JP Journal of Algebra, Number Theory and Applications

© 2017 Pushpa Publishing House, Allahabad, India http://www.pphmj.com

http://dx.doi.org/10.17654/NT039040519 Volume 39 Number 4, 2017 Pages 519-52

Volume 39, Number 4, 2017, Pages 519-529 ISSN: 0972-5555

ON THE SYMMETRIC PROPERTIES FOR THE GENERALIZED DEGENERATE TANGENT POLYNOMIALS

C. S. Ryoo

Department of Mathematics Hannam University Daejeon 306-791, Korea

Abstract

In [6], we introduced the generalized degenerate tangent numbers and polynomials. In this paper, we study the symmetry for the generalized degenerate tangent numbers $\mathcal{T}_{n,\,\chi}(\lambda)$ and polynomials $\mathcal{T}_{n,\,\chi}(x,\,\lambda)$. We obtain some interesting identities of the power sums and the generalized degenerate tangent polynomials $\mathcal{T}_{n,\,\chi}(x,\,\lambda)$ using the symmetric properties for the *p*-adic invariant integral on \mathbb{Z}_p .

1. Introduction

Recently, we have studied the area of tangent numbers and polynomials (see [4-8]). In [1], Carlitz introduced the degenerate Bernoulli polynomials. Recently, Qi et al. [2] studied the partially degenerate Bernoulli polynomials of the first kind in p-adic field. In this paper, we obtain some interesting properties for generalized degenerate tangent numbers and polynomials. Throughout this paper, we use the following notations. Let p be a fixed odd

Received: March 23, 2017; Accepted: April 20, 2017

2010 Mathematics Subject Classification: 11B68, 11S40, 11S80.

Keywords and phrases: degenerate tangent numbers and polynomials, generalized degenerate tangent numbers and polynomials, symmetric properties, generalized falling factorial sums.

prime number. By \mathbb{Z}_p , we denote the ring of p-adic rational integers, \mathbb{Q} denotes the field of rational numbers, \mathbb{Q}_p denotes the field of p-adic rational numbers, \mathbb{C} denotes the complex number field, \mathbb{C}_p denotes the completion of algebraic closure of \mathbb{Q}_p , \mathbb{N} denotes the set of natural numbers and $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$. Let \mathbf{v}_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-\mathbf{v}_p(p)} = p^{-1}$. When one talks of q-extension, then q is considered in many ways such as an indeterminate, a complex number $q \in \mathbb{C}_p$, or p-adic number $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$, then one normally assumes that

|q| < 1. If $q \in \mathbb{C}_p$, then we normally assume that $|q-1|_p < p^{-\frac{1}{p-1}}$ so that $q^x = \exp(x \log q)$ for $|x|_p \le 1$. Let $UD(\mathbb{Z}_p)$ be the space of uniformly differentiable function on \mathbb{Z}_p . For $g \in UD(\mathbb{Z}_p)$, the Fermionic p-adic invariant q-integral on \mathbb{Z}_p is defined by Kim as follows:

$$I_{-q}(f) = \int_{\mathbb{Z}_p} f(x) d\mu_{-q}(x) = \lim_{N \to \infty} \frac{1}{[p^N]_{-q}} \sum_{x=0}^{p^N - 1} f(x) (-q)^x, \text{ see [3]}.$$

Note that

$$\lim_{q \to 1} I_{-q}(g) = I_{-1}(g) = \int_{\mathbb{Z}_p} g(x) d\mu_{-1}(x). \tag{1.1}$$

If we take $g_n(x) = g(x + n)$ in (1.1), then we see that

$$I_{-1}(g_n) = (-1)^n I_{-1}(g) + 2\sum_{l=0}^{n-1} (-1)^{n-1-l} g(l).$$
 (1.2)

Letting a fixed positive integer d with (p, d) = 1, set

$$X = X_d = \lim_{\substack{\longleftarrow \\ N}} (\mathbb{Z}/dp^N \mathbb{Z}), \quad X_1 = \mathbb{Z}_p,$$

On the Symmetric Properties for the Generalized Degenerate ... 521

$$X^* = \bigcup_{\substack{0 < a < dp \\ (a, p) = 1}} a + dp \mathbb{Z}_p, \quad a + dp^N \mathbb{Z}_p = \big\{ x \in X \, | \, x \equiv a \; \big(\operatorname{mod} dp^N \big) \big\},$$

where $a \in \mathbb{Z}$ satisfies the condition $0 \le a < dp^N$. It is easy to see that

$$\int_{X} g(x) d\mu_{-1}(x) = \int_{\mathbb{Z}_p} g(x) d\mu_{-1}(x). \tag{1.3}$$

For t, $\lambda \in \mathbb{Z}_p$ such that $|\lambda t|_p < p^{-\frac{1}{p-1}}$, if we take $g(x) = \chi(x)$ $\cdot (1 + \lambda t)^{2x/\lambda}$ in (1.2), then we easily see that

$$\int_{X} \chi(x) (1+\lambda t)^{2x/\lambda} d\mu_{-1}(x) = \frac{2 \sum_{a=0}^{d-1} (-1)^{a} \chi(a) (1+\lambda t)^{2a/\lambda}}{(1+\lambda t)^{2/\lambda} + 1}.$$

Let us define the degenerate generalized tangent numbers $\mathcal{T}_{n,\chi}(\lambda)$ and polynomials $\mathcal{T}_{n,\chi}(x,\lambda)$ as follows:

$$\int_{X} \chi(y) (1 + \lambda t)^{2y/\lambda} d\mu_{-1}(y) = \sum_{n=0}^{\infty} \mathcal{T}_{n,\chi}(\lambda) \frac{t^{n}}{n!}, \qquad (1.4)$$

$$\int_{X} \chi(y) (1 + \lambda t)^{(2y+x)/\lambda} d\mu_{-1}(y) = \sum_{n=0}^{\infty} T_{n,\chi}(\lambda) \frac{t^{n}}{n!}.$$
 (1.5)

By (1.4) and (1.5), we obtain the Witt's formula.

Theorem 1. For $n \in \mathbb{Z}_+$, we have

$$\int_{\mathbb{Z}_p} \chi(x) (2x | \lambda)_n d\mu_{-1}(x) = \mathcal{T}_{n,\chi}(\lambda),$$

$$\int_{\mathbb{Z}_p} \chi(y)(x+2y|\lambda)_n d\mu_{-1}(y) = \mathcal{T}_{n,\chi}(x,\lambda).$$

Theorem 2. For $n \ge 0$, we have

$$\mathcal{T}_{n,\chi}(x,\lambda) = \sum_{l=0}^{n} {n \choose l} \mathcal{T}_{l,\chi}(\lambda) (x | \lambda)_{n-l}.$$

The generalized falling factorial $(x | \lambda)_n$ with increment λ is defined by

$$(x|\lambda)_n = \prod_{k=0}^{n-1} (x - \lambda k)$$
 (1.6)

for positive integer n, with the convention $(x \mid \lambda)_0 = 1$ (see [9]). We also need the binomial theorem: for a variable x,

$$(1+\lambda t)^{x/\lambda} = \sum_{n=0}^{\infty} (x|\lambda)_n \frac{t^n}{n!}.$$
 (1.7)

2. Symmetry for the Generalized Degenerate Tangent Polynomials

In this section, we assume that $q \in \mathbb{C}_p$. We obtain some interesting identities of alternating generalized falling factorial sums and generalized degenerate tangent polynomials $\mathcal{T}_{n,\chi}(x)$ using the symmetric properties for the p-adic invariant integral on \mathbb{Z}_p . If n is odd from (1.2), then we obtain

$$I_{-1}(g_n) + I_{-1}(g) = 2\sum_{k=0}^{n-1} (-1)^k g(k).$$
 (2.1)

It will be more convenient to write (2.1) as the equivalent integral form

$$\int_{\mathbb{Z}_p} g(x+n)d\mu_{-1}(x) + \int_{\mathbb{Z}_p} g(x)d\mu_{-1}(x) = 2\sum_{k=0}^{n-1} (-1)^k g(k). \tag{2.2}$$

Substituting $g(x) = \chi(x)(1 + \lambda t)^{2x/\lambda}$ into the above, we obtain

On the Symmetric Properties for the Generalized Degenerate ... 523

$$\int_{X} \chi(x+n) (1+\lambda t)^{(2x+2n)/\lambda} d\mu_{-1}(x) + \int_{X} \chi(x) (1+\lambda t)^{2x/\lambda} d\mu_{-1}(x)$$

$$=2\sum_{j=0}^{n-1}(-1)^{j}\chi(j)(1+\lambda t)^{2j/\lambda}.$$
 (2.3)

For $k \in \mathbb{Z}_+$, let us define the alternating generalized falling factorial sums $S_{k,\chi}(n,\lambda)$ as follows:

$$S_{k,\chi}(n,\lambda) = \sum_{l=0}^{n} (-1)^{l} \chi(l) (2l | \lambda)_{k}.$$
 (2.4)

After some calculations, we have

$$\int_{X} \chi(x) (1 + \lambda t)^{2x/\lambda} d\mu_{-1}(x) = \frac{2 \sum_{a=0}^{d-1} \chi(a) (-1)^{a} (1 + \lambda t)^{2a/\lambda}}{(1 + \lambda t)^{2d/\lambda} + 1},$$

$$\int_{X} \chi(x) (1 + \lambda t)^{(2x+2n)/\lambda} d\mu_{-1}(x)$$

$$= (1 + \lambda t)^{2n/\lambda} \frac{2\sum_{a=0}^{d-1} \chi(a) (-1)^a (1 + \lambda t)^{2a/\lambda}}{(1 + \lambda t)^{2d/\lambda} + 1}.$$
 (2.5)

By using (2.5), we have

$$\int_{X} \chi(x) (1 + \lambda t)^{(2x+2nd)/\lambda} d\mu_{-1}(x) + \int_{X} \chi(x) (1 + \lambda t)^{2x/\lambda} d\mu_{-1}(x)$$

$$= (1 + (1 + \lambda t)^{2nd/\lambda}) \frac{2\sum_{a=0}^{d-1} \chi(a) (-1)^{a} (1 + \lambda t)^{2a/\lambda}}{(1 + \lambda t)^{2d/\lambda} + 1}.$$

From the above, we get

$$\int_{X} \chi(x) (1 + \lambda t)^{(2x+2nd)/\lambda} d\mu_{-1}(x) + \int_{X} \chi(x) (1 + \lambda t)^{2x/\lambda} d\mu_{-1}(x)$$

$$= \frac{2\int_{X} \chi(x) (1 + \lambda t)^{2x/\lambda} d\mu_{-1}(x)}{\int_{X} (1 + \lambda t)^{2ndx/\lambda} d\mu_{-1}(x)}.$$
 (2.6)

By (1.7) and (2.3), we obtain

$$\sum_{m=0}^{\infty} \left(\int_{X} \chi(x) (2x + 2nd \mid \lambda)_{m} d\mu_{-1}(x) + \int_{X} \chi(x) (2x \mid \lambda)_{m} d\mu_{-1}(x) \right) \frac{t^{m}}{m!}$$

$$= \sum_{m=0}^{\infty} \left(2 \sum_{j=0}^{nd-1} (-1)^{j} \chi(j) (2j \mid \lambda)_{m} \right) \frac{t^{m}}{m!}.$$

By comparing coefficients $\frac{t^m}{m!}$ in the above equation, we obtain

$$\sum_{k=0}^{m} {m \choose k} (2nd \mid \lambda)_{m-k} \int_{X} \chi(x) (2x \mid \lambda)_{k} d\mu_{-1}(x) + \int_{X} \chi(x) (2x \mid \lambda)_{m} d\mu_{-1}(x)$$

$$=2\sum_{j=0}^{nd-1}(-1)^{j}\chi(j)(2j|\lambda)_{m}.$$

By using (2.4), we have

$$\sum_{k=0}^{m} {m \choose k} (2nd \mid \lambda)_{m-k} \int_{X} \chi(x) (2x \mid \lambda)_{k} d\mu_{-1}(x) + \int_{X} \chi(x) (2x \mid \lambda)_{m} d\mu_{-1}(x)$$

$$=2S_{m,\chi}(nd-1,\lambda). \tag{2.7}$$

By using (2.6) and (2.7), we obtain the following theorem:

Theorem 3. Let n be an odd positive integer. Then

$$\frac{2\int_{X} \chi(x) (1+\lambda t)^{2x/\lambda} d\mu_{-1}(x)}{\int_{X} \chi(x) (1+\lambda t)^{2ndx/\lambda} d\mu_{-1}(x)} = \sum_{m=0}^{\infty} (2S_{m,\chi}(nd-1,\lambda)) \frac{t^{m}}{m!}.$$

Let w_1 and w_2 be odd positive integers. Then we set

$$S(w_1, w_2)$$

$$=\frac{\int_{X}\int_{X}\chi(x_{1})\chi(x_{2})(1+\lambda t)^{(2w_{1}x_{1}+2w_{2}x_{2}+w_{1}w_{2}x)/\lambda}d\mu_{-1}(x_{1})d\mu_{-1}(x_{2})}{\int_{X}(1+\lambda t)^{2w_{1}w_{2}dx/\lambda}d\mu_{-1}(x)}.$$
 (2.8)

By Theorem 3 and (2.8), after some calculations, we obtain

$$S(w_{1}, w_{2}) = \left(\frac{1}{2} \int_{X} \chi(x_{1}) (1 + \lambda t)^{(2w_{1}x_{1} + w_{1}w_{2}x)/\lambda} d\mu_{-1}(x_{1})\right)$$

$$\times \left(\frac{2 \int_{X} \chi(x_{2}) (1 + \lambda t)^{2x_{2}w_{2}/\lambda} d\mu_{-1}(x_{2})}{\int_{X} (1 + \lambda t)^{2w_{1}w_{2}dx/\lambda} d\mu_{-1}(x)}\right)$$

$$= \left(\frac{1}{2} \sum_{m=0}^{\infty} T_{m,\chi} \left(w_{2}x, \frac{\lambda}{w_{1}}\right) w_{1}^{m} \frac{t^{m}}{m!}\right)$$

$$\times \left(2 \sum_{m=0}^{\infty} S_{m,\chi} \left(w_{1}d - 1, \frac{\lambda}{w_{2}}\right) w_{2}^{m} \frac{t^{m}}{m!}\right). \tag{2.9}$$

By using Cauchy product in the above, we have

$$S(w_1, w_2)$$

$$= \sum_{m=0}^{\infty} \left(\sum_{j=0}^{m} {m \choose j} T_{j,\chi} \left(w_2 x, \frac{\lambda}{w_1} \right) w_1^j S_{m-j,\chi} \left(w_1 d - 1, \frac{\lambda}{w_2} \right) w_2^{m-j} \right) \frac{t^m}{m!}. \quad (2.10)$$

From the symmetry of $S(w_1, w_2)$ in w_1 and w_2 , we also see that

$$S(w_1, w_2) = \left(\frac{1}{2} \int_X \chi(x_2) (1 + \lambda t)^{(2w_2 x_2 + w_1 w_2 x)/\lambda} d\mu_{-1}(x_2)\right)$$

$$\times \left(\frac{2 \int_X \chi(x_1) (1 + \lambda t)^{2x_1 w_1/\lambda} d\mu_{-1}(x_1)}{\int_X (1 + \lambda t)^{2w_1 w_2 dx/\lambda} d\mu_{-1}(x)}\right)$$

$$= \left(\frac{1}{2} \sum_{m=0}^{\infty} \mathcal{T}_{m, \chi} \left(w_1 x, \frac{\lambda}{w_2}\right) w_2^m \frac{t^m}{m!}\right)$$
$$\times \left(2 \sum_{m=0}^{\infty} S_{m, \chi} \left(w_2 d - 1, \frac{\lambda}{w_1}\right) w_1^m \frac{t^m}{m!}\right).$$

Thus, we have

 $S(w_1, w_2)$

$$= \sum_{m=0}^{\infty} \left(\sum_{j=0}^{m} {m \choose j} \mathcal{T}_{j,\chi} \left(w_1 x, \frac{\lambda}{w_2} \right) w_2^j S_{m-j,\chi} \left(w_2 d - 1, \frac{\lambda}{w_1} \right) w_1^{m-j} \right) \frac{t^m}{m!}. \quad (2.11)$$

By comparing coefficients $\frac{t^m}{m!}$ in both the sides of (2.10) and (2.11), we obtain the following theorem:

Theorem 4. Let w_1 and w_2 be odd positive integers. Then

$$\sum_{j=0}^{m} {m \choose j} w_1^{m-j} \omega_2^j \mathcal{T}_{j,\chi} \left(w_1 x, \frac{\lambda}{w_2} \right) S_{m-j,\chi} \left(w_2 d - 1, \frac{\lambda}{w_1} \right)$$

$$= \sum_{j=0}^{m} {m \choose j} w_1^j w_2^{m-j} \mathcal{T}_{j,\chi} \left(w_2 x, \frac{\lambda}{w_1} \right) S_{m-j,\chi} \left(w_1 d - 1, \frac{\lambda}{w_2} \right),$$

where $T_{k,\chi}(x,\lambda)$ and $T_{m,\chi}(k,\lambda)$ denote the generalized degenerate tangent polynomials and the alternating generalized falling factorial sums, respectively (see [6, 9]).

By Theorem 2, we have the following corollary:

Corollary 5. Let w_1 and w_2 be odd positive integers. Then

$$\sum_{j=0}^{m} \sum_{k=0}^{j} {m \choose j} {j \choose k} w_1^{m-j} w_2^{j} \left(w_1 x | \frac{\lambda}{w_2} \right)_{j-k} \mathcal{T}_{k,\chi} \left(\frac{\lambda}{w_2} \right) S_{m-j,\chi} \left(w_2 d - 1, \frac{\lambda}{w_1} \right)$$

$$=\sum_{j=0}^{m}\sum_{k=0}^{j}\binom{m}{j}\binom{j}{k}w_1^jw_2^{m-j}\left(w_2x|\frac{\lambda}{w_1}\right)_{j-k}\mathcal{T}_{k,\chi}\left(\frac{\lambda}{w_1}\right)S_{m-j,\chi}\left(w_1d-1,\frac{\lambda}{w_2}\right).$$

Now we will derive other interesting identities for the generalized degenerate tangent polynomials using the symmetric property of $S(w_1, w_2)$,

$$S(w_{1}, w_{2}) = \left(\frac{1}{2} \int_{X} \chi(x_{1}) (1 + \lambda t)^{(2w_{1}x_{1} + w_{1}w_{2}x)/\lambda} d\mu_{-1}(x_{1})\right)$$

$$\times \left(\frac{2 \int_{X} \chi(x_{2}) (1 + \lambda t)^{2x_{2}w_{2}/\lambda} d\mu_{-1}(x_{2})}{\int_{X} (1 + \lambda t)^{2w_{1}w_{2}dx/\lambda} d\mu_{-1}(x)}\right)$$

$$= \left(\frac{1}{2} (1 + \lambda t)^{w_{1}w_{2}x/\lambda} \int_{X} \chi(x_{1}) (1 + \lambda t)^{2x_{1}w_{1}/\lambda} d\mu_{-1}(x_{1})\right)$$

$$\times \left(2 \sum_{j=0}^{w_{1}d-1} (-1)^{j} \chi(j) (1 + \lambda t)^{2jw_{2}/\lambda}\right)$$

$$= \sum_{j=0}^{w_{1}d-1} (-1)^{j} \chi(j) \int_{X} \chi(x_{1}) (1 + \lambda t) \left(\frac{2x_{1} + w_{2}x + \frac{2jw_{2}}{w_{1}}}{w_{1}}\right)^{w_{1}/\lambda} d\mu_{-1}(x_{1})$$

$$= \sum_{n=0}^{\infty} \left(\sum_{j=0}^{w_{1}d-1} (-1)^{j} \chi(j) \mathcal{T}_{n,\chi} \left(w_{2}x + \frac{2jw_{2}}{w_{1}}, \frac{\lambda}{w_{1}}\right) w_{1}^{n} \right) \frac{t^{n}}{n!}. \quad (2.12)$$

By using the symmetry property in (2.12), we also have

$$S(w_1, w_2) = \left(\frac{1}{2}(1 + \lambda t)^{w_1 w_2 x/\lambda} \int_X \chi(x_2) (1 + \lambda t)^{2x_2 w_2/\lambda} d\mu_{-1}(x_2)\right)$$

$$\times \left(\frac{2\int_X \chi(x_1) (1 + \lambda t)^{2x_1 w_1/\lambda} d\mu_{-1}(x_1)}{\int_X (1 + \lambda t)^{2w_1 w_2 dx/\lambda} d\mu_{-1}(x)}\right)$$

$$= \left(\frac{1}{2}(1+\lambda t)^{w_1w_2x/\lambda}\int_{X}\chi(x_2)(1+\lambda t)^{2x_2w_2/\lambda}d\mu_{-1}(x_2)\right)$$

$$\times \left(2\sum_{j=0}^{w_2d-1}(-1)^{j}\chi(j)(1+\lambda t)^{2jw_1/\lambda}\right)$$

$$= \sum_{j=0}^{w_2d-1}(-1)^{j}\chi(j)\int_{X}\chi(x_2)(1+\lambda t)^{\left(2x_2+w_1x+\frac{2jw_1}{w_2}\right)w_2/\lambda}d\mu_{-1}(x_1)$$

$$= \sum_{n=0}^{\infty}\left(\sum_{j=0}^{w_2-1}(-1)^{j}\chi(j)\mathcal{T}_{n,\chi}\left(w_1x+\frac{2jw_1}{w_2},\frac{\lambda}{w_2}\right)w_2^n\right)\frac{t^n}{n!}.$$
(2.13)

By comparing coefficients $\frac{t^n}{n!}$ in both the sides of (2.12) and (2.13), we have the following theorem:

Theorem 6. Let w_1 and w_2 be odd positive integers. Then

$$\sum_{j=0}^{w_{1}d-1} (-1)^{j} \chi(j) \mathcal{T}_{n,\chi} \left(w_{2}x + \frac{2jw_{2}}{w_{1}}, \frac{\lambda}{w_{1}} \right) w_{1}^{n}$$

$$= \sum_{j=0}^{w_{2}d-1} (-1)^{j} \chi(j) \mathcal{T}_{n,\chi} \left(w_{1}x + \frac{2jw_{1}}{w_{2}}, \frac{\lambda}{w_{2}} \right) w_{2}^{n}. \tag{2.14}$$

If we take x = 0 in Theorem 6, then we also derive the interesting identity for the generalized degenerate tangent numbers as follows:

$$\begin{split} & \sum_{j=0}^{w_{1}d-1} \sum_{l=0}^{m} \binom{m}{l} (-1)^{j} \chi(j) \mathcal{T}_{l,\chi} \left(\frac{\lambda}{w_{1}}\right) (2jw_{2} \mid \lambda)_{m-l} w_{2}^{l} \\ & = \sum_{j=0}^{w_{2}d-1} \sum_{l=0}^{m} \binom{m}{l} (-1)^{j} \chi(j) \mathcal{T}_{l,\chi} \left(\frac{\lambda}{w_{2}}\right) (2jw_{1} \mid \lambda)_{m-l} w_{1}^{l}. \end{split}$$

References

- [1] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Util. Math. 15 (1979), 51-88.
- [2] F. Qi, D. V. Dolgy, T. Kim and C. S. Ryoo, On the partially degenerate Bernoulli polynomials of the first kind, Glob. J. Pure Appl. Math. 11 (2015), 2407-2412.
- [3] T. Kim, Barnes' type multiple degenerate Bernoulli and Euler polynomials, Appl. Math. Comput. 258 (2015), 556-564.
- [4] C. S. Ryoo, A numerical investigation on the zeros of the tangent polynomials, J. App. Math. Inform. 32 (2014), 315-322.
- [5] C. S. Ryoo, On degenerate *q*-tangent polynomials of higher order, J. Appl. Math. Inform. 35 (1017), 113-120.
- [6] C. S. Ryoo, On the generalized degenerate tangent numbers and polynomials, Turkish Journal of Analysis and Number Theory 3 (2015), 104-107.
- [7] C. S. Ryoo, Differential equations associated with tangent numbers, J. Appl. Math. Inform. 34 (2016), 487-494.
- [8] C. S. Ryoo, A note on the zeros of the *q*-Bernoulli polynomials, J. Appl. Math. Inform. 28 (2010), 805-811.
- [9] P. T. Young, Degenerate Bernoulli polynomials, generalized factorial sums, and their applications, Journal of Number Theory 128 (2008), 738-758.