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Abstract 

In this paper, three resampling techniques are considered, namely, 
bootstrap, jackknife, and jackknife after bootstrap. The main objective 
is to study the performance of these techniques in the maximum 
likelihood estimation of the parameters for Grubbs model. Also, the 
performance of these techniques is discussed in the detection of the 
influential observations using local influence method under different 
perturbation schemes for Grubbs model. The performance is illustrated 
through an application using real data set. Our results provide 
resampling techniques offer better fit, protection against outliers and 
more precise inferences than the traditional methods. 

1. Introduction 

The problem of comparing measurement devices which vary in price, 
time spent to measure and other features, such as efficiency, has been of 
growing interest in many scientific applications. Grubbs measurement error 
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model was introduced in [14]. This model is typically used in comparison 
studies to assess the relative agreement between two or more measuring 
devices (or instruments) that are used to measure the same quantity of 
interest. [15] studied the normal Grubbs (N) model, noting the well-known 
lack of robustness of least-square estimates against outlying observations.  
To overcome this deficiency, a general class of scale mixture of normal       
Grubbs model (SMN) was proposed in [23]. Properties of the SMN 
distributions, such as student-t (T), slash normal (SL) and contaminated 
normal (CN) may found in [16, 23]. In an asymmetric setting, [22] proposed 
the skew normal Grubbs (SN) model and showed advantages of using 
asymmetric distributions for obtaining accurate robust estimates. Three 
resampling techniques will be considered in this paper. Bootstrap was 
proposed in [9], jackknife in [10] and jackknife after bootstrap (JaB) in [11]. 
Bootstrap and jackknife resampling techniques were considered in [12, 24] 
and they obtained the bootstrap and jackknife estimates in linear regression 
model. Also, both resampling were used in [1] to estimate the sampling 
distribution of the parameter estimates in linear regression model. JaB was 
used in [18] to determine the cut-off values for various diagnostic measures 
in linear regression under non-normal errors and small samples. JaB was 
used in [2] in count regression model to assess the error in the bootstrap 
estimate parameters. Also, JaB was used in [5] to detect influential 
observations for binary logistic regression model. The primary objective of 
this paper is to illustrate the performances of resampling techniques such           
as bootstrap, jackknife and JaB in the estimation of the parameters for N,       
SN and SMN models, respectively, in addition, to detect the influential 
observations using the local influence method under different perturbation 
schemes following [15, 21, 23]. This paper is organized as follows: Section 2 
describes the Grubbs model. Sections 3-5 discuss the performance of the 
resampling techniques in the estimation of the parameters, in the detection      
of the outlying observations and in the detection of the influential 
observations, respectively. Section 6 illustrates the performance of the 
resampling techniques through application using real data. Section 7 contains 
conclusions. 
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2. The Grubbs Model 

Let ix  be the unobserved value corresponding to unit i, and ijy  be the 

measured value obtained with the instrument j in unit i, ni ,,1 …=  and 

,,,1 pj …=  with .2≥p  The normal Grubbs model can be defined as [22] 

 ,1 iipi xy ε++α=  (1) 

where ( ) ,,,,0 2
T

pαα=α …  and ( )Tp 1,,11 …=  are 1×p  vectors; =iy  

( )Tipi yy ,,1 …  and ( )Tipii εε=ε ,,1 …  (the error vector) are 1×p  random 

vectors independent with ( )( )φε DN p
iid

i ,0~  and ( ),,~ 1 xx
iid

i Nx φμ  where 

( ) ( ) .,,1
T

pD φφ=φ …  

3. Resampling Algorithmic Approach for Estimation of 
Parameters for Grubbs Model 

This section is devoted to study the performance of resampling 
techniques such as bootstrap, jackknife and JaB in the estimation of the 
parameters for Grubbs models. Bootstrap and jackknife estimates of the 
parameters and the relevant standard error (SE) for Grubbs model can be 
obtained following the bootstrap and the jackknife algorithms described           
in [24], but the estimation of the parameters is to be conducted using          
the expectation maximization (EM) algorithm [7] for N and SN models, 
following [15, 22]. Using expectation conditional maximization (ECM) 
algorithm [20] for SMN models (T, SL, CN) following [23], jackknife after 
bootstrap (JaB) estimates of the parameters and the relevant standard error 
for each estimate are obtained in Section 5 of [2]. 

4. Resampling Algorithmic Approach for Detection of the 
Outlying Observations for Grubbs Model 

To study the performance of resampling techniques in the detection         
of the outlying observations, we can use the Mahalanobis distance as a 
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diagnostic measure following [15, 23]. Jackknife and JaB techniques are 
considered in this section. For jackknife technique, we can detect the 
outlying observations, by removing the ith data point from the original data 
set, and compute the Mahalanobis distance for ( )1−n  observations, then a 

point is flagged as outlier if its distance value exceeds the cut-off value. The 
cut-off value depends on the distribution of the Mahalanobis distance for N, 
SN, T, SL and CN distributions [16, 21]. After determining the outliers for 
each jackknife resample, calculate the percentage of data sets among all n 
reduced data sets in which each data point is flagged. This overall percentage 
will typically be a large indicator for this point to be an outlier, following 
[19, Section 2]. 

For JaB technique, we can find the appropriate JaB influence cut-offs for 
a Mahalanobis distance to detect the outlying observations for Grubbs model 
following algorithm in Section 2 of [18]. 

5. Resampling Algorithmic Approach for Detection of 
the Influential Observations for Grubbs Model 

The local influence approaches [6, 26] were applied in [15] for N, [21] 
for SN and [23] for SMN models. Now we use these approaches for studying 
the performance of jackknife and JaB in the detection of the influential 
observations for each distribution. 

For jackknife technique, we can detect the influential observations by the 
same method as described in the above section but the diagnostic measure is 
the conformal normal curvature 

( ) ( { } ) .,,1,20 ,, qjQtraceCBM T
hfhf jQjQ …�� =Δ−Δ==  (2) 

The cut-off value ( ) ( )( ),00 MSDcM ∗+=  ( ) ,10 qM =  q is the dimension 

of the perturbation vector, ∗c  is a selected constant, ( )( )0MSD  is the 
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standard deviation of ( ).0M  The delta matrix Δ for each perturbation and   

for each distribution can find it in [15] for N, [21] for SN and [23] for       
SMN models. For JaB technique, we can find an appropriate influence of 
cut-offs for a conformal curvature normal measure to detect the influential 
observations for Grubbs models, following [18, Section 2]. 

6. Application 

A real example is presented to illustrate the performance of resampling 
techniques in the estimation of the parameters for Grubbs model and 
influence diagnostics. The real data considered are the Barnett data sets           
[3]. The Barnett data sets described as two instruments were used for          
measuring the vital capacity of the human lung that operated by skilled         
and unskilled operators that were compared on a common group of 72 
patients. The following four instruments were compared: Instrument 1: 
Standard instrument and skilled operator; Instrument 2: Standard instrument 
and unskilled operator; Instrument 3: New instrument and skilled operator 
and Instrument 4: New instrument and unskilled operator. The analysis 
conducted using R version 3.3.1. The number of replications (B) will be 
equal to 100, 1000. The convergence criterion 

( ) ( )
( ) ,ˆ

ˆˆ
max

1
,,1 δ≤

θ
θ−θ +

= k

k
nj

k
p…  

where n is the dimension of θ, δ is very small number, say ,10 6−  is used for 

the EM and ECM algorithms. 

Bootstrap, jackknife and JaB estimates and the relevant standard error of 
these estimates for N, SN, T, SL and CN models are obtained, corresponding 
the number of replications ,1000,100=B  as can be seen in Table 1. Noting 

that JaB estimates and bootstrap estimates are very close for each replication 
for all distributions. Also, the jackknife estimates and the original estimates 
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for all distributions are very close. Bootstrap and JaB standard error (SE) are 
not comparable because there are different scales when .1000,100=B  But 

the (SE) values of jackknife estimates are less than bootstrap and JaB SE       
for all distributions. JaB estimates are not shown in Table 1 because it is 
identical with bootstrap estimates when .1000,100=B  

Table 1. The ML estimates for N, SN, T, SL, CN models for jackknife, 
bootstrap when 1000,100=B  

Resampling technique Parameter CN T SL N SN 

xμ  21.02 20.93 21.02 22.46 12.15 

xϕ  65.03 45.83 86.69 62.91 168.98 

1ϕ  5.00 3.03 7.14 4.99 5.06 

2ϕ  1.41 0.82 2.09 1.41 1.25 

3ϕ  4.37 2.83 5.86 4.38 4.53 

4ϕ  4.62 3.19 6.02 4.63 4.76 

2α  –0.70 –0.63 0.28 –0.70 –0.70 

3α  –0.98 –0.92 0.12 –0.97 –0.98 

4α  –1.44 –1.22 –0.47 –1.44 –1.44 

Original sample 

xλ      5.68 

xμ  21.02 20.939 21.02 22.46 12.14 

xϕ  65.03 45.83 86.69 52.89 169.26 

1ϕ  5.00 3.03 7.14 4.99 5.06 

2ϕ  1.42 0.82 2.09 1.41 1.25 

3ϕ  4.37 2.83 5.86 4.38 4.53 

4ϕ  4.62 3.19 6.02 4.63 4.76 

2α  –0.70 –0.63 0.28 –0.70 –0.70 

3α  –0.98 –0.92 0.12 –0.97 –0.97 

4α  –1.44 –1.22 –0.47 –1.44 –1.44 

Jackknife 

xλ      5.76 
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xμ  21.029 20.909 20.995 22.437 12.805 

xϕ  65.265 45.021 88.661 61.671 153.537 

1ϕ  4.904 2.906 6.879 4.962 5.074 

2ϕ  1.415 0.791 2.231 1.376 1.154 

3ϕ  4.345 2.752 5.827 4.345 4.403 

4ϕ  4.703 3.111 5.952 4.745 4.652 

2α  –0.734 –0.609 –0.709 –0.729 –0.750 

3α  –0.988 –0.897 –0.841 –1.063 –1.001 

4α  –1.405 –1.198 –1.425 –1.501 –1.494 

Bootstrap (100) 

xλ      6.732 

xμ  21.009 20.925 21.019 22.495 12.891 

xϕ  64.916 45.572 86.364 62.132 157.170 

1ϕ  4.966 3.069 6.997 4.950 5.056 

2ϕ  1.416 0.832 2.045 1.387 1.236 

3ϕ  4.344 2.770 5.856 4.365 4.376 

4ϕ  4.613 3.118 6.046 4.609 4.742 

2α  –0.698 –0.632 –0.718 –0.713 –0.734 

3α  –0.951 –0.921 –0.864 –0.971 –0.967 

4α  –1.426 –1.233 –1.459 –1.445 –1.442 

Bootstrap (1000) 

xλ      6.291 

Bootstrap, jackknife and JaB absolute bias of the estimates are computed, 
as seen in Table 2. Noting that bootstrap absolute bias when 1000=B  less 
than bootstrap absolute bias when 100=B  for all distributions, also the same 

result for JaB. The relative efficiencies ( ) ( )jackboot SESERE θθ= ˆˆ1  and 

( ) ( )jackjab SESERE θθ= ˆˆ2  are computed for each resampling technique. 

We can conclude that the RE2 for JaB when 1000=B  is larger than              

the RE2 for JaB when 100=B  for all estimates except xφ  for N, SN cases, 
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but for SL, CN, T, the estimates ,xμ  ,3αφx  4α  are to be expected. The 

same result for bootstrap indicates that the resampling techniques lead to 
efficient results. The results are summarized in Table 2 for N and CN only. 

Table 2. Bias estimate and the relative efficiency for all models for each 
resampling technique, when 1000,100=B  

  Absolute bias Relative efficiency 

Parameter Distribution Jackknife 
Bootstrap

(100) 
Bootstrap

(1000) 
Bootstrap

(100) 
Bootstrap

(1000) 
JaB 

(100) 
JaB 

(1000) 

xμ  1.46 1.44 1.495 1.69 1.23 5.23 1.44 

xϕ  5.11 6.329 5.868 72 6.43 38.93 15.64 

1ϕ  54.01 54.038 54.05 78.53 57.68 212.1 149.9 

2ϕ  60.59 60.624 60.613 64.4 64.1 485.6 412.4 

3ϕ  74.62 74.655 74.635 67.26 68.1 166.1 139.7 

4ϕ  68.37 68.255 68.391 68.26 64.53 157.4 133.7 

2α  0 0.029 0.013 18.53 17.65 47.71 44.82 

3α  0.07 0.163 0.071 21.79 21.42 29.63 28.32 

4α  

N 

0.06 0.001 0.055 22.68 21.53 33.74 28.89 

xμ  0.02 0.029 0.009 8.514 8.59 6.62 5.91 

xϕ  2.97 2.735 3.084 68.92 8 5.59 1.66 

1ϕ  54 54.096 54.034 9.07 10.17 10.20 14.3 

2ϕ  60.58 60.585 60.584 8.77 8.563 10.98 12.66 

3ϕ  74.63 74.655 74.656 10.98 10.497 10.72 12.46 

4ϕ  68.38 68.297 68.387 10.74 10.629 13.96 12.86 

2α  0 0.034 0.002 8.44 8.523 10.04 9.44 

3α  0.08 0.088 0.051 8.86 8.768 7.12 6.75 

4α  

CN 

0.06 0.095 0.074 8.49 8.690 6.45 6.45 
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The values of the information criteria, the Akaike information         
criterion (AIC), the Schwarz Bayesian information criterion (BIC) and the 
Hannan-Quinn criterion (HQ) are used for comparing between distributions 
for each resampling technique, following [15, 21]. We can note that the 
values of the information criteria decrease when the number of replication 
increases, indicating that the distributions with jackknife, bootstrap and JaB 
offer better fit corresponding distributions with the original sample, while 
jackknife technique is the best technique. Also, bootstrap and JaB techniques 
outperform when the number of replications increases. The results are shown 
in Table 3 for N and SL distributions. 

Table 3. Values of the information criteria for (N, SL) models for each 
resampling technique when 1000,100=B  

Distribution B Resampling 
techniques 

Log 
likelihood 

AIC BIC HQ 

 Original sample –747.789 756.789 773.273 763.395 

 Jackknife –737.329 746.329 762.813 752.935 

Bootstrap –742.769 751.769 768.253 758.375 100 

JaB –742.769 751.769 768.253 758.375 

Bootstrap –742.701 751.701 768.184 758.307 

 

 

N 

1000 

JaB –742.701 751.701 768.184 758.307 

 Original sample –658.057 667.057 683.541 673.663 

 Jackknife –648.849 657.849 674.333 664.455 

Bootstrap –654.876 663.876 680.359 670.482 100 

JaB –654.876 663.876 680.359 570.482 

Bootstrap –653.603 662.603 679.087 669.209 

 

 

SL 

1000 

JaB –653.603 662.603 679.087 669.209 

In order to detect outlying observations, consider the Mahalanobis 
distance ( ),id  adopting the cut-off lines which correspond to the quantile 

0.95. Noting that the JaB technique flagged fewer outlying observations than 
original and jackknife as seen in Table 4, indicating that JaB technique is 
more robust to outlying observations for all distributions. 
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Table 4. The outlying observations for N, SN, CN models for jackknife and 
JaB resampling techniques when 100=B  

Resampling technique Distribution Cut-off Outliers 

N 9.48773 1, 7, 36, 45, 49, 52, 62 

SN 9.48773 1, 7, 36, 49, 62, 72 Original sample 

CN 9.3999 1, 7, 36, 45, 49, 52, 62 

N 9.48773 1, 7, 36, 44, 48, 51, 61 

SN 9.48773 5, 7, 36, 47, 48, 70, 71 Jackknife 

CN 9.3999 1, 7, 44, 48, 61 

N 10.62683 7, 36, 49, 62 

SN 10.94074 7, 36, 49, 62 JaB 

CN 10.9077 7, 36, 49, 62 

Table 5. The influential observations for N, T, SL, CN models under case 
weight and measurement for a particular instrument perturbation schemes 
and for jackknife and JaB resampling techniques when 100=B  

 
Perturbation 

scheme 
Case weight 

Perturbation for a 
particular instrument 

Distribution 
Resampling 
technique 

Cut-off Influential observations Cut-off 
Influential 

observations 

Original sample 0.0335 - 0.0452 5, 44, 45, 59 

Jackknife 0.0229 - 0.0452 5, 43, 44, 58 N 

JaB 0.0353 - 0.0479 5, 44, 45, 59 

Original sample 0.0441 1, 5, 27, 36, 44, 45, 59 0.0441 - 

Jackknife 0.0843 5, 44, 58 0.0448 - CN 

JaB 0.0849 5, 45, 59 0.0384 - 

Original sample 0.0911 1, 5, 45, 59 0.0552 3, 12, 16, 20, 32 

Jackknife 0.0912 1, 5, 44, 58 0.0596 3, 12, 27 SL 

JaB 0.0991 5, 45, 59 0.1259 - 

Original sample 0.0603 5, 44, 45, 56, 59 0.0361 18, 41, 51, 58 

Jackknife 0.0606 5, 44, 55, 58 0.0362 18, 40, 50, 57 
T 

JaB 0.0653 44, 45, 59 0.0373 18, 41, 51, 58 



Effective Techniques for Estimating the Parameters … 789 

To identify the influential observations using the local influence 
approach, the values of the conformal normal curvature iB  for each 

distribution for jackknife and JaB techniques are obtained under different 
perturbation schemes when .100=B  We note from Table 5 that the 
observations 5, 45, 59 are the popular influential under case weight 
perturbation for all distributions except normal distribution. We can noted 
that JaB technique flagged fewer influential observations than original and 
jackknife for SN, T, SL, CN distributions under case weight perturbation. 
Under joint response perturbation and multiplicative bias perturbation, there 
is no influential observation appearing for all distributions. 

7. Conclusions 

The main conclusion is that the use of resampling techniques offers 
better fits and protection against outliers and more precise inferences than  
the traditional technique. The nature of the JaB method needs much 
computation especially for larger sample sizes. We can apply the resampling 
techniques for asymmetric version of SMN distributions proposed in [25]        
to accommodate skewness and heavy-tailedness simultaneously for Grubbs 
model called scale mixtures of skew-normal (SMSN) distributions and we can 
use the expectation of conditional maximization either (ECME) algorithm 
[17] to estimate the parameters for SMSN models following [8] and [13] as 
interesting topics for future research. 
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