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Abstract 

The objective of this paper is to construct confidence intervals for         
the common inverse mean of several normal populations based on 
adjusted method of variance estimates recovery approach (adjusted 
MOVER approach) and to compare with generalized confidence 
interval approach and large sample approach. The coverage 
probability and average length of the confidence intervals are 
evaluated by a Monte Carlo simulation. The results showed that the 
generalized confidence interval approach provides the best confidence 
interval, but the coverage probabilities of the adjusted MOVER 
confidence intervals are close to the nominal confidence level of 0.95 
when the sample size is large. Finally, the proposed approaches are 
illustrated by an example. 
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1. Introduction 

The inverse mean of normal distribution is defined as the ratio of one to 
the population mean. It has been statistical estimation in many fields such             
as experimental nuclear physics, econometrics, and biological sciences. In 
experimental nuclear physics, Lamanna et al. [6] studied charged particle 
momentum ,1 μ=ρ  where μ is the track curvature of a particle. Zaman [21] 

estimated the inverse mean in the one-dimensional special case of the single 
period control problem. Zaman [22] discussed an estimate of the inverse 
mean without moments. In econometrics, Zellner [23] studied the inverse        
of common mean of structural coefficient of linear structural econometric 
models. Voinov [15] presented the unbiased estimators of power for the 
inverse of mean. Niwitpong and Wongkhao [7] presented three new 
confidence intervals for the inverse mean of normal distribution. Niwitpong 
and Wongkhao [8] constructed three new confidence intervals for the 
difference between inverse means of normal distributions. 

In many practical situations, there are common practices to collect 
different settings. Several researchers have been studied confidence intervals 
for the common parameter, for example, Krishnamoorthy and Lu [5] 
presented procedures for hypothesis testing and interval estimation of         
the common mean of several normal populations. Tian [12] dealt with the 
problem of making inference about the common populations with a common 
coefficient of variation. Tian and Wu [14] proposed the confidence interval 
estimation and hypothesis testing of the common mean of several log-normal 
populations using the concept of generalized variable. Ye et al. [20] 
presented procedures for hypothesis testing and interval estimation for the 
common mean of several inverse Gaussian populations. Thangjai et al. [9] 
proposed the generalized confidence interval approach and the large sample 
approach for confidence interval estimation about the common inverse mean 
based on several independent normal samples. Thangjai and Niwitpong [11] 
proposed new confidence intervals for the weighted coefficients of variation 
of two-parameter exponential distributions. 



On Large Sample Confidence Intervals … 61 

Therefore, confidence interval estimation for the common inverse mean 
based on several independent normal samples is of practical and theoretical 
importance. The goal of this paper is to extend the recent work of Thangjai et 
al. [9] to construct the confidence intervals for the common inverse mean        
of normal distributions. We propose a novel approach, the adjusted method 
of variance estimates recovery approach (adjusted MOVER approach), for 
confidence interval estimation for the common inverse mean of normal 
distributions. Then there are the concepts of generalized confidence interval, 
large sample confidence interval, and adjusted MOVER confidence interval. 
The first confidence interval was introduced by Weerahandi [17]. Many 
researchers have successfully used the generalized confidence interval 
approach to construct confidence interval for common parameter, i.e., see 
Krishnamoorthy and Lu [5], Tian [12], Tian and Wu [14], and Ye et al. [20]. 
Moreover, the concept of the generalized confidence interval has been 
applied to variety of practical settings where standard solutions do not exist 
for confidence intervals, i.e., see Weerahandi [18], Weerahadi and Berger 
[19], Krishnamoorthy and Lu [5], Tian and Cappelleri [13], Tian [12], Tian 
and Wu [14], and Thangjai et al. [9]. The second confidence interval was 
constructed based on the large sample approach which was constructed based 
on central limit theorem (CLT). The paper by Tian and Wu [14] presented 
the confidence interval for the common mean of several log-normal 
populations based on generalized confidence interval approach and compared 
it with a large sample approach. Thangjai et al. [9] proposed the confidence 
interval for the common inverse mean of several normal populations      
based on generalized confidence interval approach and compared with large  
sample approach. The third confidence interval was motivated based on the     
method of variance estimates recovery approach (MOVER approach), was 
introduced by Zou and Donner [24] and Zou et al. [25], is called adjusted 
MOVER confidence interval. The MOVER approach was inspired by the 
score interval approach which proposed by Bartlett [1]. Many researchers 
have successfully used the MOVER approach for constructing the confidence 
interval for parameter; for example, see Zou and Donner [24], Zou et al.  
[25], and Donner and Zou [3]. Moreover, several researchers have used         
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the concept of the adjusted MOVER approach to construct the confidence 
interval for common parameters; for example, see Thangjai et al. [10] and 
Thangjai and Niwitpong [11]. 

This paper is organized as follows: In Section 2, the proposed approach 
and existing approaches are described. In Section 3, simulation results          
are presented to evaluate the coverage probabilities and average lengths of         
the proposed approach and existing approaches. Section 4 illustrates the 
proposed approach and existing approaches with real example. Finally, 
Section 5 summarizes this paper. 

2. Confidence Intervals for the Common Inverse Mean 
of Several Normal Populations 

Recall that a random variable X is distributed normally with mean μ and 

variance .2σ  The inverse mean of X is defined as ,1 μ  where .0≠μ  

Let ,iX  k,,21 …=  be random samples from normal distributions and 

let ii μ=θ 1  be the ith inverse mean population. 

Let ,ijX  ;,,2,1 ki …=  inj ,,2,1 …=  be random samples from the 

,iX  i.e., ( ).,,, 21 iiniii XXXX …=  

For the ith sample, let iX  and ix  be sample mean and observed sample 

mean of ,ijX  respectively. And let 2
iS  and 2

is  be sample variance and 

observed sample variance of ,ijX  respectively. 

The maximum likelihood estimator and unbiased estimator of parameter 

iθ  are defined by 

.,,2;1
ˆ
1ˆ ki

Xii
i …==

μ
=θ  

Theorem 1. Let ( )nXXXX ,,, 21 …=  be a random sample from the 
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normal population with mean μ and variance .2σ  Let θ̂  be the unbiased 

estimator of θ. The variance of θ̂  is 

 ( ) .ˆ
4

2

μ
σ=θ
n

Var  (1) 

Proof. Let nXXX ,,, 21 …  be an independent and identically distributed 

random variables with mean μ and variance .2σ  Then the estimators μ̂  and 
2σ̂  have the following normal distribution in large samples due to the central 

limit theorem: 

( ) ( )2,0~ˆ σμ−μ Nn    and   ( ) ( ),2,0~ˆ 422 σσ−σ Nn  

where ∑
=

=μ
n

i
iXn

1

1ˆ  and ( )∑
=

μ−=σ
n

i
iXn

1

22 .ˆ1ˆ  

Denote ( )′σμ=θ 2ˆ,ˆˆ  and ( ) ., 2 ′σμ=θ  Then 

( ) ( ),,0~ˆ
θθ−θ VNn  

where ,
20

0
4

2
⎥
⎦

⎤
⎢
⎣

⎡

σ
σ≡θV  Casella and Berger [2]. 

The inverse mean estimator μ̂1  can be written as function of ,θ̂  i.e., 

( ).θ̂f  The delta method is applied to derive asymptotic distribution, 

( ( ) ( )) ( ),,0~ˆ
fVNffn θ−θ  

where ( ) ( ) .
θ′∂
θ∂

θ∂
θ∂≡ θ

fVfV f  

The function of θ is denoted by 

( ) .1
μ

=θf  
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The partial derivative of ( )θf  with respect to μ and 2σ  are, respectively, 

( )
2

1
μ

−=
μ∂
θ∂f    and   ( ) .02 =

σ∂
θ∂f  

Thus 

( )
⎥
⎦

⎤
⎢
⎣

⎡ μ−=
θ′∂
θ∂

0
1 2f    and   .

20
0

4

2
⎥
⎦

⎤
⎢
⎣

⎡

σ
σ≡θV  

The asymptotic distribution of estimator μ̂1  is 

( ),,0~1
ˆ
1

iidVNn ⎟
⎠
⎞⎜

⎝
⎛

μ
−

μ
 

where .012 4

2
2

2

2
4

2

2
2

2

μ

σ=+σ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

μ
−=σ⎟

⎠
⎞

⎜
⎝
⎛
σ∂

∂+σ⎟
⎠
⎞⎜

⎝
⎛
μ∂
∂= ffViid  

Thus 

( ) .1
ˆ
1ˆ

4

242

μ
σ=μσ=⎟

⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛
μ

=θ
nnX

VarVarVar  

Hence, Theorem 1 is proved. 

2.1. Generalized confidence interval approach (GCI approach) 

Definition. Let ( )nXXXX ,,, 21 …=  be a random sample from a 

distribution ( ),δ|xF  where ( )nxxxx ,,, 21 …=  be an observed sample, =δ  

( )v,θ  is a vector of unknown parameters, θ is a parameter of interest, v is a 

vector of nuisance parameters. Let ( )δ= ,; xXRR  be a function of X, x and 

δ. The random quantity R is called a generalized pivotal quantity if it has the 
following two properties; see Weerahandi [17]: 

 (i) The distribution of R is free of all unknown parameters. 

(ii) The observed value of ,, xXR =  is the parameter of interest θ. 
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Let ( )αR  be the ( ) th100 α  percentile of R. Then ( )αR  is a ( )%1100 α−  

lower bound of one-sided generalized confidence interval for θ and 
( ( ) ( ))21,2 α−α RR  is the ( )%1100 α−  two-sided generalized confidence 

interval for θ. 

In the following, the above definition is used to develop a generalized 
pivotal quantity for the common inverse mean of several normal populations. 

Consider k independent normal populations with a common inverse mean 
θ. Let 

iinii XXX …,, 21  be a random sample from the ith normal population 

as follows: 

( ).,~ 2
iiij NX σμ  

The inverse mean is defined by 

.,,2,1;1 ki
i

i …=
μ

=θ  

It is well known that 

( ) ,~1 2
12

2

−χ=
σ

−
ini

i

ii VSn  (2) 

where iV  is chi-square distribution with degrees of freedom .1−in  Then 

( ) .1 2
2

i
ii

i V
Sn −

=σ  

The generalized pivotal quantity for 2
iσ  is defined by 

 ( ) ( ) .1~1
2

1

22
2

−
σ χ

−−
=

i
i

n

ii
i

ii sn
V

snR  (3) 

According to Niwitpong and Wongkhao [7], the generalized pivotal 
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quantity for iμ  is defined as 

 ,
i

ii
i U

sZxR i −=μ  (4) 

where iZ  and iU  denote standard normal distribution and chi-square 

distribution with degrees of freedom ,1−in  respectively. 

The generalized pivotal quantity for iθ  is defined by 

 .1

i
i RR

μ
θ =  (5) 

Following Ye et al. [20], the generalized pivotal quantity for the common 
inverse mean θ is a weighted average of the generalized pivotal quantity 

i
Rθ  

based on k individual samples given by 

 
( ) ( )

∑∑
= θ= θ

θ
θ =

k

i Var

k

i Var ii

i
RR

R
R

1 ˆ1 ˆ
,1  (6) 

where (from equation (1)) 

 ( ) ( )
.4ˆ

2

i

i
i Rn

R
R

i
Var

μ

σ
θ =  (7) 

Therefore, the ( )%1100 α−  two-sided confidence interval for the 

common inverse mean θ based on the generalized confidence interval 
approach is 

 ( ) ( ) ( )( ),21,2, α−α== θθ RRULCI GCIGCIGCI  (8) 

where ( )2αθR  and ( )21 α−θR  denote the ( ) th2100 α  and ( ) th21100 α−  

percentiles of ,θR  respectively. 
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The following algorithm is used to construct the generalized confidence 
interval: 

Algorithm 1 

For a given ix  and :,2,1,2 kisi …=  

For 1=g  to m: 

Generate iV  from chi-square distribution with degrees of 

freedom .11 −n  

Compute 2
i

R
σ

 from equation (3). 

Generate iZ  from standard normal distribution. 

Generate iU  from chi-square distribution with degrees 

of freedom .1−in  

Compute 
i

Rμ  from equation (4). 

Compute 
i

Rθ  from equation (5). 

Compute ( )iVarR θ̂  from equation (7). 

Compute θR  from equation (6). 

(end g loop) 

Compute the ( )2100 α th percentile of θR  defined by ( ).2αθR  

Compute the ( )21100 α− th percentile of θR  defined by ( ).21 α−θR  

2.2. Large sample approach 

According to Graybill and Deal [4], the large sample estimate of inverse 
mean is a pooled estimated unbiased estimator of the inverse mean defined as 
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( ) ( )∑∑

== θθ
θ

=θ
k

i i

k

i i

i
VarVar 11

,ˆ
1

ˆ
ˆˆ  (9) 

where ii X1ˆ =θ  and ( )iVar θ̂  is an estimate of ( )iVar θ̂  in equation (1) with 

iμ  and 2
iσ  replaced by ix  and ,2

is  respectively. 

For large sample size, the distribution of θ̂  is approximately normal 
distribution. Then the quantile of the normal distribution is used to construct 
confidence interval for θ. Therefore, the ( )%1100 α−  two-sided confidence 

interval for the common inverse mean θ based on the large sample approach 
is 

( )LSLSLS ULCI ,=  

( ) ( ) ,ˆ11ˆ,ˆ11ˆ
1

21
1

21 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
θ+θθ−θ= ∑∑

=
α−

=
α− i

k

i
i

k

i
VarzVarz  (10) 

where 21 α−z  denotes the th21 α−  quantile of the standard normal 

distribution. 

2.3. Adjusted method of variance estimates recovery approach (adjusted 
MOVER approach) 

In two parameters case, Zou and Donner [24], and Zou et al. [25] 
introduced the method of variance estimates recovery approach (MOVER 
approach). Let 1θ  and 2θ  be the parameters of interest and let L and U be the 

lower limit and upper limit of ( )%1100 α−  two-sided confidence interval for 

the parameter .21 θ+θ  Using the central limit theorem and the assumption of 

independence between the point estimates 1θ̂  and ,ˆ
2θ  the lower limit L is 

defined as 

 ( ) ( ),ˆˆˆˆˆˆ
21221 θ+θ−θ+θ= α raVraVzL  (11) 

where 2αz  is the upper 2α th percentile of the standard normal distribution. 
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For ,2,1=i  let ( )ii ul ,  be a ( )%1100 α−  two-sided confidence interval 

for .iθ  The lower limit L must be closer to 21 ll +  than to .ˆˆ
21 θ+θ  The 

variance estimate for iθ̂  at ii l=θ  is 

( ) ( ) .
ˆˆˆ

2
2

2

α

−θ
=θ

z
lraV ii

i  

Substituting back into equation (11) as follows: 

 ( ) ( )222
2

1121
ˆˆˆˆ llL −θ+−θ−θ+θ=  (12) 

and similarly 

 ( ) ( ) .ˆˆˆˆ 2
22

2
1121 θ−+θ−+θ+θ= uuU  (13) 

Let kθθθ ,,, 21 …  be the parameters of interest. Then we determine the 

confidence interval for the common inverse mean based on Graybill and Deal 
[4] defined by 

( ) ( )∑∑
== θθ

θ
=θ

k

i i

k

i i

i
VarVar 11

.ˆ
1

ˆ
ˆˆ  

The MOVER approach is motivated with confidence intervals for 
.,,, 21 kθθθ …  Let ( ) ( ) ( )kk ululul ,,,,,, 2211 …  be the confidence intervals 

for ,,,, 21 kθθθ …  respectively, and let L and U be the lower limit and  

upper limit of ( )%1100 α−  two-sided confidence interval for the parameter 

.21 kθ++θ+θ "  Using the central limit theorem and the assumption of 

independence between the point estimates ,ˆ,,ˆ,ˆ
21 kθθθ …  the lower limit L 

is defined as 

( ) ( ),ˆˆˆˆˆˆ
121 kk raVraVzL θ++θ−θ++θ= α ""  

where 2αz  is the upper 2α th percentile of the standard normal distribution. 
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For ,,,2,1 ki …=  let ( )ii ul ,  be a ( )%1100 α−  two-sided confidence 

interval for .iθ  The lower limit L must be closer to klll +++ …21  than to 

.ˆˆˆ
21 kθ++θ+θ …  The lower limit L for kθ++θ+θ …21  is 

 ( ) ( )22
111

ˆˆˆˆ
kkk llL −θ++−θ−θ++θ= ""  (14) 

and similarly, the upper limit 

 ( ) ( ) .ˆˆˆˆ 22
111 kkk uuU θ−++θ−+θ++θ= ""  (15) 

Using the concepts of large sample approach and MOVER approach 
defined in equations (9)-(15), it is called the adjusted MOVER approach. 
According to Graybill and Deal [4], the common inverse mean θ is weighted 

average of the inverse mean iθ̂  based on k individual samples defined as 

 
( ) ( )

,ˆ
1

ˆ
ˆˆ

11
∑∑
== θθ

θ
=θ

k

i i

k

i i

i
VarVar

 (16) 

where the variance estimate for iθ̂  at ii l=θ  and ii u=θ  is the average 

variance between these two variances and given by 

 ( ) ( ) ( ) .
ˆˆ

2
1ˆ

2
2

2

2
2

2

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ θ−
+

−θ
=θ

αα z
u

z
lVar iiii

i  (17) 

Therefore, the lower limit L and upper limit U for the common inverse 
mean θ are 

 
( )∑

=

α
α−

−θ
−θ=

k

i ii l

z
zL

1
2

2
2

21 ˆ1ˆ  (18) 

and 

 
( )

.ˆ1ˆ
1

2

2
2

21 ∑
=

α
α−

θ−
+θ=

k

i iiu

z
zU  (19) 
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Therefore, the ( )%1100 α−  two-sided confidence interval for the 

common inverse mean θ based on adjusted MOVER approach is 

( )AMAMAM ULCI ,=  

( ) ( )
.ˆ1ˆ,ˆ1ˆ

1
2

2
2

21
1

2

2
2

21
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

θ−
+θ

−θ
−θ= ∑∑

=

α
α−

=

α
α−

k

i ii

k

i ii u

z
z

l

z
z  

 (20) 

According to Niwitpong and Wongkhao [7], three confidence intervals 
for inverse mean μ1  are defined by 

 ( ) ,,, 11 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+

=
iiii

i

iiii

i
ii XnSd

n
XnSd

nul  (21) 

where id  is an upper 21 α− th quantile of the t-distribution with degrees of 

freedom ,1−in  

 ( ) ,11,11,
2

21
2

21
22 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−= −−

i
i

i
i

i
i

i
i

ii S
X

cn
X

S
X

cn
X

ul  (22) 

where c is an upper 21 α− th quantile of the standard normal distribution, 

 ( ) ,11,11,
2

21
2

21
33 ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−= −−

i
i

ii
i

i
i

ii
i

ii S
X

nb
X

S
X

nb
X

ul  (23) 

where ib  is an upper 21 α− th quantile of the t-distribution with degrees of 

freedom .1−in  

Therefore, the ( )%1100 α−  two-sided confidence intervals for the 

common inverse mean θ based on adjusted MOVER approach are 
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( )111 , AMAMAM ULCI =  

( ) ( )
,

ˆ
1ˆ,

ˆ
1ˆ

1
2

1

2
2

21
1

2
1

2
2

21
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

θ−
+θ

−θ
−θ= ∑∑

=

α
α−

=

α
α−

k

i ii

k

i ii u

z
z

l

z
z  

 (24) 

( )222 , AMAMAM ULCI =  

( ) ( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

θ−
+θ

−θ
−θ= ∑∑

=

α
α−

=

α
α−

k

i ii

k

i ii u

z
z

l

z
z

1
2

2

2
2

21
1

2
2

2
2

21 ˆ
1ˆ,

ˆ
1ˆ  

 (25) 

and 

( )333 , AMAMAM ULCI =  

( ) ( )
.

ˆ
1ˆ,

ˆ
1ˆ

1
2

3

2
2

21
1

2
3

2
2

21
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

θ−
+θ

−θ
−θ= ∑∑

=

α
α−

=

α
α−

k

i ii

k

i ii u

z
z

l

z
z  

 (26) 

3. Simulation Studies 

In this section, simulation studies are performed to evaluate the coverage 
probabilities and the average lengths of each confidence interval via Monte 
Carlo simulation. The confidence interval is satisfactory when the coverage 
probability is greater than or close to the nominal confidence level α−1  and 
the shortest average length. 

The following algorithm is used to estimate the coverage probability and 
average length: 
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Algorithm 2 

For a given ( ) ( ) ( )kkknnn σσσμμμ ,,,,,,,,,,, 212121 ………  and θ: 

For 1=h  to M: 

Generate ijx  from ( ) .,,2,1,,,2,1;, 2
iii njkiN …… ==σμ  

Compute ix  and .2
is  

Use Algorithm 1 to construct generalized confidence interval 
( ( ) ( ) )., hGCIhGCI UL  

Use equation (10) to construct large sample confidence interval 
( ( ) ( ) )., hLShLS UL  

Use equation (24) to construct adjusted MOVER confidence 
interval ( ( ) ( ) )., 11 hAMhAM UL  

Use equation (25) to construct adjusted MOVER confidence 
interval ( ( ) ( ) )., 22 hAMhAM UL  

Use equation (26) to construct adjusted MOVER confidence 
interval ( ( ) ( ) )., 33 hAMhAM UL  

If ( ( ) ( ) ),hh UL ≤θ≤  set ( ) ;1=hp  else set ( ) .0=hp  

Compute ( ) ( )hh LU −  

(end h loop) 

Compute mean of ( )hp  defined by the coverage probability. 

Compute mean of ( ) ( )hh LU −  defined by the average length. 

In this simulation, there are five confidence intervals, i.e., the generalized 
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confidence interval is defined as ,GCICI  the large sample confidence interval 

is defined as ,LSCI  and three adjusted MOVER confidence intervals are 

defined as ,1AMCI  2AMCI  and .3AMCI  Each confidence interval is evaluated 

at the nominal confidence level .95.01 =α−  The number of populations         
k is set to be 2 and 6. The sample sizes within each population 

100,50,20,1021 ===== nnnn k"  and 200. The population mean of 

normal data within each population ,121 =μ=μ==μ=μ k"  and the 

population standard deviation 10.0221 =σ==σ=σ k"  and ( ) =σ +12k  

( ) ,05.0,03.0,01.022 =σ==σ + kk "  ,07.0  ,09.0  ,10.0  ,30.0  50.0  and 

0.70. For each parameter and sample size setting, 5000 random samples are 
generated. For the generalized confidence interval approach, for each of the 
5000 random samples, 2500 θR ’s are obtained by Algorithm 1. 

For 2 sample cases, the data are generated from normal distribution    
with the population mean 121 =μ=μ  and the population standard deviation 

,10.01 =σ  50.0,30.0,10.0,09.0,07.0,05.0,03.0,01.02 =σ  and 0.70. The 

coverage probabilities and average lengths are presented in Tables 1 and 2. 
The results show that the coverage probabilities of generalized confidence 
interval are greater than the nominal confidence level of 0.95 for all cases. 
The coverage probabilities of large sample confidence interval and adjusted 
MOVER confidence interval are close to nominal confidence level of 0.95 
when sample size is large, i.e., .50≥n  The average lengths of large sample 
confidence interval and adjusted MOVER confidence interval are a bit 
shorter than that of generalized confidence interval. 

For 6 sample cases, the data are generated from normal distribution with 
the population mean 1621 =μ==μ=μ "  and the population standard 

deviation ,10.0321 =σ=σ=σ  =σ=σ=σ 654  0.01, 0.03, 0.05, 0.07, 

0.09, 0.10, 0.30, 0.50 and 0.70. The coverage probabilities and average 
lengths are presented in Tables 3 and 4. The coverage probabilities of 
generalized confidence interval close to the nominal confidence level of 0.95 
in all cases for every sample. 
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Overall, the generalized confidence intervals provide the best coverage 
probabilities for all cases. The large sample confidence intervals and adjusted 
MOVER confidence intervals have coverage probabilities close to nominal 
confidence level of 0.95 when the sample size is large. The average lengths 
of large sample confidence intervals and adjusted MOVER confidence 
intervals are a bit shorter than that of generalized confidence intervals. 

Table 1. The coverage probabilities of 95% two-sided confidence intervals 
for the common inverse mean of normal distributions: 2 sample cases 

n 1σ  2σ  GCICI  LSCI  1AMCI  2AMCI  3AMCI  

10 0.10 0.01 0.9594 0.9224 0.9514 0.9224 0.9276 
  0.03 0.9604 0.9112 0.9458 0.9112 0.9198 
  0.05 0.9614 0.9048 0.9404 0.9048 0.9100 
  0.07 0.9648 0.9000 0.9402 0.9000 0.9086 
  0.09 0.9646 0.8890 0.9366 0.8890 0.8988 
  0.10 0.9670 0.9006 0.9396 0.9006 0.9092 
  0.30 0.9622 0.9020 0.9396 0.9020 0.9096 
  0.50 0.9642 0.9068 0.9490 0.9068 0.9130 
  0.70 0.9602 0.9126 0.9494 0.9126 0.9184 

20 0.10 0.01 0.9542 0.9342 0.9490 0.9342 0.9384 
  0.03 0.9500 0.9272 0.9422 0.9272 0.9334 
  0.05 0.9572 0.9262 0.9420 0.9262 0.9330 
  0.07 0.9590 0.9308 0.9448 0.9308 0.9366 
  0.09 0.9604 0.9324 0.9464 0.9324 0.9376 
  0.10 0.9594 0.9268 0.9450 0.9268 0.9334 
  0.30 0.9572 0.9334 0.9490 0.9334 0.9384 
  0.50 0.9580 0.9294 0.9490 0.9294 0.9364 
  0.70 0.9570 0.9324 0.9492 0.9326 0.9396 

50 0.10 0.01 0.9516 0.9432 0.9506 0.9432 0.9504 
  0.03 0.9536 0.9462 0.9528 0.9462 0.9520 
  0.05 0.9552 0.9446 0.9506 0.9446 0.9498 
  0.07 0.9532 0.9402 0.9462 0.9402 0.9458 
  0.09 0.9584 0.9464 0.9528 0.9464 0.9520 
  0.10 0.9504 0.9402 0.9468 0.9402 0.9442 
  0.30 0.9484 0.9386 0.9466 0.9386 0.9456 
  0.50 0.9482 0.9402 0.9452 0.9402 0.9448 
  0.70 0.9546 0.9470 0.9502 0.9470 0.9510 
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100 0.10 0.01 0.9526 0.9500 0.9528 0.9500 0.9552 
  0.03 0.9490 0.9428 0.9454 0.9428 0.9490 
  0.05 0.9518 0.9466 0.9496 0.9468 0.9520 
  0.07 0.9576 0.9512 0.9542 0.9512 0.9582 
  0.09 0.9498 0.9440 0.9476 0.9440 0.9500 
  0.10 0.9538 0.9464 0.9496 0.9464 0.9528 
  0.30 0.9544 0.9486 0.9510 0.9486 0.9540 
  0.50 0.9498 0.9452 0.9504 0.9452 0.9508 
  0.70 0.9482 0.9436 0.9478 0.9436 0.9494 

200 0.10 0.01 0.9498 0.9472 0.9488 0.9472 0.9536 
  0.03 0.9466 0.9458 0.9470 0.9460 0.9514 
  0.05 0.9542 0.9520 0.9542 0.9520 0.9578 
  0.07 0.9502 0.9496 0.9490 0.9496 0.9532 
  0.09 0.9540 0.9508 0.9528 0.9508 0.9582 
  0.10 0.9488 0.9458 0.9482 0.9458 0.9528 
  0.30 0.9520 0.9496 0.9506 0.9496 0.9552 
  0.50 0.9506 0.9498 0.9500 0.9498 0.9558 
  0.70 0.9512 0.9478 0.9506 0.9478 0.9540 

Table 2. The average lengths of 95% two-sided confidence intervals for the 
common inverse mean of normal distributions: 2 sample cases 

n 1σ  2σ  GCICI  LSCI  1AMCI  2AMCI  3AMCI  

10 0.10 0.01 0.0148 0.0120 0.0139 0.0120 0.0123 
  0.03 0.0439 0.0342 0.0395 0.0342 0.0351 
  0.05 0.0679 0.0522 0.0603 0.0522 0.0535 
  0.07 0.0871 0.0666 0.0771 0.0666 0.0683 
  0.09 0.1011 0.0772 0.0895 0.0772 0.0792 
  0.10 0.1072 0.0820 0.0952 0.0821 0.0841 
  0.30 0.1464 0.1117 0.1299 0.1117 0.1146 
  0.50 0.1551 0.1172 0.1361 0.1172 0.1202 
  0.70 0.1597 0.1186 0.1377 0.1186 0.1216 

20 0.10 0.01 0.0094 0.0086 0.0092 0.0086 0.0088 
  0.03 0.0277 0.0248 0.0264 0.0248 0.0254 
  0.05 0.0433 0.0382 0.0409 0.0382 0.0392 
  0.07 0.0555 0.0487 0.0521 0.0487 0.0499 
  0.09 0.0647 0.0567 0.0606 0.0567 0.0581 
  0.10 0.0685 0.0600 0.0642 0.0600 0.0615 
  0.30 0.0926 0.0817 0.0875 0.0817 0.0838 
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  0.50 0.0956 0.0846 0.0905 0.0846 0.0867 
  0.70 0.0968 0.0854 0.0914 0.0854 0.0875 

50 0.10 0.01 0.0057 0.0055 0.0056 0.0055 0.0056 
  0.03 0.0165 0.0158 0.0162 0.0158 0.0162 
  0.05 0.0258 0.0245 0.0252 0.0245 0.0252 
  0.07 0.0331 0.0314 0.0322 0.0314 0.0322 
  0.09 0.0386 0.0366 0.0375 0.0366 0.0375 
  0.10 0.0408 0.0387 0.0397 0.0387 0.0397 
  0.30 0.0546 0.0521 0.0535 0.0521 0.0535 
  0.50 0.0563 0.0539 0.0553 0.0539 0.0553 
  0.70 0.0571 0.0546 0.0560 0.0546 0.0560 

100 0.10 0.01 0.0040 0.0039 0.0039 0.0039 0.0040 
  0.03 0.0115 0.0112 0.0114 0.0112 0.0115 
  0.05 0.0179 0.0174 0.0177 0.0174 0.0179 
  0.07 0.0229 0.0223 0.0226 0.0223 0.0229 
  0.09 0.0268 0.0260 0.0264 0.0260 0.0267 
  0.10 0.0283 0.0275 0.0279 0.0275 0.0282 
  0.30 0.0379 0.0370 0.0375 0.0370 0.0380 
  0.50 0.0392 0.0384 0.0388 0.0384 0.0393 
  0.70 0.0395 0.0387 0.0392 0.0387 0.0397 

200 0.10 0.01 0.0028 0.0028 0.0028 0.0028 0.0028 
  0.03 0.0080 0.0079 0.0080 0.0079 0.0082 
  0.05 0.0125 0.0124 0.0124 0.0124 0.0127 
  0.07 0.0161 0.0158 0.0159 0.0158 0.0162 
  0.09 0.0187 0.0185 0.0186 0.0185 0.0189 
  0.10 0.0198 0.0196 0.0197 0.0196 0.0201 
  0.30 0.0266 0.0263 0.0264 0.0263 0.0269 
  0.50 0.0274 0.0271 0.0273 0.0271 0.0278 
  0.70 0.0277 0.0274 0.0276 0.0274 0.0281 

Table 3. The coverage probabilities of 95% two-sided confidence intervals 
for the common inverse mean of normal distributions: 6 sample cases 

n 1σ  4σ  GCICI  LSCI  1AMCI  2AMCI  3AMCI  

10 0.10 0.01 0.9686 0.8872 0.9324 0.8872 0.8946 
  0.03 0.9658 0.8928 0.9292 0.8928 0.8996 
  0.05 0.9664 0.8782 0.9248 0.8782 0.8878 
  0.07 0.9630 0.8850 0.9270 0.8850 0.8926 
  0.09 0.9616 0.8744 0.9234 0.8744 0.8812 
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  0.10 0.9638 0.8778 0.9290 0.8778 0.8864 
  0.30 0.9506 0.8776 0.9274 0.8776 0.8866 
  0.50 0.9484 0.8788 0.9266 0.8788 0.8858 
  0.70 0.9478 0.8706 0.9260 0.8708 0.8804 

20 0.10 0.01 0.9572 0.9164 0.9368 0.9164 0.9242 
  0.03 0.9582 0.9222 0.9386 0.9222 0.9302 
  0.05 0.9602 0.9284 0.9454 0.9284 0.9350 
  0.07 0.9576 0.9186 0.9376 0.9186 0.9258 
  0.09 0.9554 0.9158 0.9364 0.9158 0.9228 
  0.10 0.9558 0.9160 0.9360 0.9160 0.9230 
  0.30 0.9530 0.9146 0.9380 0.9146 0.9224 
  0.50 0.9506 0.9214 0.9404 0.9214 0.9276 
  0.70 0.9518 0.9206 0.9400 0.9206 0.9266 

50 0.10 0.01 0.9532 0.9376 0.9462 0.9376 0.9466 
  0.03 0.9548 0.9434 0.9486 0.9434 0.9486 
  0.05 0.9514 0.9364 0.9420 0.9364 0.9424 
  0.07 0.9520 0.9386 0.9464 0.9386 0.9448 
  0.09 0.9576 0.9446 0.9522 0.9446 0.9504 
  0.10 0.9486 0.9342 0.9428 0.9342 0.9386 
  0.30 0.9496 0.9394 0.9450 0.9394 0.9438 
  0.50 0.9506 0.9396 0.9474 0.9396 0.9450 
  0.70 0.9458 0.9348 0.9434 0.9348 0.9426 

100 0.10 0.01 0.9508 0.9448 0.9472 0.9448 0.9502 
  0.03 0.9536 0.9462 0.9490 0.9462 0.9524 
  0.05 0.9514 0.9416 0.9464 0.9416 0.9492 
  0.07 0.9512 0.9458 0.9478 0.9458 0.9516 
  0.09 0.9540 0.9480 0.9510 0.9480 0.9536 
  0.10 0.9576 0.9506 0.9534 0.9506 0.9552 
  0.30 0.9512 0.9462 0.9492 0.9462 0.9510 
  0.50 0.9498 0.9456 0.9478 0.9456 0.9500 
  0.70 0.9488 0.9444 0.9468 0.9444 0.9482 

200 0.10 0.01 0.9520 0.9470 0.9492 0.9470 0.9546 
  0.03 0.9506 0.9472 0.9480 0.9472 0.9524 
  0.05 0.9500 0.9458 0.9480 0.9458 0.9524 
  0.07 0.9510 0.9464 0.9472 0.9464 0.9530 
  0.09 0.9476 0.9456 0.9474 0.9456 0.9514 
  0.10 0.9502 0.9462 0.9484 0.9462 0.9526 
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  0.30 0.9528 0.9528 0.9558 0.9528 0.9580 
  0.50 0.9518 0.9484 0.9500 0.9484 0.9546 

  0.70 0.9492 0.9474 0.9486 0.9474 0.9522 

Table 4. The average lengths of 95% two-sided confidence intervals for the 
common inverse mean of normal distributions: 6 sample cases 

n 1σ  4σ  GCICI  LSCI  1AMCI  2AMCI  3AMCI  

10 0.10 0.01 0.0088 0.0065 0.0075 0.0065 0.0067 
  0.03 0.0257 0.0187 0.0216 0.0187 0.0192 
  0.05 0.0401 0.0290 0.0335 0.0290 0.0298 
  0.07 0.0515 0.0369 0.0427 0.0369 0.0379 
  0.09 0.0602 0.0430 0.0498 0.0430 0.0441 
  0.10 0.0637 0.0456 0.0528 0.0456 0.0467 
  0.30 0.0871 0.0619 0.0718 0.0619 0.0635 
  0.50 0.0911 0.0639 0.0741 0.0639 0.0655 
  0.70 0.0937 0.0644 0.0746 0.0644 0.0660 

20 0.10 0.01 0.0056 0.0048 0.0052 0.0048 0.0050 
  0.03 0.0162 0.0139 0.0149 0.0139 0.0143 
  0.05 0.0253 0.0216 0.0231 0.0216 0.0222 
  0.07 0.0325 0.0276 0.0296 0.0276 0.0283 
  0.09 0.0380 0.0322 0.0345 0.0322 0.0331 
  0.10 0.0403 0.0341 0.0365 0.0341 0.0350 
  0.30 0.0542 0.0460 0.0492 0.0460 0.0472 
  0.50 0.0561 0.0475 0.0508 0.0475 0.0487 
  0.70 0.0569 0.0480 0.0514 0.0480 0.0493 

50 0.10 0.01 0.0033 0.0031 0.0032 0.0031 0.0032 
  0.03 0.0096 0.0091 0.0093 0.0091 0.0093 
  0.05 0.0150 0.0141 0.0144 0.0141 0.0144 
  0.07 0.0192 0.0180 0.0185 0.0180 0.0185 
  0.09 0.0225 0.0210 0.0216 0.0210 0.0216 
  0.10 0.0238 0.0222 0.0228 0.0222 0.0228 
  0.30 0.0319 0.0298 0.0306 0.0298 0.0306 
  0.50 0.0330 0.0309 0.0317 0.0309 0.0317 
  0.70 0.0333 0.0312 0.0320 0.0312 0.0320 

100 0.10 0.01 0.0023 0.0022 0.0023 0.0022 0.0023 
  0.03 0.0067 0.0065 0.0065 0.0065 0.0066 
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  0.05 0.0104 0.0100 0.0102 0.0100 0.0103 
  0.07 0.0133 0.0129 0.0130 0.0129 0.0132 
  0.09 0.0155 0.0150 0.0152 0.0150 0.0154 
  0.10 0.0164 0.0159 0.0161 0.0159 0.0163 
  0.30 0.0220 0.0213 0.0216 0.0213 0.0219 
  0.50 0.0227 0.0220 0.0223 0.0220 0.0226 
  0.70 0.0230 0.0222 0.0225 0.0222 0.0228 

200 0.10 0.01 0.0016 0.0016 0.0016 0.0016 0.0016 
  0.03 0.0046 0.0046 0.0046 0.0046 0.0047 
  0.05 0.0072 0.0071 0.0072 0.0071 0.0073 
  0.07 0.0093 0.0091 0.0092 0.0091 0.0094 
  0.09 0.0108 0.0107 0.0107 0.0107 0.0109 
  0.10 0.0115 0.0113 0.0113 0.0113 0.0115 
  0.30 0.0154 0.0151 0.0152 0.0151 0.0155 
  0.50 0.0159 0.0156 0.0157 0.0156 0.0160 
  0.70 0.0160 0.0158 0.0159 0.0158 0.0162 

4. An Empirical Application 

An example, given in Walpole et al. [16], was exhibited to illustrate the 
generalized confidence interval approach, the large sample approach and      
the adjusted MOVER approach. Four different levels of financial leverages 
given in Table 5 were used to estimate the inverse mean in rates of return on 
equity. The Shapiro-Wilk normality tests indicated that the four data sets 
come from normal populations with p-values 0.4770, 0.7172, 0.6736 and 
0.4477. The sample means (sample variances) are 4.3833 (4.8257), 5.1000 
(3.8840), 8.4167 (5.9937), and 8.3333 (5.4707) for control level, low level, 
medium level, and high level, respectively. The sample inverse means are 
0.2281, 0.1961, 0.1188, and 0.1200 for control level, low level, medium 
level, and high level, respectively. The 95% two-sided confidence intervals 
for the common inverse mean were evaluated. The confidence interval       
based on the generalized confidence interval approach, ,GCICI  was (0.0948, 

0.1631) with the length of interval 0.0683. The confidence interval based on 
the large sample approach, ,LSCI  was (0.1124, 0.1485) with the length         

of interval 0.0361. Finally, the confidence intervals based on the adjusted 
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MOVER approach, 1AMCI  was (0.1094, 0.1619) with the length of interval 

0.0525, 2AMCI  was (0.1124, 0.1485) with the length of interval 0.0361,      

and 3AMCI  was (0.1119, 0.1489) with the length of interval 0.0370. These 

results support the simulation results in the previous section. 

Table 5. Rates of return on equity for 24 randomly selected firms 

Financial leverage 

Control Low  Medium High 

2.1 6.2 9.6 10.3 

5.6 4.0 8.0 6.9 

3.0 8.4 5.5 7.8 

7.8 2.8 12.6 5.8 

5.2 4.2 7.0 7.2 

2.6 5.0 7.8 12.0 

5. Discussion and Conclusions 

The study was conducted to investigate the performance of      
confidence intervals based on the generalized confidence interval approach 
( ),GCICI  the large sample approach ( ),LSCI  and adjusted MOVER 

approach ( ).,, 321 AMAMAM CICICI  The simulation studies showed that      

the generalized confidence intervals provide the best coverage probabilities 
for all cases. The large sample confidence intervals and adjusted MOVER 
confidence intervals have coverage probabilities close to nominal confidence 
level of 0.95 when the sample size is large, i.e., .100≥n  All confidence 
intervals perform similarly for large sample size in terms of maintaining        
the coverage probability and the length of all confidence intervals by 
adjusted MOVER approach is slightly narrower than that of the generalized 
confidence interval approach. Hence, for sample sizes, i.e., 10=n  and 20, 
we chose the generalized confidence interval approach for the confidence 
interval for the common inverse mean based on several independent normal 
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samples. However, the adjusted MOVER approach should be chosen to 
estimate the common inverse mean of several normal populations for large 
sample sizes because it is based on the formulas (24)-(26) and is more easy to 
use than that of the generalized confidence interval approach which is based 
on a computational approach. 
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