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Abstract 

An analysis is presented to investigate the influence of internal heat 
generation and thermal radiation on the MHD-free convection of non-
Newtonian fluids over a vertical permeable plate in porous media.              
The heat and mass transfer characteristics due to the effect of uniform 
blowing/suction and double-diffusive are numerically analyzed.             
The surface of the vertical plate has a uniform wall temperature and            
a uniform wall concentration (UWT/UWC). Non-similar solutions              
for the transformed governing equations by Keller box method              
are obtained. Comparisons showed excellent agreements with the 
numerical data in previous works. Numerical data for the 
dimensionless temperature profile, the dimensionless concentration 
profile, the local Nusselt number and the local Sherwood number are 
presented for the main parameters: the power-law index of the non-
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Newtonian fluid, the blowing/suction parameter, the magnetic field 
parameter, the internal heat generation coefficient and the thermal 
radiation parameter which are entered in tables or plotted in figures. 

1. Introduction 

The boundary-layer flow of coupled heat and mass transfer (or double-
diffusion) in porous medium has gained a considerable attention of many 
researchers in recent years. This is justified reason by the point that porous 
media play a vital role in many engineering and geophysical applications 
such as thermal insulation of buildings, nuclear reactor cooling system, 
nuclear waste disposals, energy recovery of petroleum resources, chemical 
reactors, extraction of geothermal energy, filtration processes, etc. Nield and 
Bejan [1], recently, presented a comprehensive account of the available 
information in the field. 

The Soret effect referred to species differentiation developing in an 
initial homogeneous mixture submitted to a thermal gradient. The Dufour 
effect referred to heat flux produced by a concentration gradient. Anghel           
et al. [2] examined the Dufour and Soret effects on free convection 
boundary-layer flow over a vertical surface embedded in a porous medium. 
Cheng [3] presented the double diffusion from a vertical wavy surface in a 
porous medium saturated with a non-Newtonian fluid. Postelnicu [4] studied 
the heat and mass transfer by natural convection at a stagnation point in a 
porous medium considering Soret and Dufour effects. Cheng [5] investigated 
the Soret and Dufour effects on free convection heat and mass transfer            
from an arbitrarily inclined plate in a porous medium with constant wall 
temperature and concentration. 

A number of industrially important fluids including fossil fuels exhibit 
non-Newtonian fluid behavior. Non-Newtonian power law fluids are so 
widespread in industrial processes and in the environment that it would be no 
exaggeration to affirm that Newtonian shear flows are the exception rather 
than the rule. Shenoy [6] presented many interesting applications of non-
Newtonian power law fluids with yield stress on convective heat transport        
in fluid saturated porous media considering geothermal and oil reservoir 
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engineering applications. Chen and Chen [7] presented similarity solutions 
for natural convection of a non-Newtonian fluid over vertical surfaces in 
porous media. Gorla and Kumari [8] studied nonsimilar solutions for free 
convection in non-Newtonian fluids along a vertical plate in a porous 
medium. Cheng [9] studied the natural convection heat and mass transfer of 
non-Newtonian power law fluids with yield stress in porous media from a 
vertical plate with variable wall heat and mass fluxes. Mahdy and Hady [10] 
reported the effect of thermophoretic particle deposition in non-Newtonian 
free convection flow over a vertical plate with magnetic field effect. 

Considerable of physical phenomena involved free convection driven by 
internal heat generation. The most important applications are in the reactor 
safety analyses, metal waste form development for spent nuclear fuel, fire 
and combustion studies, and radioactive materials storage. A new class of 
similarity solutions was obtained for an isothermal vertical plate in a semi-
infinite quiescent fluid with internal heat generation decaying exponentially 
by Crepeau and Clarksean [11]. Postelnicu and Pop [12] then used the model 
developed by Crepeau and Clarksean [11] to study the similarity solutions of 
free convection boundary layers over vertical and horizontal surfaces in 
porous media with internal heat generation. Grosan and Pop [13] reported the 
free convection boundary layer developed by a vertical flat plate in porous 
medium, saturated with a non-Newtonian fluid with internal heat generation. 
Mohamed [14] analyzed the effect of lateral mass flux on the natural 
convection boundary layers induced by a heated vertical plate embedded in a 
saturated porous medium with internal heat generation. Mahmoud [15] 
described the radiation effect on free convection of a non-Newtonian fluid 
over a vertical cone embedded in a porous medium with heat generation. Yih 
and Huang [16] extended the research of Grosan and Pop [13] to report the 
effect of internal heat generation on free convection heat and mass transfer         
of non-Newtonian fluids flow over a vertical plate in porous media with 
variable wall temperature and concentration. 

In many new engineering areas, processes such as energy processes of 
fossil fuel combustion, solar power technology, astrophysical flows, gas 
turbines and the various propulsion devices for aircraft, missiles, satellites, 
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and space vehicle re-entry occur at high temperatures so knowledge of 
radiation heat transfer beside the convective heat transfer plays a very 
important role and hence its effect cannot be neglected. Also, thermal 
radiation is of major importance in many processes in engineering areas 
which occur at a very high temperature for the design of many advanced 
energy conversion systems and pertinent equipment. The Rosseland 
approximation is used to describe the radiative heat flux in the energy 
equation. Raptis [17] described the radiation and free convection flow 
through a porous medium. Mohammadien and El-Amin [18] considered the 
thermal dispersion-radiation effects on non-Darcy natural convection in a 
fluid saturated porous medium. El-Hakiem and El-Amin [19] investigated 
thermal radiation effect on non-Darcy natural convection with lateral mass 
transfer. Seddeek [20] examined the thermal radiation and buoyancy effects 
on MHD free convective heat generating flow over an accelerating 
permeable surface with temperature-dependent viscosity. Tai and Char [21] 
examined the Soret and Dufour effects on free convection flow of non-
Newtonian fluids along a vertical plate embedded in a porous medium with 
thermal radiation. Sheikholeslami et al. [22] presented the effect of thermal 
radiation on magnetohydrodynamics nanofluid flow and heat transfer by 
means of two phase model. 

Magnetohydrodynamic (MHD) boundary layer flow for an electrically 
conducting fluid in porous medium is of considerable interest in geothermal 
system, geophysical engineering, aerodynamic processes, underground 
disposal of nuclear waste materials and many others. Because of the wide 
application of the characteristic of the MHD in porous medium, it becomes 
one of the major topics of research in the last two centuries. Cheng [23] 
examined the effect of magnetic field on heat and mass transfer by natural 
convection from vertical surfaces in porous media - an integral approach. 
Postelnicu [24] studied the influence of a magnetic field on heat and mass 
transfer by natural convection from vertical surfaces in porous media 
considering Soret and Dufour effects. Cheng [25] used an integral approach 
for hydromagnetic natural convection heat and mass transfer from vertical 
surfaces with power-law variation in wall temperature and concentration in 
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porous media. Partha et al. [26] accounted for the Soret and Dufour effects            
in a non-Darcy porous medium. Bakier and Mansour [27] considered the 
combination of magnetic field and thermophoresis particle deposition in free 
convection boundary layer from a vertical flat plate embedded in a porous 
medium. Rashad [28] examined the influence of radiation on MHD free 
convection from a vertical flat plate embedded in porous media with 
thermophoretic deposition of particles. Chamkha and Ben-Nakhi [29] studied 
the MHD mixed convection-radiation interaction along a permeable surface 
immersed in a porous medium in the presence of Soret and Dufour’s effects. 
Mahdy et al. [30] investigated the double-diffusive convection with variable 
viscosity from a vertical truncated cone in porous media in the presence of 
magnetic field and radiation effects. Prasad et al. [31] studied the thermo-
diffusion and diffusion-thermo effects on MHD free convection flow past a 
vertical porous plate embedded in a non-Darcian porous medium. Hsiao et al. 
[32] analyzed the influence of thermophoretic particle deposition on MHD 
free convection flow of non-Newtonian fluids from a vertical plate embedded 
in porous media considering Soret and Dufour effects. 

In the above paper, many authors have studied the effects of magnetic 
field in porous media over mixed, natural and force convection heat and mass 
transfer problems. Therefore, current work is to extend the work of             
Tai and Char [21] and Postelnicu [24] by investigating the internal heat 
generation and thermal radiation on the MHD-free convection of non-
Newtonian fluids over a vertical permeable plate in porous media with 
Soret/Dufour effects. 

2. Formulation and Analysis 

The considered problem is the effect of internal heat generation and 
thermal radiation on steady MHD-free convective flow and mass transfer of a 
uniform blowing/suction and non-Newtonian fluids over a vertical plate in 
porous media with Soret/Dufour effects and where the boundary condition         
is uniform wall temperature wT  and uniform wall concentration wC  

(UWT/UWC), respectively. Consider a two-dimensional, steady, laminar 
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flow of an incompressible electrically conducting fluid over a flat plate in the 
presence of a transverse magnetic field ,0B  as shown in Figure 1, while the 

induced magnetic field due to the motion of the electrically conducting fluid 
is negligible. The origin of the coordinate system is the leading edge of the 
vertical flat plate, where x and y are Cartesian coordinates for the distance 
along and normal to, respectively, the vertical flat plate surface. 

 

Figure 1. The flow model and the physical coordinate system. 

All the fluid properties are assumed to be constant except for the           
density variation in the buoyancy term. Introducing the boundary layer and 
Boussinesq approximations, the governing equations and the boundary 
conditions based on the Darcy law can be written as follows: 

Continuity equation: 
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Energy equation: 
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Concentration equation: 
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Radiation equation (Rosseland diffusion approximation): 
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Boussinesq approximation: 

( ) ( )[ ].1 ∞∞∞ −β−−β−ρ=ρ CCTT CT  (7) 

Boundary conditions: 

,,,:0 www CCTTVvy ====  (8) 

.,,0: ∞∞ ===∞→ CCTTuy  (9) 

Here, u and v are the Darcian velocities in the x- and y-directions, 
respectively; n is the power-law index of the non-Newtonian fluid; ( )nK  is 

the permeability of the porous medium; σ is the electric conductivity of the 
fluid; 0B  is the externally imposed magnetic field in the y-direction; g is the 

acceleration due to gravity; p, ρ and µ are the pressure, the density and           
the absolute viscosity, respectively; T and C are the volume-averaged 
temperature and concentration, respectively; mα  and mD  are the equivalent 

thermal diffusivity and mass diffusivity, respectively; pC  and sC  are the 

specific heat at constant pressure and concentration susceptibility; Tk  is the 

thermal diffusion ratio; mT  is the mean fluid temperature; mq  is the internal 

heat generation rate per unit volume; rq  is radiative heat flux; 0σ  is the 

Stefan-Boltzmann constant; χ is the mean absorption coefficient; Tβ  and Cβ  
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are the thermal and concentration expansion coefficients of the fluid, 
respectively; and wV  is the uniform blowing/suction velocity. 

The power-law fluid index n for various fluids is as follows: 

  (i) 1<n  for pseudo-plastic fluids (for example, the polymer solution) 
or shear-thinning fluids that have a lower apparent viscosity at higher shear 
rates. 

 (ii) 1=n  for Newtonian fluids (for instance, air and water) where the 
shear stress is directly proportional to the shear rate. 

(iii) 1>n  for dilatant fluids (for example, the suspensions of sand)          
or shear-thickening fluids for which there is an increase in the apparent 
viscosity at higher shear rates. 

For the power law model of Ostwald-de-Waele, Christopher and 
Middleman [33] and Dharmadhirkari and Kale [34] proposed the following 
relationships for the permeability: 
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where d is the particle diameter while ε is the porosity. 

The stream function ψ is defined by 

yu ∂ψ∂=  and .xv ∂ψ∂−=  (11) 

Therefore, the continuity equation is automatically satisfied. 

Next, consider the governing equations (2) and (3). Cross-differentiation 

( ) ( ) xvyu nn ∂∂−∂∂  eliminates the pressure terms in equations (2) and             

(3). Further, by using the boundary layer approximation ( ,yx ∂∂<<∂∂  

),uv <<  it yields 
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Integrating equation (12) once and with the aid of equation (9) yields 
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The second, third and fourth terms on the right-hand side of the energy 
equation (4) represent the Dufour effect, the heat generation rate per unit 
volume and the thermal radiation heat flux, and the last term of concentration 
equation (5) denotes the Soret effect. Note that, in equation (6), the 
Rosseland diffusion approximation is used to describe the radiative heat flux 
[17-22]. Further, assume that the temperature differences within the flow are 

sufficiently small so that 4T  in equation (6) can be expanded in Taylor series 
about ,∞T  and discard higher-order terms in the usual manner. Thus, 
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The following dimensionless variables are invoked: 
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where xRa  is the local Rayleigh number. 
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Following Mohamed [14], the internal heat generation rate per unit 
volume q ′′′  is modeled according to the following equation: 
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where k is the equivalent thermal conductivity of the porous medium, and 
∗A  is the internal heat generation coefficient. Notably, 0=∗A  corresponds 

to case 1 without internal heat generation (designated as NIHG), and 0>∗A  

corresponds to case 2 with internal heat generation (WIHG). 

Substituting equations (14)-(16) into equations (13), (4)-(6), (8)-(9), we 
obtain 
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The boundary conditions are defined as follows: 

,1,1,2:0 =φ=θξ−==η f  (20) 

.0,0: =φ=θ∞→η  (21) 

For the new variables, the Darcian velocities in the x- and y-directions 
are also, respectively, obtained by 
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where M is the magnetic parameter defined as 
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where primes denote differentiation with respect to ξ⋅η  defined in equation 

(15.1) is the surface blowing/suction parameter; equation (20) can be 
obtained by integrating equation (23) versus ξ once and by setting 0=η  (at 

the surface, ,0=y  then ,)0=η  and with the help of boundary equation (8). 

On one hand, for the case of blowing, 0>wV  and hence .0>ξ  On the other 

hand, for the case of suction, 0<wV  and hence .0<ξ  Besides, the 

buoyancy ratio N, the Lewis number Le, the Dufour parameter D and the 
Soret parameter S are, respectively, defined as follows: 
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The results for heat and mass transfer rates have practical applications. 
The heat and mass transfer rates are expressed in terms of the local Nusselt 
number xNu  and the local Sherwood number ,xSh  which are, respectively, 

defined as follows: 
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By applying equations (6), (14)-(15), the local Nusselt number xNu  and 

the local Sherwood number xSh  in terms of n
xRa 21  are, respectively, 

obtained by 
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It may be noticed that for 0=∗A  (without internal heat generation 
effect), 0=M  (without magnetic field effect), 0=ξ  (without blowing/ 

suction effect), equations (17)-(21) are reduced to those of Tai and Char [21] 
where a similar solution was obtained previously. 

3. Numerical Method and Validation 

The present analysis integrates the system of equations (17)-(21) by the 
implicit finite difference approximation together with the modified Keller 
box method of Cebeci and Bradshaw [35]. First of all, the partial differential 
equations converted into a system of five first-order equations. These first-
order equations are then expressed in finite difference forms and solved 
along with their boundary conditions by applying an iterative scheme. This 
approach improves the convergence rate and the computation times. 

Computations were performed with a personal computer with 1.0=ξ∆  

and the first step size .01.0=η∆ l  The variable grid parameter is chosen 1.01 

and the value of .30=η∞  The iterative procedure is stopped to give the 

final temperature and concentration distributions when the error in 

computing the wθ′  and wφ′  in the next procedure becomes less than .10 5−  

4. Results and Discussion 

To validate the numerical method used, the heat and mass transfer results 
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of the present results are compared to those of previously published papers. 
The accuracy of this method was verified by comparing the results with those 
of Yih and Huang [16], Tai and Char [21], Postelnicu [24], Chamkha and 
Ben-Nakhi [29] and Hsiao et al. [32]. Table 1 lists the comparison of present 

results for various values of ξ with ,0====== ∗ARMSDN d  

.1=n  Table 2 lists the comparison of present results for various values           

of M, D and S with ,0===ξ ∗ARd  .1== Len  Table 3 lists the 

comparison of present results for various values of n, ,dR  D, S, N and           

Le with .0===ξ ∗AM  Table 4 lists the comparison of ( )0,ξθ′−  and 

( )0,ξφ′−  for various values of ∗A  and n with =ξ=== dRSD  

.10,4,0 === LeNM  All the values in Tables 1 to 4 list the comparisons 

showed excellent agreement with the numerical data in previous works. 

Table 1. Comparison of present results for various values of ξ with 

1,0 ======= ∗ nARMSDN d  

 ( )0,ξθ′−  

ξ Chamkha and Ben-Nakhi [29] Present results 

−4 1.9989 2.0014 
−2 1.0726 1.0725 
0 0.4440 0.4437 
2 0.1424 0.1407 
4 0.0340 0.0329 

Table 2. Comparison of present results for various values of M, N, D and S 

with 1,0 =====ξ ∗ LenARd  

 ( )0,ξθ′−   ( )0,ξφ′−  

M N D S Postelnicu 
[24]  

Hsiao et al. 
[32]  

Present 
results 

Postelnicu 
[24]  

Hsiao et al. 
[32]  

Present 
results 

0 0.5  0.075  0.8  0.5550  0.5550  0.5550 0.2876  0.2876  0.2876 
1 0.5  0.075  0.8  0.3925  0.3925  0.3925 0.2033  0.2033  0.2034 
0  1 0.03 2.0  0.7144  0.7144  0.7144 -0.1359  -0.1395 -0.1395 
1 1 0.03 2.0  0.5051  0.5051  0.5051 -0.0986 -0.0986 -0.0986 
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Table 3. Comparison of ( )0,ξθ′−  and ( )0,ξφ′−  for various values of         

n, ,dR  D, S, N and Le with 0===ξ ∗AM  

( )0,ξθ′−  ( )0,ξφ′−  

n dR  D S N Le Tai and 
Char [21] 

Present 
results  

Tai and 
Char [21] 

Present 
results 

0.5 1.25 0.03 0.4 0.5 4 0.7476  0.7471  1.2420  1.2483  

0.8 1.25 0.03 0.4 0.5 4 0.7692  0.7687  1.1355  1.1381  

1.0 1.25 0.03 0.4 0.5 4 0.7832  0.7828  1.1053  1.1062  

1.5 1.25 0.03 0.4 0.5 4 0.8091  0.8090  1.0675  1.0677  

2.5 1.25 0.03 0.4 0.5 4 0.8380  0.8376  1.0411  1.0406  

1.5 0 0.15 0.1 0.2 2 0.4372  0.4372  0.7222  0.7222  

1.5 0.25 0.15 0.1 0.2 2 0.5063  0.5063  0.7403  0.7403  

1.5 1.25 0.15 0.1 0.2 2 0.7235  0.7235  0.7726  0.7724  

1.5 5 0.15 0.1 0.2 2 1.2505  1.2518  0.8000  0.8002 

Table 4. Comparison of ( )0,ξθ′−  and ( )0,ξφ′−  for various values of ∗A  

and n with 10,4,0 ====ξ=== LeNMRSD d  

( )0,ξθ′−  ( )0,ξφ′−  
∗A  n Yih and Huang [16] Present results Yih and Huang [16] Present results 

0 0.5 1.0105 1.0104 6.3671 6.3671 
0 1.0 0.6811 0.6810 3.2892 3.2892  
0 2.0 0.6030 0.6029 2.4022  2.4022 
1 0.5 0.2404 0.2402 6.4412 6.4412  
1 1.0 -0.0191 -0.0191 3.3311 3.3311 
1 2.0 -0.0837 -0.0837 2.4247 2.4247 

In this investigation, the problem of effect of internal heat generation and 
thermal radiation coupled heat and mass transfer by MHD-free convection of 
a non-Newtonian fluid flow along a vertical permeable plate in the presence 
of Soret/Dufour effects has been studied. Representative numerical       
results for the dimensionless temperature and concentration profiles and the 
local Nusselt and Sherwood numbers with the buoyancy ratio ,2=N  the 
Lewis number ,1=Le  the Dufour parameter ,2.0=D  the Soret parameter 
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,1.0=S  internal heat generation ∗A  ranging from 0 to 1, the thermal 

radiation parameter dR  ranging from 0 to 10, the magnetic field parameter M 

ranging from 0 to 4, the non-Newtonian fluid n ranging from 0.5 to 2.0, and 
the blowing/suction parameter ξ ranging from 2−  to 2 are shown in Figures 

2-6. 

 

(a) 

 

(b) 

Figure 2. (a) The dimensionless temperature profile and (b) the 
dimensionless concentration profile for three values of the blowing/suction 
parameter ξ. 
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Figure 2 portrays the dimensionless temperature and concentration 
profiles for three values of the blowing/suction parameter ( )2and0,2−=ξξ  

with ,2=N  ,1=Le  ,2.0=D  ,1.0=S  ,5.1=n  ,1=M  ,0=dR  ,0=∗A  

respectively. These two figures show that the dimensionless temperature and 
concentration profiles decrease monotonically from the surface of the vertical 
flat plate to the ambient. Both the thermal boundary layer thickness Tδ  and 

the concentration boundary layer thickness Cδ  decrease for the case of 

suction. However, this trend reversed for the case of blowing. For suction 
case, it decreases the dimensionless temperature profiles θ and the 
dimensionless concentration profiles φ; thus increases the dimensionless 
surface temperature gradient ( )0,ξθ′−  and the dimensionless surface 

concentration gradient ( ).0,ξφ′−  The analysis has shown that the 

dimensionless temperature and concentration profiles are appreciably 
influenced by blowing/suction parameter. 

Table 5. The values of n
xx RaNu 21  and n

xx RaSh 21  for various values of ξ 

with 0,0,1,5.1,1.0,2.0,1,2 ======== ∗ARMnSDLeN d  

ξ n
xx RaNu 21  n

xx RaSh 21  

−2 0.9620 1.0678 

−1 0.6971 0.7626 

0 0.4868 0.5214 

1  0.3270 0.3409  

2 0.2092 0.2111 

Table 5 lists the values of local Nusselt number n
xx RaNu 21  and the 

local Sherwood number n
xx RaSh 21  for various values of ξ with ,2=N  

,1=Le  ,2.0=D  ,1.0=S  ,5.1=n  ,1=M  0=dR  and .0=∗A  In 

general, it has been found that both the local Nusselt number and the local 
Sherwood number increase owing to the case of suction, i.e., .0<ξ  This is 

because for the case of suction increases both the dimensionless surface 
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temperature and concentration gradients, as shown in Figure 2. With the aid 
of equations (30)-(31), the larger the dimensionless surface temperature and 
concentration gradients, the greater the local Nusselt and Sherwood numbers. 

 

(a) 

 

(b) 

Figure 3. (a) The dimensionless temperature profile and (b) the 
dimensionless concentration profile for three values of magnetic field 
parameter M. 

The effect of the magnetic field parameter ( )4and1,0=MM  on the 

dimensionless temperature profile and the dimensionless concentration 
profile with ,2=N  ,1=Le  ,2.0=D  ,1.0=S  ,5.1=n  ,2−=ξ  0=dR  
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and 0=∗A  is plotted in Figure 3, respectively. Inspecting of this figure 
shows that the dimensionless temperature profile and the dimensionless 
concentration profile decreases monotonically as the distance η from the 
plate increases. It is also observed that the increase of the magnetic field 
parameter M leads to a tendency to decrease the flow velocity; thus, reducing 
both the dimensionless wall temperature gradient ( )0,ξθ′−  and the 

dimensionless wall concentration gradient ( ).0,ξφ′−  This fact can also be 

demonstrated from the second term on the left-hand side in equation (17). 
The analysis has shown that the dimensionless temperature and concentration 
profiles are significantly influenced by magnetic field parameter. 

Table 6. The values of n
xx RaNu 21  and n

xx RaSh 21  for various values of 

M with ,2=N  ,1=Le  ,2.0=D  ,1.0=S  ,5.1=n  ,2−=ξ  0=dR  and 

0=∗A  

M n
xx RaNu 21  n

xx RaSh 21  

0.0 1.0717 1.1812 

0.5 1.0078 1.1151  

1.0 0.9620 1.0678 

1.5 0.9286  1.0332 

2.0  0.9040 1.0080 

Table 6 lists the values of local Nusselt number n
xx RaNu 21  and the 

local Sherwood number n
xx RaSh 21  for various values of the magnetic field 

parameter M with ,2=N  ,1=Le  ,2.0=D  ,1.0=S  ,5.1=n  ,2−=ξ  

0=dR  and .0=∗A  Generally, it has been observed that enhancing the 

magnetic field parameter M reduces both the local Nusselt number and the 
local Sherwood number. This is due to the fact that enhancing the magnetic 
field parameter M tends to decreases the dimensionless surface temperature 
gradients and the dimensionless surface concentration gradients, as shown in 
Figure 3, thus lowering the local Nusselt number and the local Sherwood 
number. 
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(a) 

 

(b) 

Figure 4. (a) The dimensionless temperature profile and (b) the 
dimensionless concentration profile for three values of the non-Newtonian 
fluid n. 

Figure 4 portrays the dimensionless temperature and concentration 
profiles for three values of the non-Newtonian fluid ( )5.1and0.1,5.0=nn  

with ,2=N  ,1=Le  ,2.0=D  ,1.0=S  ,5.0=M  ,2−=ξ  ,0=dR  

,0=∗A  respectively. It is obviously found that the dimensionless 

temperature profiles ( )ηξθ ,  and the dimensionless concentration profiles 

( )ηξφ ,  decrease slightly with decreasing the non-Newtonian fluid n, thus 
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decreasing the thermal and concentration boundary layer thicknesses. The 
analysis has shown that the dimensionless temperature and concentration 
profiles are slightly influenced by non-Newtonian fluid. 

Table 7. The values of n
xx RaNu 21  and n

xx RaSh 21  for various values of n 

with ,2=N  ,1=Le  ,2.0=D  ,1.0=S  ,5.0=M  ,0.2−=ξ  0=dR  and 

0=∗A  

n n
xx RaNu 21  n

xx RaSh 21  

0.5 1.1365 1.2585 
0.8  1.0821  1.1974 
1.0  1.0621 1.1745  
1.5  1.0367  1.1449 
2.0 1.0226  1.1277 

Table 7 lists the values of local Nusselt number n
xx RaNu 21  and the 

local Sherwood number n
xx RaSh 21  for various values of the non-

Newtonian fluid n with ,2=N  ,1=Le  ,2.0=D  ,1.0=S  ,5.0=M  

,2−=ξ  0=dR  and .0=∗A  It is also found that reducing the non-

Newtonian fluid n enhances both the local Nusselt number and the local 
Sherwood number. This is because reducing the non-Newtonian fluid n tends 
to enhance the velocity of the flow and increase the dimensionless surface 
temperature and concentration gradients, as shown in Figure 4. Therefore, 
pseudoplastic fluids ( )5.0=n  are superior to the dilatant fluids ( )5.1=n  

from the viewpoint of the heat and mass transfer rates by natural convection 
from a vertical plate embedded in a porous medium saturated with non-
Newtonian power-law fluids. 

Figure 5 presents the dimensionless temperature and concentration 
profiles for three values of the thermal radiation parameter ( 2,0=dd RR  

and )5  with ,2=N  ,1=Le  ,2.0=D  ,1.0=S  ,5.1=n  ,0=M  ,1=∗A  

,1−=ξ  respectively. Figure 5(a) shows that, as the value of thermal 

radiation parameter dR  increases, the radiation absorption in the boundary 
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layer increases, which increases the sizes of the dimensionless temperature 
profiles, but the dimensionless surface temperature gradient ( )0,ξθ′−  

becomes small. However, Figure 5(b) shows that increasing the thermal 
radiation parameter ,dR  increases the dimensionless surface concentration 

gradient ( ).0,ξφ′−  

 

(a) 

 

(b) 

Figure 5. (a) The dimensionless temperature profile and (b) the 
dimensionless concentration profile for three values of the thermal radiation 
parameter .dR  
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Table 8. The values of n
xx RaNu 21  and n

xx RaSh 21  for various values of ξ 

with ,2=N  ,1=Le  ,2.0=D  ,1.0=S  ,5.1=n  ,0=M  ,1=∗A  1−=ξ  

dR  n
xx RaNu 21  n

xx RaSh 21  

0 0.0608 0.9881 
2  0.4281 0.9902 
5  0.7899  0.9939  
8  1.0776  0.9957  

10  1.2493  0.9965 

Table 8 lists the values of local Nusselt number n
xx RaNu 21  and the 

local Sherwood number n
xx RaSh 21  for various values of dR  with ,2=N  

,1=Le  ,2.0=D  ,1.0=S  ,5.1=n  ,0=M  ,1=∗A  .1−=ξ  It is seen that 

the value of the local Nusselt number increases with increasing the value of 
.dR  In the pure convection heat transfer, the local Nusselt number is only 

proportional to the dimensionless surface temperature gradient ( ).0,ξθ′−  For 

the case of large dR  (radiation effect becomes pronounced), although 

( )0,ξθ′−  is low as shown in Figure 5, the local Nusselt number is still large. 

This is because the local Nusselt number is found to be more sensitive to dR  

than ( ),0,ξθ′−  as revealed in equation (30). However, enhancing the thermal 

radiation parameter dR  increases slightly the local Sherwood number. This 

is because enhancing the thermal radiation parameter dR  increases the 

dimensionless surface concentration gradient ( ).0,ξφ′−  With the aid of 

equation (31), the greater the dimensionless surface concentration gradient, 
the larger the local Sherwood number. 

The effect of the internal heat generation coefficient ( ,0.0=∗∗ AA  0.5 

and 1.0) on the dimensionless temperature profile and the dimensionless 
concentration profile with ,2=N  ,1=Le  ,2.0=D  ,1.0=S  ,5.1=n  

,0=M  1=dR  and ,1−=ξ  is plotted in Figure 6, respectively. It is 

observed that the increase of the internal heat generation coefficient ∗A  
leads to a tendency to decrease the dimensionless wall temperature gradient 
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( )0,ξθ′−  but increase the dimensionless wall concentration gradient 

( ).0,ξφ′−  

 

(a) 

 

(b) 

Figure 6. (a) The dimensionless temperature profile and (b) the 
dimensionless concentration profile for three values of the internal heat 

generation coefficient .∗A  

Table 9 lists the values of local Nusselt number n
xx RaNu 21  and the 

local Sherwood number n
xx RaSh 21  for various values of the internal heat 

generation coefficient ∗A  with ,2=N  ,1=Le  ,2.0=D  ,1.0=S  ,5.1=n  

,0=M  1=dR  and .1−=ξ  In general, it has been found that enhancing 
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the internal heat generation coefficient ∗A  reduces the local Nusselt number 
and enhances slightly the local Sherwood number. This is due to the fact that 

enhancing the internal heat generation coefficient ∗A  tends to decreases the 
dimensionless surface temperature gradients and increases the dimensionless 
surface concentration gradients, as shown in Figure 6, thus lowering the local 
Nusselt number and highering the local Sherwood number. 

Table 9. The values of n
xx RaNu 21  and n

xx RaSh 21  for various values of ξ 

with ,2=N  ,1=Le  ,2.0=D  ,1.0=S  ,5.1=n  ,0=M  ,1=dR  1−=ξ  

∗A  n
xx RaNu 21  n

xx RaSh 21  

0.0 1.0729 0.9457 
0.25 0.8707 0.9565  
0.50 0.6695 0.9672 
0.75 0.4694 0.9777 
1.0  0.2701 0.9881 

5. Conclusions 

A two-dimensional, laminar boundary layer analysis is presented to study 
the influence of uniform blowing/suction on the MHD-natural convection of 
non-Newtonian fluids over a vertical plate in porous media with internal heat 
generation, thermal radiation and Soret/Dufour effects. After the coordinate 
transformation, the transformed governing equations are solved by Keller 
box method (KBM). Comparisons with previously published works show 
excellent agreement. Numerical solutions are obtained for different values of 
the magnetic field parameter M, the power-law index of the non-Newtonian 
fluid n, the blowing/suction parameter ξ, the internal heat generation 

coefficient ∗A  and the thermal radiation parameter .dR  Results show that 
increasing the magnetic field parameter M or the power-law index of non-
Newtonian fluid n tends to reduce both the local Nusselt number and the 
local Sherwood number. Otherwise, when the thermal radiation parameter 

dR  increases, both the local Nusselt number and the local Sherwood number 

increase. In addition, increasing the internal heat generation coefficient ∗A  
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tends to reduce the local Nusselt number and enhances the local Sherwood 
number. In general, for the case of suction, both the local Nusselt number 
and the local Sherwood number increase. This trend is reversed for blowing 
of fluid. 
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