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Abstract 

Time series count data exhibit varying dispersion due to their sparse 
nature. Given the assumption on the incident rate structure, the 
methodology that can adequately accommodate the dispersion and 
inflation characteristics of count data is investigated. We develop 
Poisson distribution based autoregressive models that can account for 
dispersion and zero inflation indices in count series data. We derive 
the maximum likelihood estimators of the parameters in the models 
developed. The dispersion indices for these models depend on the 
structure of the incidence rate specified. 

1. Introduction 

In time series analysis, data that are in the form of count exhibit over or 
under-dispersion due to their sparse nature. A more pronounced challenge 
with the analysis of this data is that simple regression and autoregressive 
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models have failed to evaluate appropriately the dispersion and inflation 
characteristics of count data. This means that the time series analysis requires 
procedure that could explain, measure the dispersion and inflation rate for 
these models. Poisson distribution is often used to model zero-inflated count 
data. The zero-inflated count data are found in medicine, engineering, 
sociology and epidemiology. Examples of these data include length of stay in 
hospital, number of road accidents and number of death recorded for 
contagious diseases within a particular period. 

Poisson regression analysis has been established to be useful for 
modelling count variables (Venables and Ripley [9]), especially in modelling 
the occurrence of rare events at certain location within a study time period. 
The classical Poisson model has its mean equal to its variance; this is referred 
to as equi-dispersion. A situation when the variance of the observed counts 
varies with the mean leads to dispersion and the departure from equi-
dispersion for count data models could lead to biased inference (Lindsay [6]; 
Bohning et al. [1]). But given the analogous relationship that exists between 
regression model and autoregressive model (Haggan and Oyetunji [4]) gives 
room for the extension of Poisson regression model to classical 
autoregressive model in time series analysis of count data. Besides, Mann 
and Wald [7] have shown that asymptotically, much of classical regression 
theory can be applied to autoregressive situations. 

In this paper, the major objective of this study is to model the mean of 
dependent variable as a function of its lagged predictor variables using 
appropriate structure for the incidence rate function. This model should 
follow stationary property of time series models and obeys the general 
conditions of Poisson distribution. We develop some generalized Poisson-
autoregressive models and evaluate their dispersion indices and Poisson 
model properties. 

2. Poisson-autoregressive Model Specifications 

The convectional Poisson regression involves modelling the rate (or risk) 
for different variables of interest. For instances, at time t, let tY  be the 
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observed count of incidents (e.g., number of deaths, number of cases of skin 
cancers, number of vehicle road traffic accidents etc.) and tτ  be the 

population size for the study area (say number of people exposed to risk, 
total number of vehicles registered and so on). The dependent variable tY  in 

the Poisson regression frame work is obtained for a particular event that is 
described by set of predictor variables ....,,, 21 pttt YYY −−−  Let ( )Φ,it−λ Y  

be a function of it−Y  and Φ  which represent the “rate” that measures the 

risk per unit of study time or follow up time such that the estimated rate or 
risk is simply .ttt Y τ=λ  Then the expected number at time t is 

( ) ( ( ) )., ΦittttYE −λτ=μ= Y  (1) 

We shall establish that variable tY  obeys all properties of Poisson model, 

with parameters tμ  but we assume it is stationary. This literally means             

that the variance of tY  is not a constant from ( ) ( ) =μ== ttt YVarYE  

( );; iitt Y Φλτ −  it thus varies as a function of itt Y −τ ,  and time t. In practice 

(see Kleinbaum et al. [5]). We utilize the likelihood function ( )Φ,itL −Y  by 

specifying the particular form for the rate function ( )., Φit−λ Y  This enables 

the estimation of the parameters Φ  to be performed iteratively. 

The specification of the rate function ( )Φ,itt −λ Y  to contain the 

stationary condition for sparse data is the focus of this study. According to 
Kleinbaum et al. [5], such specification should be based on the process under 
study and previous knowledge and experience with the relationship among 
variables under consideration. In this study, we assume that ( )Φ,it−λ Y  

follows an autoregressive process and consider four most appropriate 
representations on the certain conditions on ( )., Φit−λ Y  Taking the condition 

when ( ) ,0, >λ − ΦitY  we have a specification for the incident rate as 

( ) .,
1
∑
=

−− Φ=λ
p

i
itiitt YY Φ  (2) 
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In time series literature (Wei [10] and Chatfield [2]), the right hand side 
of equation (2) is derived from fitting the general autoregressive model 

∑
=

− ε+Φ=
p

i
titit YY

1
.  

(I) Given the explanation made on the estimated risk above and using     

the quantities in equation (2) when ,0>
⎭
⎬
⎫

⎩
⎨
⎧ Φ∑ −itiY  the first Poisson-

autoregressive model is 

( ) ( ),1

1

1
t

p

i
ititt YY ε+
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Φτ= ∑

=
−  (3) 

tε ’s are independent and identically distributed with mean zero and variance 

.2
εσ  Assuming independence for variables in equation (3), the expected value 

of the model ( )1
tY  is given by 

( ( ) ) ....,,1,1 ∑ =∀Φτ= − ntYYE ititt  (4) 

Since tτ  and itY −  vary with time (t), the variance of model (3) is 

( ( ) ) [( )] ( ) .
22

2

1

1
1ε

=
− σ=ε=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Φτ−= ∑ t

p

i
itittt EYYEYVar  (5) 

(II) Assume that ∑
=

− >Φ
p

i
itiY

1
0  and according to Kleinbaum et al. [5],     

we can stipulate ( ) ∑
=

−− Φ=λ
p

i
itiiitt YY

1
.lnΦ  This means that the second 

Poisson-autoregressive model will be of the form 

( ) ( ).ln
1

22 ∑
=

− ε+Φτ=
p

i
tititt YY  (6) 
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Since ( )∑
=

− =Φ
p

i
iti yfY

1
ln  is concave, it is well established that 

( )∑ ∑
= =

−− Φ≥Φ
p

i

p

i
itiiti YY

1 1
lnln  and thus we have the linear approximation 

( ) ....,,2,1,lnlnln
1 1 1
∑ ∑ ∑
= = =

−− =∀+Φ=Φ
p

i

p

i

p

i
itiiti ntYY  (7) 

Using equation (7) in (6) gives another form of Poisson-autoregressive model 
as 

( ) ( ) ( ),lnln
1 1 1 1

222 ∑ ∑ ∑ ∑
= = = =

∗
−

∗
− ε+τ+Φτ=ε+τ+Φτ=

p

i

p

i

p

i

p

i
tittittittitt YYY  (8) 

where ii Φ=Φ∗ ln  and .ln itit YY −
∗
− =  The expected value of ( )2

tY  is 

( ( ) ) .lnln
1 1

2 ∑ ∑
= =

−τ+Φτ=
p

i

p

i
ittitt YYE  (9) 

The variance of ( )2
tY  is 

( ( ) ) ( ) .
22

2ε
σ=tYVar  (10) 

(III) Suppose that we use the linear approximation via Taylor series 

expansion under the condition that ∑
=

− >Φ
p

i
itiY

1
0  and such that ( ) =λ Φ,Yt   

∑
=

−

Φ
Φ+=

∑
=

− p

i
iti

Y
Ye

p

i
iti

1
1~1  to have the third Poisson-autoregressive model as 

      ( ) .ˆ13
tititt YY ε+⎟

⎠
⎞⎜

⎝
⎛ Φ+τ= ∑ −  (11) 

Assuming the independence of tτ  and itY −  for all t and that itY −  are 

pairwise independent for all i, the expected value of ( )3
tY  is 
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( ( ) ) .1
1

3
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Φ+τ= ∑

=
−

p

i
ititt YYE  (12) 

The variance of ( )3
tY  is 

( ( ) ) ( ) .
23

3ε
σ=tYVar  (13) 

(IV) Consider the Poisson regression model which is a function of time 
predictors used in measuring the incident rate then the fourth model is given 
as 

( ) ( ) ....,,1,
1

44 ∑
=

=ε+Φτ=
p

i
t

i
iitt nttY  (14) 

The expectation of this model when tτ  and time (t) are independent, also it  

are pair wise independent is 

( ( ) ) .
1

4 ∑
=

Φτ=
p

i

i
itt tYE  (15) 

The variance of ( )4
tY  is 

( ( ) ) ( ) .
24

4ε
σ=tYVar  (16) 

The mean and variance of the expected number of incidence ( )tY  developed 

in equations (3), (6), (11) and (14) depend largely on the choice of the 
structure of ( )., Φλ −itY  The expected value of Y at time t goes to zero when 

;0→τt  in real life situation such as in epidemiology, when the population 

at risk tends to extinction, it is an indication that occurrence of such epidemic 

is no longer expected. Provided that ( ) ,~, 2
ε− σ−Φλτ itit Y  we have equi-

dispersion models; the measures for this indicator are discussed in the next 
section. 
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3. Evaluation of Basic Properties of the Poisson-autoregressive Model 

3.1. Poisson-autoregressive model characterization 

The models proposed in equations (3), (8), (11) and (16) evidently follow 
Poisson mass function from: 

( )
( ) [ ( )( ) ]∑ ∑

∞

=

∞

=

−
Φλτ− Φλτ

=
−

0 0

,

!
,

t t

titit

Y Y t

Y
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Y
t Y

YeYp  

( ) ( )( ) ] .1,

0

, =
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Φλτ
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∞

=
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t

t
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Y
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Y
Ye  (17) 

By using this legal probability condition, we have for all the models 
discussed above that 

( ) ( )
( ) [ ( )( ) ]∑ ∑
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YeY  

( ),, itit Y −Φλτ=  

we observed that the zero inflation index (ZII) relative to Poisson (Puig and 
Valero [8]) is satisfied, since for all these models we have 

( )
( ) .00log1 =

=
+

t
t

YE
Yp

 

3.2. Dispersion indices 

The major characteristics of count time series data are greater variation 
than the predicted standard Poisson distribution (over dispersion). The 
fisher’s dispersion index ( )YD  for a given model tY  is 

( ) ( )
( ) ,1 YE
YSYD +=  where ( ) ( ) ( ).YEYVarYS −=  (18) 
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The Fisher’s dispersion index for the Poisson-autoregressive model defined 
in equation (3) is 

( ) ( ) .1
1

1

2
11

−

=
−ε ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Φτσ+= ∑

p

i
ititPAR YDPI  (19) 

And the associated measure of dispersion is 

( ) ( ) .
1

2
11 ∑

=
−ε

Φτ−σ=
p

i
ititPAR YSD  (20) 

The dispersion index for model defined in equation (8) is 

( ) ( ) .lnln1
1

1 1

2
22

−

= =
−ε ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
τ+Φτσ+= ∑ ∑

p

i

p

i
ittitPAR YDPI  (21) 

The associated measure of dispersion is 

( ) ( ) .lnln
1 1

2
22 ∑ ∑

= =
−ε

τ−Φτ−σ=
p

i

p

i
ittitPAR YSD  (22) 

The Fisher’s dispersion index for the Poisson-autoregressive model in (11) is 

( ) ( ) .11
1

12
33 ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
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The associated measure of dispersion is 

( ) ( ) .1
1

2
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i
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The Fisher’s dispersion index for model defined in equation (14) is 

( ) ( ) .1
1
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2
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ε ⎥
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And the associated measure of dispersion is 

( ) ( ) .
1

2
44 ∑

=
ε

Φτ−σ=
p

i

i
itPAR tSD  (26) 

Analytically, in the derived equations (19) through (26): if ( ) ( ( ) ),2 k
tYEk >σ

ε
 

,4,3,2,1=∀k  then it means that 1>DPI  and 0>SD  causing over 

dispersion. And if ( ) ( ( ) ) ,4,3,2,1,2 =∀=σ
ε

kYE k
tk  then it means that DPI 

will equal to unity. It implies that the model gives an equi-dispersion. But if 

( ) ( ( ) ) ,4,3,2,1,2 =<σ
ε

kYE k
tk  then it means that DPI will be less than 

unity. This implies that SD will be negative, thus we have under-dispersion. 

4. Maximum Likelihood Estimators of the Parameters of  
Poisson-autoregressive Models 

The general notion about regression analysis is that it permits the 
modelling of mean of dependent variable under consideration as a function of 
certain predicted variables as expressed in equations (3), (8), (11) and (14) in 
Section 3 above. In this section, we develop the likelihood function that can 
be used to estimate the coefficient of iΦ ’s under the Poisson assumption 

made about the dependent variable .tY  

Let us assume that nYYY ...,,, 21  constitute a mutually independent set of 

Poisson random variables with tY  having the probability mass function: 

( )itYp Φ,  

( ) [ ( )( ) ]
....,,2,1...,,1,0,

elsewhere,0
!

,,

⎪⎩

⎪
⎨
⎧

==
Φλτ

=
−

Φλτ− −

ntYY
Ye

tt

Y
ititt

Y titit

 (27) 

The general form of the likelihood function for Poisson-autoregressive model 
is 
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( )itYL Φ,  
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∏
∏
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 (28) 

Using equation (28), the respective likelihood functions and the estimators of 
the parameters for the Poisson-autoregressive models described in equations 
(3), (8), (11) and (14) are discussed in the following cases: 

Case 1. Taking the natural logarithm of the likelihood function 
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 and differentiate with 
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To solve equation (29) for the estimators of ,...,,1, pii =∀Φ  we shall 

utilize an approach similar to the algorithm proposed in Durbin [3]. Start the 
recursive process by taking 1=p  in equation (29), then we have: 

.ˆ

1
1
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1
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To obtain other estimators pii ...,,2,ˆ =∀Φ  we use the following equation 

recursively: 
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The variance of pii ...,,1,ˆ =∀Φ  is: 
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and taking the natural logarithm with necessary algebraic manipulations we 
have the expression:  
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Taking the sum to n of both sides of this partial derivatives and rearranging 
gives: 
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Setting 1=p  in equation (33) gives the estimator of ln iΦ̂  as: 
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Using equation (33) with equation (34) as starting point, we can recursively 
derive the estimators of ln pii ...,,2, =Φ  from: 
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We derive the approximate estimator of iΦ̂  using the equation =Φiˆ  

( ) ,ˆln1ˆˆlnexp ii Φ+=Φ  neglecting higher orders. Therefore, we obtain the 

variance of iΦ̂  using the variance of iΦ̂ln  as: 
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Case 3. The likelihood function of the model developed in equation (11) 
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the derivative of the natural logarithm of this function with respect to iΦ̂  
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To solve equation (37), start with 1=p  to get the estimator of 1Φ  as: 
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The other estimators iΦ̂  could recursively be derived from the equation: 
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The variance of iΦ̂  could be obtained using: 
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Case 4. The likelihood of the model in equation (16) is ( ) =ΦitYL ,4  
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 taking the derivative of the natural 
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logarithm of this function with respect to iΦ̂  gives ( )
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To solve equation (41), start by setting 1=p  to get the estimator of 1Φ̂  as: 
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The other estimators pii ...,,2,ˆ =∀Φ  are obtained recursively from: 

....,,2,

ˆ

ˆ

1

1 1

1

1

1

pi

t

tY

n

t

i

n

t

n

t

i

j

i
jt

i =∀

Φ−τ

=Φ

∑

∑ ∑∑

−

= =

−

=

−

 (43) 

The variance iΦ̂  is derived from 
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5. Conclusion 

The derived expected values in equations (4), (9), (12) and (15) are 
directly proportional to the structure of the incident rate used. Also, the 
variances derived in equations (5), (10), (13) and (16) are dependent on the 
error structures modeled. The nature of the dispersion for these models could 
be practically checked using the condition that if ,0>SD  it is over 
dispersion, if ,0=SD  it implies equi-dispersion, and if we have the 

condition ( ) ,0<≤− SDZE  then it is under-dispersion. Depending on the 

incident rate structure chose for a particular dataset, the recursive approach 
provided in Section 4 will give useful estimates of the parameters of the 
model. 

Acknowledgement 

The authors thank the anonymous referees for their valuable suggestions 
towards the improvement of the manuscript. 

References 

 [1] D. Bohning, E. Dietz, T. Kuhnert and D. Scon, Mixture models for capture-
recapture count data, Stat. Meth. Appl. 14 (2005), 29-43. 



On the Theoretical Specification of Poisson-autoregressive Model … 249 

 [2] C. Chatfield, The Analysis of Time Series, An Introduction, Chapman and Hall, 
New York, 1989. 

 [3] J. Durbin, The fitting of time series models, Rev. Inst. Int. Statist. 28 (1960), 
233-244. 

 [4] V. Haggan and O. D. Oyetunji, On the selection of subset autoregressive time 
series models, Journal of Time Series 5(2) (1984), 103-113. 

 [5] D. G. Kleinbaum, L. L. Kupper, K. E. Muller and A. Nizam, Applied Regression 
Analysis and other Multivariate Methods, Duxbury Press, 1998. 

 [6] B. Lindsay, Mixture models: Theory, geometry and applications, NFS-CBMS 
Regional Conference Series in Probability and Statistics, Simulation and 
Computation 38 (1995), 92-108. 

 [7] H. B. Mann and A. Wald, On stochastic limit and order relationships, Ann. Math. 
Statist. 14(3) (1943), 217-226. 

 [8] P. Puig and J. Valero, Characterization of count data distributions involving 
additivity and binomial subsampling, Bernoulli 13(2) (2007), 544-555. 

 [9] W. N. Venables and B. D. Ripley, Modern Applied Statistics with S, 4th ed., 
Springer-Verlag, New York, 2002. 

 [10] W. S. Wei, Time Series Analysis: Univariate and Multivariate Methods, Pearson, 
1990. 


