c)(1 - (k +1)Z + k)
Kk +1)
‘1—(k+1)c

k

2

1 2
k—2|1—0|

- L= (ke |
k

]
k r_‘k

7

‘k+1_1—c l-c¢

By Lemma 1, % = g + iky, and it follows that

(k+1)Y%a—2k(k +1)

57
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Furthermore,
‘L{k+Dcz 1-c 2_‘0—1 r
2 2 k k+1)(1-(k+1)c k(k +1 2
e E0==a| R
1-(k+1)c 1
k
implies that R =| C|. Resubstituting z = W +% establishes the

following result.

Lemma 5. Let 1 # c € T, with o # kz_fl Then S, is a circle with

center y and radius r given by

(k+2)c—1 a a
= o1 + 5 and r = 3 .
+ (k+1)"a — 2k(k +1) (k +1) o — 2k(k +1)

We now investigate several examples for future reference.

Example 4. For 1 # ¢ € 75, S, is a circle with center

_(k+2e-1, 2 _k+2,
k+1 2k +1)? = 2k(k +1) Kk +1

and radius

2 1
2k +1) = 2k(k +1)| k+1

7

Therefore, when 1 # ¢ € 75, S, is externally tangent to 7, at c.

Example S. For ¢ € C, S, =T, whenever f,. satisfies the conditions of

Theorem 2. Since

(1= (k+1)e)z + (k+2)c? —2c
Je(2) = tkz + (k++ 1)2 -1 ’

Theorem 2 implies (k +2)c> —2c =k and 1-(k + )c =1-(k + 1)e.
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The second equation implies ¢ € R, which reduces the first equation to

(k +2)c? = 2¢ — k = 0. Therefore,
0=(+2)?-2c—k=(k+2)c+k)(c-1)

and ¢ e { k } When ¢ =1, fj(z)=1 and hence the hypotheses of

1’k+2

Theorem 2 are not satisfied. Therefore, S. = 7, ifand only if ¢ = k_+ 5
Where not to find the critical points

We continue our analysis of S, by determining when S, is tangent to

T,. For 1 # ¢ € T, with a € (0, 2], if S, is internally tangent to 75, then
|v|+r=1 (6)

See Figure 2.

Figure 2. If S, is internally tangent to 75, then |y |+ r = 1.

o
(k+ 120 — 2k(k +1)

For 1#ceTy and R = S. 1is a circle with

(k+1)c-1
k+1

(6) and setting ¢ = x + iy gives

center y = + R and radius » =| R|. Substituting into equation

(k+2)x—1+(k +DRY +(k+2)*y? = (k +1?(1=|R|)>. (D)

We denote equation (7) by /. Since r > 0, equation (6) is satisfied if and
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only if S, is internally tangent to 75 or S. = T5. Recalling that S,. = 7, if

) leads to the following lemma.

and only if ¢ =

Lemma 6. Let ¢ e{ k } and o € (0, 2]. Then S, is internally

L k+2
tangent to T, if and only if ¢ € I, N T,.

Observe that R is undefined when o =

k iy
il positive when

2 . . S .
o > 2k and negative when o < . With this in mind, we consider

k+1°

three cases:

2k
k+1

2k
(1)0<a<m,

2%
@ =37

2k

<
(3)k+1<0c_2.

In the first case, R is negative, which implies | R | = —R. Equation (7)

becomes

(x ) —1+k(1%1)1e)2 +y° = ((k * 1)k++(l; + I)RJZ’

which is equivalent to

(x ~ (1 C(k+ 1)k++(/; + 1)RD2 NN ((k + 1)k++(/; + 1)R)2. ®

Therefore, [, 1is a circle tangent to the line x =1 centered at

_(k+D)+(k+DR (k+1)+(k+1R

) with radius )

=1

‘. Substituting

(00

R = g
(k + 10 — 2k(k +1)

ives
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(k+1)+(k+1)R _ (k+1)+(k+1)(k+1)2a—2k(k+1)
k+2 k+2

(k% + 2k + 2)ou — 2k(k + 1)
(k+1)(k + 2)o — 2k(k +2)°

2k(k +1)

which equals zero when a = -
(k+1)"+1

2k(k +1) :>(k+1)+(k+1)R
(k+1)* +1 k+2

x =1 on the left. Therefore, I, and T, intersect (at ¢ # 1) precisely when

e <<

>0 and 7, is tangent to

I, = T,. This occurs when the two circles have the same radius. That is,

when

(K2 + 2k +2)o - 2k(k +1) _ o ,
(k+1)(k +2)o—2k(k+2) 2~ )

After simplification, this becomes 0 = ((k + 2)a — 2k) (a0 — 2), which

2k(k + 1)

implies a = )
(k+1)7 +1

or a=2¢ [O J By Lemma 6, when

k+2

ceTy;, S, isinternally tangent to 75.
k+2

. 2k(k+1) <o < 2k :(k+1)+(k+1)R
(k+1)2+1 k+1 k+2

<0 and [, is tangent

to x =1 on the right. See Figure 3. By Lemma 6, when 1 # ¢ € T, with

2k(k +1) <o < 2k , S, is not internally tangent to 7.
k+1) +1
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T,

Figure 3. When L;l) <a< i, I, is tangent to x =1 on
(k+1)" +1 k+1
the right.
2k . . . .
In the second case, a = ) and S, is a vertical line passing through
f.(1) = % which is not tangent to 7,. See Example 3.

In the third case, R is positive, so | R | = R. Equation (7) becomes

(x ) l_l(ck%l)]e)z w7 = ((k - 1)k—+(1;+ I)RJZ’

which is equivalent to

(x_( —k +(k+1)—(k+1)RD2+y2 z((k+1)—(k+1)Rj2‘

k+2 k+2 k+2
Therefore, I, is a circle tangent to the line x = k_—+k2, centered at x =
-k (k+1)—(k+1)R . . (k+1)—(k+1R "
) + ) with radius ) . Substituting
R = 3 <« gives
(k+1)" o —2k(k +1)
o

(k+1)— (k + )R _(k+1)_(k+1)(k+1)2a-2k(k+1)
k+2 B k+2
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 k(k +2)o - 2k(k +1)
C(k+1)(k+2)a —2k(k+2)°

which equals zero when o = %

o szl <a< 215:22 = (k+ l)k_+(];+ DR <0 and /, is tangent to
X = k_f 5 on the left. When o = %, T, intersects the negative real
axis at x = k_—fz Therefore, for szl <a< 2:112 , I, NT, =<, and

by Lemma 6, S, is not internally tangent to 75.

_2k+2 __ (k+1)—(k+1DR _ : : .
a="s = ) =0 and [/, is the single point

—k —k
X=s Therefore, I, N T, = {m} By Example 5, Sk__fz =T, and

it follows that S, is not internally tangent to 75.

2k +2 k+D)—(k+1R k .
. k+2<0t<2:0< ) <k+2 and [, is tangent
—k : 2k +2 . .
to x = 1o on the right. When o = A T, intersects the negative
real axis at x = —k and [, = Kk When o =2, [, is centered at
k+2 “ o k+2) ST e
S . k 2k + 2 S
the origin with radius R Therefore, for A <a <2, I, lies inside
. 2k +2 .
T,,. See Figure 4. By Lemma 6, when ¢ € 7, with Tio << 2, S, is

not internally tangent to 75.
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2k +2

Figure 4. When <a <2, I, lies inside 7.

k+2

Our analysis of I, has established the following result.

Lemma 7. Let 1 # c € C. Then S, is internally tangent to T, if and

onlyifceTyy .
k+1

Furthermore, for ¢ € T, with 0 <o <2, S, will be externally tangent

to 75 if and only if
[v[-r=1

A similar, but less involved, analysis leads to the following result. See
Example 3.

Lemma 8. Let 1 # c € C. Then S, is externally tangent to T, if and
onlyif c € T.

The unit disk contains a desert region in which the critical points of

p € P(k, 1, 1) cannot occur.

Theorem 9. No polynomial in P(k,1,1) has a critical point strictly

inside T 5, .
K+l

Proof. Let c € T, with 0 < a < . Then, from equations (8) and

2k
k+2
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), I, = Ig with

2[(K? + 2k + 2)ou — 2k(k +1)]
b= Dk + Do —2k(k+2) -

Furthermore, B = a when a = or a =2, and B is undefined when

k+2
2k _ _2(k+1) .
oc—k+1.When0L—0,[3——k+2 > 0 and it follows that B > a when
0<a<l Therefore, when 0<oc<i T, lies inside [,. See
k+2° ’ k+2> ¢ ar

Figure 5. Setting ¢ = x + iy, it follows from equation (8) that

(x - (1 _ (ke 1)k++(]; + 1)RD2 )2 < ((k + 1)k++(l; + 1)R)2.

Figure 5. When 0 < o < kz—fZ’ Ty, lies inside /.

Equivalently, equations (6) and (7) imply that |y |+ r <1. Therefore,
S.NT, = and by Theorem 4, no p € P(k,1,1) has a critical point

strictly inside 7 5, . O]
k+2

Observe that as k approaches infinity, the diameter of 7', approaches
k+2
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Corollary 10. The desert region bounded by T ,; expands to fill the
k+2

interior of the unit disk as k approaches infinity.

Main Result

We are now able to characterize the critical points of p € P(k, 1, 1).

Theorem 11. Let ¢ € C.

(1) If c lies strictly inside T, or strictly outside T,, then no
k+2

p € P(k,1,1) has a critical point at c.
(2) p € P(k, 1,1) has a nontrivial critical point at ¢ =1 if and only if
p(2) = (z = 1)z = 7) for some r e To.

—k
k+2

(3) p e P(k,1,1) has a nontrivial critical point at ¢ = if and

only if p(z) =(z - l)k(z -r)(z - f__k(r)) for some r € T.
k+2

WDilfce {1, k—fZ} lies on T for some o € [kz—f?.’ 2} then there is

a unique p € P(k, 1, 1) with a nontrivial critical point at c.

Proof. Let c lie strictly inside 7 ,; or strictly outside 7,. Theorem 9
k+2

and the Gauss-Lucas theorem imply that no p € P(k, 1, 1) has a critical

point at c.
By Example 1, p € P(k, 1, 1) has a nontrivial critical point at ¢ =1 if

and only if p(z) = (z = 1)**1(z = r) for some r € T>.

By Example 5, f.(T5) = T, if and only if ¢ = k_—+k2 By Theorems 3
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and 4, p € P(k, 1, 1) has a nontrivial critical point at ¢ = k_+k2 if and only

if p(z)=(z-1'(z-r)(z- f__k(r)) for some r € .
k+2

If c e T, with o =

sz zora= 2, it follows by Lemmas 7 and 8 that
S, is tangent to 7,. By Theorem 3, there is a unique p € P(k, 1, 1) with a

nontrivial critical point at c¢. Now, suppose ¢ ¢ {1, k_—fZ} lies on T, for

2). Then | S. N 75 | € {0, 2}. Without loss of generality,

some o € k
k+2°

suppose S, T, =< and S, lies inside 7,. As we drag ¢ to 7, along

) . . 2k -k )
a line segment contained in {c el |ae (k 5 2}}\{1, A 2}, S, is

continuously transformed into a circle externally tangent to 7,. See Example
4. By the Intermediate Value Theorem, there exists a ¢, on the line segment

with S, internally tangent to 7>. As c¢ does not cross T 5; , this contradicts
k+2

Lemma 7. Therefore, |S. 7, | =2, and by Theorem 4, there exists a

unique p € P(k, 1, 1) with a nontrivial critical point at c. O

For m e N, one can easily extend Theorem 11 to the family

P(k, m, m). The main result restated for this general case is as follows.
Theorem 12. Let ¢ € C.

(1) If c lies strictly inside T ,;  or strictly outside T,, then no
2m+k

p € P(k, m, m) has a critical point at c.

(2) p € P(k, m, m) has a nontrivial critical point at ¢ =1 if and only if

p(2) = (z = 1™z = )™ for some r e T.
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(3) p € P(k, m, m) has a nontrivial critical point at ¢ = % if and

onlyif p(z) = (z - W (z = r)"(z - f__k(r))m for some r € T.

2m+k

—k . 2k
@ If ce {1, m} lies on T, for some o € [m, 2}, then

there is a unique p € P(k, m, m) with a nontrivial critical point at c.

(1]

(2]
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