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Abstract 

Estimators of the mean and variance functions of a compound Poisson 
process with the Poisson intensity obtained as exponential of the linear 
function are constructed and investigated. We consider the case when 
there is only a single realization of the Poisson process observed in a 
bounded interval. The proposed estimators are proved to be weakly 
and strongly consistent when the size of the interval indefinitely 
expands. The expected values and variances of the proposed 
estimators are computed. 
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1. Introduction 

Let ( ){ }0, ≥ttN  be a non-homogeneous Poisson process with 

(unknown) locally integrable intensity function λ. The intensity function λ is 
assumed to be an exponential of the linear function, that is, 

( ) ( ).exp ss β+α=λ  

This intensity function can be simplified as follows: 

( ) ( ) ( )ss βα=λ expexp  

( ),exp sβγ=  (1.1) 

where γ is an unknown positive real number. We assumed that β is a known 
constant and .0 ∞<β<  

Let ( ){ }0, ≥ttZ  be a compound Poisson process, that is, 

 ( )
( )∑ =

=
tN

i iXtZ
1

,  (1.2) 

where { }1, ≥iXi  is a sequence of independent and identically distributed 

non-negative random variables with mean ∞<μ1  and variance ,2
1 ∞<σ  

which is also independent of the process ( ){ }.0, ≥ttN  It is assumed that 

[ ] .4
14 ∞<=μ XE  The model presented in (1.2) is a generalization of the 

(well known) compound Poisson process, which assumes that ( ){ }0, ≥ttN  

is a homogeneous Poisson process, the case when .0=β  Some applications 

of compound Poisson process can be found in [1, 2, 5, 6]. Some related 
works can be found in [3, 4, 7]. 

Suppose that, for some ,Ω∈ω  a single realization ( )ωN  of a Poisson 

process ( ){ }0, ≥ttN  defined on a probability space ( )P,, FΩ  with 

intensity function λ is observed, though only within a bounded interval 
[ ].,0 n  Furthermore, suppose that for each data point in the observed 

realization ( ) [ ],,0 nN ∩ω  say ith data point, [ ]( ),,0...,,2,1 nNi =  its 
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corresponding random variable iX  is also observed. The mean function 

(expected value) of ( ),tZ  denoted by ( ),tψ  is given by 

 ( ) ( )( )
( )

( )( ) ( )11
XEtNEXEtZEt

tN
i i =⎟

⎠
⎞⎜

⎝
⎛==ψ ∑ =

 (1.3) 

and the variance function of ( ),tZ  denoted by ( ),tV  is given by 

 ( ) ( )( )
( )

( )( ) ( ).2
11

XEtNEXVartZVartV
tN

i i =⎟
⎠
⎞⎜

⎝
⎛== ∑ =

 (1.4) 

Since 

( )( ) [ ]( )( )tNEtNE ,0=  

( )∫ λ=
t

dss
0

 

( )∫ βγ=
t

dss
0

exp  

( )( ),1exp −β
β
γ= t  (1.5) 

the mean and variance functions of ( )tZ  can be written as, respectively, 

 ( ) ( )( )( ) 11exp μ−β
β
γ=ψ tt  (1.6) 

and 

 ( ) ( )( )( ) ,1exp 2μ−β
β
γ= ttV  (1.7) 

where ( )11 XE=μ  and ( ).2
12 XE=μ  

The rest of this paper is organized as follows. The estimators and main 
results are presented in Section 2. Proofs of our theorems are presented in 
Section 3. 
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2. The Estimators and Main Results 

The estimators of functions ( )tψ  and ( )tV  using the available data set at 

hand are given, respectively, by 

 ( ) ( )( ) n
n

n tt ,1
,

, ˆ1exp
ˆ

ˆ μ−β
β

γ
=ψ β

β  (2.1) 

and 

 ( ) ( )( ) ,ˆ1exp
ˆˆ ,2

,
, n

n
n ttV μ−β

β
γ

= β
β  (2.2) 

where 

 ( )( ) [ ]( ),,01exp
ˆ , nNnn −β

β=γ β  (2.3) 

 [ ]( )
[ ]( )∑ =

=μ
nN

i in XnN
,0

1,1 ,0
1ˆ  (2.4) 

and 

 [ ]( )
[ ]( )∑ =

=μ
nN

i in XnN
,0

1
2

,2 ,,0
1ˆ  (2.5) 

with the understanding that ( ) ( ) 0ˆˆ ,, ==ψ ββ tVt nn  when [ ]( ) .0,0 =nN  

Next, we describe the idea behind the construction of the estimator in 

(2.3). By (1.1), (1.5) and the fact that [ ]( )( ) ( )∫ λ=
n

dssnNE
0

,,0  we have 

[ ]( )( ) ( )( ) ( )( ) [ ]( )( ).,01exp1exp,0 nNEnnnNE
−β

β=γ⇔−β
β
γ=  (2.6) 

Replacing [ ]( )( )nNE ,0  by [ ]( ),,0 nN  then we obtain the estimator in 

(2.3). 

Our main results are presented in the following four theorems. The first 

theorem is about expected values of ( )tn βψ ,ˆ  and ( )tVn β,ˆ  while the second 
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theorem is about variances of ( )tn βψ ,ˆ  and ( ).ˆ , tVn β  The weak and strong 

consistencies of ( )tn βψ ,ˆ  are presented in Theorem 3 while the weak and 

strong consistencies of ( )tVn β,ˆ  are presented in Theorem 4. 

Theorem 1 (The  expected values of ( )tn βψ ,ˆ  and ( )).tVn β,ˆ  Suppose that 

the intensity function λ satisfies (1.1) and is locally integrable. If ( )tZ  

satisfies (1.2), then 

( ( )) ( )ttE n ψ=ψ β,ˆ  

and 

( ( )) ( ).ˆ , tVtVE n =β  

Theorem 2 (The  variances of ( )tn βψ ,ˆ  and ( )).tVn β,ˆ  Suppose that the 

intensity function λ satisfies (1.1) and is locally integrable. If ( )tZ  satisfies 

(1.2), then 

( ( )) ( )( )
( )( )
β

−βγμ
−β

=ψ β

2
2

,
1exp

1exp
1ˆ t
ntVar n  

and 

( ( )) ( )( )
( )( ) .1exp

1exp
1ˆ

2
4

, β
−βγμ

−β
=β

t
ntVVar n  

Since ( ( )) 0ˆ , =ψ β tBias n  and ( ( )) ,0ˆ , =β tVBias n  we have that 

( ( )) ( ( ))tVartMSE nn ββ ψ=ψ ,, ˆˆ  and ( ( )) ( ( )).ˆˆ ,, tVVartVMSE nn ββ =  

Theorem 3 ( yConsistenc  of ( )).tn βψ ,ˆ  Suppose that the intensity function 

λ satisfies (1.1) and is locally integrable. If ( )tZ  satisfies (1.2), then 

 ( ) ( )tt
P

n ψ→ψ β,ˆ  (2.7) 
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and 

 ( ) ( )tt
sa

n ψ→ψ β
..

,ˆ  (2.8) 

as .∞→n  Hence, ( )tn βψ ,ˆ  is a weakly and strongly consistent estimator of 

( ).tψ  

Theorem 4 ( yConsistenc of ( )).tVn β,ˆ  Suppose that the intensity function 

λ satisfies (1.1) and is locally integrable. If ( )tZ  satisfies (1.2), then 

 ( ) ( )tVtV
P

n →β,ˆ  (2.9) 

and 

 ( ) ( )tVtV
sa

n
..

,ˆ →β  (2.10) 

as .∞→n  Hence, ( )tVn β,ˆ  is a weakly and strongly consistent estimator of 

( ).tV  

3. Proofs of Theorems 1-4 

Note that, by (2.1), (2.3) and (2.4), we obtain 

( ) ( )( ) n
n

n tt ,1
,

, ˆ1exp
ˆ

ˆ μ−β
β

γ
=ψ β

β  

( )( )
( )( ) [ ]( ) [ ]( )

[ ]( )∑ =−β
−ββ

β
=

nN
i iXnNnNn

t ,0
1,0

1,01exp
1exp1  

( )( )
( )( )

[ ]( )∑ =−β
−β=

nN
i iXn

t ,0
1

.1exp
1exp  (3.1) 

Similar to (3.1), by (2.2), (2.3) and (2.5), we obtain 

 ( ) ( )( )
( )( )

[ ]( )∑ =β −β
−β=

nN
i in Xn

ttV
,0

1
2

, .1exp
1expˆ  (3.2) 
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We note that, since { }1, ≥iXi  is a sequence of independent and 

identically distributed non-negative random variables with [ ] ,4
14 ∞<=μ XE  

we also have that { }1,2 ≥iXi  is a sequence of independent and identically 

distributed random variables with mean ∞<μ2  and variance .2
2 ∞<σ  

Proof of Theorem 1. By (1.3), (1.6), (2.6) and (3.1), we obtain 

( ( )) ( )( )
( )( ) [ ]( ) 1, ,01exp

1expˆ μ
−β
−β=ψ β nNEn

ttE n  

( )( )
( )( ) ( )( ) ( ).1exp1exp

1exp
1 tnn

t ψ=μ−β
β
γ

−β
−β=  (3.3) 

Similar to (3.3), by (1.3), (1.7), (2.6) and (3.2), we obtain 

 ( ( )) ( ).ˆ , tVtVE n =β  (3.4) 

This completes the proof of Theorem 1. 

Proof of Theorem 2. By (1.4), (2.6) and (3.1), we obtain 

( ( )) ( )( )
( )( )

[ ]( )
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

−β
−β=ψ ∑ =β

nN
i in XVarn

ttVar
,0

1

2
, 1exp

1expˆ  

( )( )
( )( ) [ ]( )( ) 2

2
,01exp

1exp μ⎟
⎠
⎞⎜

⎝
⎛

−β
−β= nNEn

t  

( )( )
( )( ) ( )( ) 2

2
1exp1exp

1exp μ−β
β
γ

⎟
⎠
⎞⎜

⎝
⎛

−β
−β= nn

t  

( )( )
( )( ) .1exp

1exp
1 2

2
β

−βγμ
−β

= t
n  (3.5) 

Similar to (3.5), by (1.4), (2.6) and (3.2), we obtain 

 ( ( )) ( )( )
( )( ) .1exp

1exp
1ˆ

2
4

, β
−βγμ

−β
=β

t
ntVVar n  (3.6) 

This completes the proof of Theorem 2. 
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In this paper, for any random variables nX  and X on a probability space 

( ),,, PFΩ  XX
c

n →  denotes that nX  converges completely to X, as 

.∞→n  The random variable nX  is called converges completely to X if, for 

each ,0>ε  

 ( )∑∞

=
∞<ε>−

1
.

n n XXP  (3.7) 

Proof of Theorem 3. Since (2.8) implies (2.7), to prove this theorem, it 
suffices to check (2.8). First, we prove that 

 ( ) ( )tt
c

n ψ→ψ β,ˆ  (3.8) 

as .∞→n  By (3.3), (3.5), (3.7) and Chebyshev’s inequality, we obtain 

( ( ) ( ) )∑∞

= β ε>ψ−ψ
1 ,ˆ

n n ttP  

( ( ) ( ( )) )∑∞

= ββ ε>ψ−ψ=
1 ,, ˆˆ

n nn tEtP  

( ( ))
∑∞

=
β

ε

ψ
≤

1 2
,ˆ

n
n tVar

 

( )( )
( )( )∑∞

=
∞<

−ββε

−βγμ=
12

2
2 .1exp

11exp
n n

t  

Hence, we have (3.8). By (3.8) and the Borel-Cantelli lemma, we obtain 
(2.8). This completes the proof of Theorem 3. 

Proof of Theorem 4. Since (2.10) implies (2.9), to prove this theorem, it 
suffices to check (2.10). First, we verify 

 ( ) ( )tVtV
c

n →β,ˆ  (3.9) 
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as .∞→n  By (3.4), (3.6), (3.7) and Chebyshev’s inequality, we obtain 

( ( ) ( ( )) )∑∞

= ββ ε>−
1 ,, ˆˆ

n nn tVEtVP  

( )( )
( )( )∑∞

=
∞<

−ββε

−βγμ≤
12

2
4 .1exp

11exp
n n

t  

Hence, we have (3.9). By (3.9) and the Borel-Cantelli lemma, we obtain 
(2.10). This completes the proof of Theorem 4. 
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