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Abstract

The objective of this paper is to construct confidence intervals for
the common inverse mean of several normal populations based on
adjusted method of variance estimates recovery approach (adjusted
MOVER approach) and to compare with generalized confidence
interval approach and large sample approach. The coverage
probability and average length of the confidence intervals are
evaluated by a Monte Carlo simulation. The results showed that the
generalized confidence interval approach provides the best confidence
interval, but the coverage probabilities of the adjusted MOVER
confidence intervals are close to the nominal confidence level of 0.95
when the sample size is large. Finally, the proposed approaches are
illustrated by an example.
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1. Introduction

The inverse mean of normal distribution is defined as the ratio of one to
the population mean. It has been statistical estimation in many fields such
as experimental nuclear physics, econometrics, and biological sciences. In
experimental nuclear physics, Lamanna et al. [6] studied charged particle
momentum p = 1/p, where p is the track curvature of a particle. Zaman [21]

estimated the inverse mean in the one-dimensional special case of the single
period control problem. Zaman [22] discussed an estimate of the inverse
mean without moments. In econometrics, Zellner [23] studied the inverse
of common mean of structural coefficient of linear structural econometric
models. Voinov [15] presented the unbiased estimators of power for the
inverse of mean. Niwitpong and Wongkhao [7] presented three new
confidence intervals for the inverse mean of normal distribution. Niwitpong
and Wongkhao [8] constructed three new confidence intervals for the
difference between inverse means of normal distributions.

In many practical situations, there are common practices to collect
different settings. Several researchers have been studied confidence intervals
for the common parameter, for example, Krishnamoorthy and Lu [5]
presented procedures for hypothesis testing and interval estimation of
the common mean of several normal populations. Tian [12] dealt with the
problem of making inference about the common populations with a common
coefficient of variation. Tian and Wu [14] proposed the confidence interval
estimation and hypothesis testing of the common mean of several log-normal
populations using the concept of generalized variable. Ye et al. [20]
presented procedures for hypothesis testing and interval estimation for the
common mean of several inverse Gaussian populations. Thangjai et al. [9]
proposed the generalized confidence interval approach and the large sample
approach for confidence interval estimation about the common inverse mean
based on several independent normal samples. Thangjai and Niwitpong [11]
proposed new confidence intervals for the weighted coefficients of variation
of two-parameter exponential distributions.
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Therefore, confidence interval estimation for the common inverse mean
based on several independent normal samples is of practical and theoretical
importance. The goal of this paper is to extend the recent work of Thangjai et
al. [9] to construct the confidence intervals for the common inverse mean
of normal distributions. We propose a novel approach, the adjusted method
of variance estimates recovery approach (adjusted MOVER approach), for
confidence interval estimation for the common inverse mean of normal
distributions. Then there are the concepts of generalized confidence interval,
large sample confidence interval, and adjusted MOVER confidence interval.
The first confidence interval was introduced by Weerahandi [17]. Many
researchers have successfully used the generalized confidence interval
approach to construct confidence interval for common parameter, i.e., see
Krishnamoorthy and Lu [5], Tian [12], Tian and Wu [14], and Ye et al. [20].
Moreover, the concept of the generalized confidence interval has been
applied to variety of practical settings where standard solutions do not exist
for confidence intervals, i.e., see Weerahandi [18], Weerahadi and Berger
[19], Krishnamoorthy and Lu [5], Tian and Cappelleri [13], Tian [12], Tian
and Wu [14], and Thangjai et al. [9]. The second confidence interval was
constructed based on the large sample approach which was constructed based
on central limit theorem (CLT). The paper by Tian and Wu [14] presented
the confidence interval for the common mean of several log-normal
populations based on generalized confidence interval approach and compared
it with a large sample approach. Thangjai et al. [9] proposed the confidence
interval for the common inverse mean of several normal populations
based on generalized confidence interval approach and compared with large
sample approach. The third confidence interval was motivated based on the
method of variance estimates recovery approach (MOVER approach), was
introduced by Zou and Donner [24] and Zou et al. [25], is called adjusted
MOVER confidence interval. The MOVER approach was inspired by the
score interval approach which proposed by Bartlett [1]. Many researchers
have successfully used the MOVER approach for constructing the confidence
interval for parameter; for example, see Zou and Donner [24], Zou et al.
[25], and Donner and Zou [3]. Moreover, several researchers have used
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the concept of the adjusted MOVER approach to construct the confidence
interval for common parameters; for example, see Thangjai et al. [10] and
Thangjai and Niwitpong [11].

This paper is organized as follows: In Section 2, the proposed approach
and existing approaches are described. In Section 3, simulation results
are presented to evaluate the coverage probabilities and average lengths of
the proposed approach and existing approaches. Section 4 illustrates the
proposed approach and existing approaches with real example. Finally,
Section 5 summarizes this paper.

2. Confidence Intervals for the Common Inverse Mean
of Several Normal Populations

Recall that a random variable X is distributed normally with mean p and

variance o2. The inverse mean of X is defined as 1/p, where p = 0.

Let X;, 1=2, ..., k be random samples from normal distributions and

let 6; =1/p; be the ith inverse mean population.

Let Xij, i=12 .., ki j=12,...,n be random samples from the

Xi’ |e, XI = (Xil’ Xi2’ ey Xini)'

For the ith sample, let X; and X, be sample mean and observed sample

mean of X, respectively. And let S* and s? be sample variance and

j ’

observed sample variance of X, respectively.

ij’

The maximum likelihood estimator and unbiased estimator of parameter
0; are defined by

RN

6 = — - i—2 .k
Wi

XTi )

Theorem 1. Let X =(Xy, X,, ..., X,) be a random sample from the
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normal population with mean p and variance o2. Let 0 be the unbiased

estimator of 0. The variance of é is

A 2
Var(0) = :?. D

Proof. Let Xy, X5, ..., X,, be an independent and identically distributed
random variables with mean p and variance 2. Then the estimators o and

62 have the following normal distribution in large samples due to the central
limit theorem:

In(ii—p) ~ N(0, %) and Vn(5? - 6%) ~ N(0, 26%),

n n
where (i = %Z X; and &2 = %Z(Xi - R)>.
i=1 i=1

Denote 0 = (fi, 62)/ and 0 = (u, 02)'. Then
Vn(6-6) ~ N(0, Vg),

2
where Vg = [c; 0

4l Casella and Berger [2].
20

The inverse mean estimator 1/ﬁ can be written as function of é, ie.,

f(é). The delta method is applied to derive asymptotic distribution,
Jn(f(6) - £(6)) ~ N(0, Vy),

where V¢ = %ee)ve 8f6_((9(,9)

The function of 0 is denoted by

f(e):%.
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The partial derivative of f(8) with respect to pand o are, respectively,

_iz and 6f—(2) =0.
Op u oo

Thus

ot (0) _ [-1/n? and Vj = o 0]
0 0 0o 25*

The asymptotic distribution of estimator /{1 is

\/ﬁ(% —a ~ N(0, Vjig),

. 2/ 4 2
Var(f) = Var(%) = Var(%) -9 /u -9

Hence, Theorem 1 is proved.

2.1. Generalized confidence interval approach (GCI approach)
Definition. Let X =(Xj, X5, ..., X,) be a random sample from a

distribution F(x|8), where x = (X, X, ..., X,) be an observed sample, & =

(0, v) is a vector of unknown parameters, 0 is a parameter of interest, v is a

vector of nuisance parameters. Let R = R(X; x, 8) be a function of X, x and

3. The random quantity R is called a generalized pivotal quantity if it has the
following two properties; see Weerahandi [17]:

(i) The distribution of R is free of all unknown parameters.

(ii) The observed value of R, X = X, is the parameter of interest 6.
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Let R(a) be the 100(a)th percentile of R. Then R(a) isa 100(1 — o)%

lower bound of one-sided generalized confidence interval for 6 and
(R(e/2), R(L— 0,/2)) is the 100(1 — o)% two-sided generalized confidence

interval for 0.

In the following, the above definition is used to develop a generalized
pivotal quantity for the common inverse mean of several normal populations.

Consider k independent normal populations with a common inverse mean
0. Let Xj;, Xja, ... Xj, be a random sample from the ith normal population

as follows:
2
Xij ~ N(uj, of)-

The inverse mean is defined by

9,=i; =12 ..,k
Hi
It is well known that
(n —1)87 2
=V Xy -1

where V; is chi-square distribution with degrees of freedom n; —1. Then

52 = (N ~1)8¢
1 Vi .

The generalized pivotal quantity for Giz is defined by

2 2
(i =Ds7 _ (n —D)s;
v, 2
! Xni—l

Rciz =

)

@)

According to Niwitpong and Wongkhao [7], the generalized pivotal
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quantity for p; is defined as

R —yx _ ZiSi

Hi I_Fi'

where Z; and U; denote standard normal distribution and chi-square

(4)

distribution with degrees of freedom n; —1, respectively.

The generalized pivotal quantity for 0; is defined by
Ry = =—. (®)

Following Ye et al. [20], the generalized pivotal quantity for the common
inverse mean 0 is a weighted average of the generalized pivotal quantity Ro,

based on k individual samples given by

k

Z R\/ar(e ) ,Z:;‘ I:R/::(éi) ' ©
where (from equation (1))
R
Rvar(e) = <Rp1. o ()

Therefore, the 100(1- )% two-sided confidence interval for the

common inverse mean © based on the generalized confidence interval
approach is

Clger = (Lacrs Uger) = (Rog(@/2), Ry(1-0/2)), (8)

where Ry(a/2) and Rg(1— o/2) denote the 100(c/2)th and 100(1 — /2)th

percentiles of Ry, respectively.
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The following algorithm is used to construct the generalized confidence
interval:

Algorithm 1
For a given X; and si2, =12 ..k:
For g =1tom:

Generate V; from chi-square distribution with degrees of

freedom n; —1.

Compute R , from equation (3).
Gi

Generate Z; from standard normal distribution.

Generate U; from chi-square distribution with degrees

of freedom n; —1.

Compute R, from equation (4).

Compute Ry, from equation (5).

Compute RVar(é-) from equation (7).
1

Compute R, from equation (6).
(end g loop)
Compute the 100(a/2)th percentile of R, defined by Ry(ay/2).
Compute the 100(1 — «/2)th percentile of R, defined by Ry(1— a/2).
2.2. Large sample approach

According to Graybill and Deal [4], the large sample estimate of inverse
mean is a pooled estimated unbiased estimator of the inverse mean defined as
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(D JSLIY) S ®
S Var(0;)/ 45 Var(6;)’

where §; = 1/X; and Var(®;) is an estimate of Var(6;) in equation (1) with

w; and o? replaced by X, and s?, respectively.

For large sample size, the distribution of 0 is approximately normal
distribution. Then the quantile of the normal distribution is used to construct
confidence interval for 6. Therefore, the 100(1 — a.)% two-sided confidence

interval for the common inverse mean 6 based on the large sample approach
is

Clis =(Lis, Urs)

k k
= [é - zl_q/z\/ Zl//ar(éi ), 0+ zl_q/z\/ Zl/Var(éi )J, (10)
i=1 i=1

where z,_,,, denotes the 1-a/2th quantile of the standard normal

distribution.

2.3. Adjusted method of variance estimates recovery approach (adjusted
MOVER approach)

In two parameters case, Zou and Donner [24], and Zou et al. [25]
introduced the method of variance estimates recovery approach (MOVER
approach). Let 6; and 6, be the parameters of interest and let L and U be the

lower limit and upper limit of 100(1 — o)% two-sided confidence interval for
the parameter 6, + 6,. Using the central limit theorem and the assumption of

independence between the point estimates él and éz, the lower limit L is
defined as

L = By + 0, — 20,/ VAr(6y) + Var(6,), (11)

where Zy/2 is the upper o,/2 th percentile of the standard normal distribution.
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Fori =1 2, let (I;, u;) bea 100(1 — a)% two-sided confidence interval
for ;. The lower limit L must be closer to I; +1, than to él + éz. The

variance estimate for éi at 0; =1 is

A 2
var(y) = Gt
Z0(/2

Substituting back into equation (11) as follows:

L = by + 0, ~(By —1)° + (0 - 1) (12

and similarly
U= é1+é2 +\/(u1—é1)2 + (up —éz)z. (13)
Let 6, 65, ..., O be the parameters of interest. Then we determine the

confidence interval for the common inverse mean based on Graybill and Deal
[4] defined by

NSt / S
0= - —.
;Var(ei) ;Var(ei)
The MOVER approach is motivated with confidence intervals for
01, 0o, ..., 0. Let (I, up), (I, Us), ..., (Iy, uy ) be the confidence intervals
for 04, 0, ..., Oy, respectively, and let L and U be the lower limit and
upper limit of 100(1 — a.)% two-sided confidence interval for the parameter
01 + 0, +--- + 0. Using the central limit theorem and the assumption of
independence between the point estimates él, éz, ék, the lower limit L
is defined as

L =8+ + O — 24/2yVAr(8y) + -~ + VAr(6y),

where Zo/2 is the upper o/2 th percentile of the standard normal distribution.
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Fori=12, ...,k let (I, u;) bea 1001 - )% two-sided confidence
interval for 6;. The lower limit L must be closer to |, + 1, +... + I, than to

él + éz +...+ ék. The lower limit L for 6, + 0, + ...+ 0, is

L=é1+---+ék—\/(él—ll)2+---+(ék—Ik)2 (14)

and similarly, the upper limit

U :él+---+ék +\/(u1—él)2+-~-+(uk—(§k)2. (15)

Using the concepts of large sample approach and MOVER approach
defined in equations (9)-(15), it is called the adjusted MOVER approach.
According to Graybill and Deal [4], the common inverse mean 6 is weighted

average of the inverse mean éi based on k individual samples defined as

ézzk: éh Zk: L (16)
“~iVar(6)/ < Var(6;)

where the variance estimate for éi at 0; =I; and 6; =u; is the average

variance between these two variances and given by

R A 12 A2
Var(ei)_%[(e. 2 )", (U 29.) ] (17)
Z(x/2 Zon/2
Therefore, the lower limit L and upper limit U for the common inverse
mean 0 are
k 72
- 2
L=6- Zloc/Z\// AOL—/ (18)
izzll (05 — 1)
and
k 72
A 2
U=0+ zla/z\/ o2 (19)
i=1 (ui - ei)2
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Therefore, the 100(1- )% two-sided confidence interval for the

common inverse mean 6 based on adjusted MOVER approach is

(Lam>Uam)

= _Zl (1/2\/7/ (e —| )2’ 6 - 0{/2\// (Ul 9 )2 :

(20)

Cl am

According to Niwitpong and Wongkhao [7], three confidence intervals
for inverse mean 1/ are defined by

R ] i
(Il"ul')_(disiﬂ/n_ifi'—diSi+Jn_i>Tij’ (21)

where d; is an upper 1— a,/2th quantile of the t-distribution with degrees of

freedom n; -1,

2 2
(I, UZi):[X%_Cni_l/z(x%j S;, xijtcn VZ[XJ S-], (22)

where c is an upper 1 — a,/2th quantile of the standard normal distribution,

(|3i’u3i):[f—b —1/2()(')25. % VZ(XJZS-J, (23)

where b; is an upper 1 - o/2th quantile of the t-distribution with degrees of

freedom n; — 1.

Therefore, the 100(1- )% two-sided confidence intervals for the

common inverse mean 0 based on adjusted MOVER approach are
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Clami = (Lam1, U am1)

i _2”/2\/ Z(e |1.>2'e”“‘/2\// (ul.

(24)
Clam2 = (Lam2: Uam2)
= - o 1 9 o
- /2\/7/ (9 _|2| 2 T /2\// (U2|
(25)
and
Clams = (Lamsz: Uams)
= - o ) 9 o
- /2\/7/ (9 _|3| 2 Ta /2\/7/ (u3|
(26)

3. Simulation Studies

In this section, simulation studies are performed to evaluate the coverage
probabilities and the average lengths of each confidence interval via Monte
Carlo simulation. The confidence interval is satisfactory when the coverage
probability is greater than or close to the nominal confidence level 1 - o and
the shortest average length.

The following algorithm is used to estimate the coverage probability and
average length:
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Algorithm 2
Foragiven (ng, ny, ..., ny), (1, Mo, ..., By ), (07, G2, ..., o)) and 6:

For h=1 to M:

Generate x;; from N (b, ciz); i=12 ...,k j=12..,n.

Compute X; and s”.

Use Algorithm 1 to construct generalized confidence interval
(Leci(hy Ysci(h)):

Use equation (10) to construct large sample confidence interval
(LLs(hys ULs(ny)-

Use equation (24) to construct adjusted MOVER confidence
interval (LAM 1(h) UAM 1(h))'

Use equation (25) to construct adjusted MOVER confidence
interval (LAM 2(h) UAM Z(h))'

Use equation (26) to construct adjusted MOVER confidence
interval (LAM g(h), UAM S(h))

If (Liny <0 <Up)), set ppy =1 elseset py) = 0.
Compute U(h) - L(h)

(end h loop)

Compute mean of py,) defined by the coverage probability.
Compute mean of Uy — Lin defined by the average length.

In this simulation, there are five confidence intervals, i.e., the generalized
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confidence interval is defined as Clg¢,, the large sample confidence interval
is defined as Cl g, and three adjusted MOVER confidence intervals are
defined as Cl ap1, Clapm2 and Cl »y 5. Each confidence interval is evaluated
at the nominal confidence level 1— o = 0.95. The number of populations
k is set to be 2 and 6. The sample sizes within each population
M =ny, =--=n =n=10, 20, 50, 100 and 200. The population mean of
normal data within each population p; =p, =---=p, =pn =1, and the
population standard deviation oy = 6, =+ = o)/ = 0.10 and o(y/2)41 =
O(k/2)+2 =+ = ok = 0.01, 0.03, 0.05, 0.07, 0.09, 0.10, 0.30, 0.50 and

0.70. For each parameter and sample size setting, 5000 random samples are
generated. For the generalized confidence interval approach, for each of the
5000 random samples, 2500 R, ’s are obtained by Algorithm 1.

For 2 sample cases, the data are generated from normal distribution
with the population mean p; = n, =1 and the population standard deviation

o; = 0.10, o, = 0.0, 0.03, 0.05, 0.07, 0.09, 0.10, 0.30, 0.50 and 0.70. The

coverage probabilities and average lengths are presented in Tables 1 and 2.
The results show that the coverage probabilities of generalized confidence
interval are greater than the nominal confidence level of 0.95 for all cases.
The coverage probabilities of large sample confidence interval and adjusted
MOVER confidence interval are close to nominal confidence level of 0.95
when sample size is large, i.e., n > 50. The average lengths of large sample
confidence interval and adjusted MOVER confidence interval are a bit
shorter than that of generalized confidence interval.

For 6 sample cases, the data are generated from normal distribution with
the population mean py =pup =---=pg =1 and the population standard

deviation 0] =0 =03 = 010, G4 = O =0g = 001, 003, 005, 007,

0.09, 0.10, 0.30, 0.50 and 0.70. The coverage probabilities and average
lengths are presented in Tables 3 and 4. The coverage probabilities of
generalized confidence interval close to the nominal confidence level of 0.95
in all cases for every sample.
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Overall, the generalized confidence intervals provide the best coverage
probabilities for all cases. The large sample confidence intervals and adjusted
MOVER confidence intervals have coverage probabilities close to nominal
confidence level of 0.95 when the sample size is large. The average lengths
of large sample confidence intervals and adjusted MOVER confidence
intervals are a bit shorter than that of generalized confidence intervals.

Table 1. The coverage probabilities of 95% two-sided confidence intervals
for the common inverse mean of normal distributions: 2 sample cases

n o1 Sp) Clgcy Clis Clami Clamz  Clams
10 0.10 0.01 0.9594 0.9224 0.9514 0.9224 0.9276
0.03 0.9604 0.9112 0.9458 0.9112 0.9198
0.05 0.9614 0.9048 0.9404 0.9048 0.9100
0.07 0.9648 0.9000 0.9402 0.9000 0.9086
0.09 0.9646 0.8890 0.9366 0.8890 0.8988
0.10 0.9670 0.9006 0.9396 0.9006 0.9092
0.30 0.9622 0.9020 0.9396 0.9020 0.9096
0.50 0.9642 0.9068 0.9490 0.9068 0.9130
0.70 0.9602 0.9126 0.9494 0.9126 0.9184

20 0.10 0.01 0.9542 0.9342 0.9490 0.9342 0.9384
0.03 0.9500 0.9272 0.9422 0.9272 0.9334
0.05 0.9572 0.9262 0.9420 0.9262 0.9330
0.07 0.9590 0.9308 0.9448 0.9308 0.9366
0.09 0.9604 0.9324 0.9464 0.9324 0.9376
0.10 0.9594 0.9268 0.9450 0.9268 0.9334
0.30 0.9572 0.9334 0.9490 0.9334 0.9384
0.50 0.9580 0.9294 0.9490 0.9294 0.9364
0.70 0.9570 0.9324 0.9492 0.9326 0.9396

50 0.10 0.01 0.9516 0.9432 0.9506 0.9432 0.9504
0.03 0.9536 0.9462 0.9528 0.9462 0.9520
0.05 0.9552 0.9446 0.9506 0.9446 0.9498
0.07 0.9532 0.9402 0.9462 0.9402 0.9458
0.09 0.9584 0.9464 0.9528 0.9464 0.9520
0.10 0.9504 0.9402 0.9468 0.9402 0.9442
0.30 0.9484 0.9386 0.9466 0.9386 0.9456
0.50 0.9482 0.9402 0.9452 0.9402 0.9448
0.70 0.9546 0.9470 0.9502 0.9470 0.9510
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100 0.10 0.01 0.9526 0.9500 0.9528 0.9500 0.9552
0.03 0.9490 0.9428 0.9454 0.9428 0.9490
0.05 0.9518 0.9466 0.9496 0.9468 0.9520
0.07 0.9576 0.9512 0.9542 0.9512 0.9582
0.09 0.9498 0.9440 0.9476 0.9440 0.9500
0.10 0.9538 0.9464 0.9496 0.9464 0.9528
0.30 0.9544 0.9486 0.9510 0.9486 0.9540
0.50 0.9498 0.9452 0.9504 0.9452 0.9508
0.70 0.9482 0.9436 0.9478 0.9436 0.9494

200 0.10 0.01 0.9498 0.9472 0.9488 0.9472 0.9536
0.03 0.9466 0.9458 0.9470 0.9460 0.9514
0.05 0.9542 0.9520 0.9542 0.9520 0.9578
0.07 0.9502 0.9496 0.9490 0.9496 0.9532
0.09 0.9540 0.9508 0.9528 0.9508 0.9582
0.10 0.9488 0.9458 0.9482 0.9458 0.9528
0.30 0.9520 0.9496 0.9506 0.9496 0.9552
0.50 0.9506 0.9498 0.9500 0.9498 0.9558
0.70 0.9512 0.9478 0.9506 0.9478 0.9540

Table 2. The average lengths of 95% two-sided confidence intervals for the
common inverse mean of normal distributions: 2 sample cases

n o1 o2 Clgal Clis Clavi  Clamz  Clams

10 0.10 0.01 0.0148 0.0120 0.0139 0.0120 0.0123
0.03 0.0439 0.0342 0.0395 0.0342 0.0351

0.05 0.0679 0.0522 0.0603 0.0522 0.0535

0.07 0.0871 0.0666 0.0771 0.0666 0.0683

0.09 0.1011 0.0772 0.0895 0.0772 0.0792

0.10 0.1072 0.0820 0.0952 0.0821 0.0841

0.30 0.1464 0.1117 0.1299 0.1117 0.1146

0.50 0.1551 0.1172 0.1361 0.1172 0.1202

0.70 0.1597 0.1186 0.1377 0.1186 0.1216

20 0.10 0.01 0.0094 0.0086 0.0092 0.0086 0.0088
0.03 0.0277 0.0248 0.0264 0.0248 0.0254

0.05 0.0433 0.0382 0.0409 0.0382 0.0392

0.07 0.0555 0.0487 0.0521 0.0487 0.0499

0.09 0.0647 0.0567 0.0606 0.0567 0.0581

0.10 0.0685 0.0600 0.0642 0.0600 0.0615

0.30 0.0926 0.0817 0.0875 0.0817 0.0838
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0.50 0.0956  0.0846  0.0905  0.0846  0.0867
0.70 0.0968  0.0854  0.0914  0.0854  0.0875
50 0.10 0.01 0.0057  0.0055  0.0056  0.0055  0.0056
0.03 0.0165  0.0158 00162  0.0158  0.0162
0.05 0.0258  0.0245 00252  0.0245  0.0252
0.07 0.0331  0.0314 00322 00314 0.0322
0.09 0.0386  0.0366  0.0375  0.0366  0.0375
0.10 0.0408  0.0387  0.0397  0.0387  0.0397
0.30 0.0546  0.0521  0.0535  0.0521  0.0535
0.50 0.0563  0.0539  0.0553  0.0539  0.0553
0.70 0.0571  0.0546  0.0560  0.0546  0.0560
100 0.10 0.01 0.0040  0.0039  0.0039  0.0039  0.0040
0.03 0.0115  0.0112  0.0114  0.0112 0.0115
0.05 0.0179  0.0174 00177 00174  0.0179
0.07 0.0229  0.0223 00226  0.0223  0.0229
0.09 0.0268  0.0260  0.0264  0.0260  0.0267
0.10 0.0283  0.0275 00279  0.0275  0.0282
0.30 0.0379  0.0370 00375  0.0370  0.0380
0.50 0.0392  0.0384  0.0388  0.0384  0.0393
0.70 0.0395  0.0387  0.0392  0.0387  0.0397
200 0.10 0.01 0.0028  0.0028  0.0028  0.0028  0.0028
0.03 0.0080  0.0079  0.0080  0.0079  0.0082
0.05 0.0125  0.0124 00124 00124  0.0127
0.07 0.0161  0.0158 00159  0.0158  0.0162
0.09 0.0187  0.0185  0.0186  0.0185  0.0189
0.10 0.0198  0.0196 00197  0.0196  0.0201
0.30 0.0266  0.0263  0.0264  0.0263  0.0269
0.50 0.0274  0.0271 00273  0.0271  0.0278
0.70 0.0277  0.0274  0.0276  0.0274  0.0281

Table 3. The coverage probabilities of 95% two-sided confidence intervals

for the common inverse mean of normal distributions: 6 sample cases

n o1 o4 Clge Clis Clami  Clamz  Claus
10 0.10 0.01 0.9686 0.8872 0.9324 0.8872 0.8946
0.03 0.9658 0.8928 0.9292 0.8928 0.8996
0.05 0.9664 0.8782 0.9248 0.8782 0.8878
0.07 0.9630 0.8850 0.9270 0.8850 0.8926
0.09 0.9616 0.8744 0.9234 0.8744 0.8812
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0.10 0.9638 0.8778 0.9290 0.8778 0.8864
0.30 0.9506 0.8776 0.9274 0.8776 0.8866
0.50 0.9484 0.8788 0.9266 0.8788 0.8858
0.70 0.9478 0.8706 0.9260 0.8708 0.8804

20 0.10 0.01 0.9572 0.9164 0.9368 0.9164 0.9242
0.03 0.9582 0.9222 0.9386 0.9222 0.9302
0.05 0.9602 0.9284 0.9454 0.9284  0.9350
0.07 0.9576 0.9186 0.9376 0.9186 0.9258
0.09 0.9554 0.9158 0.9364 0.9158 0.9228
0.10 0.9558 0.9160 0.9360 0.9160  0.9230
0.30 0.9530 0.9146 0.9380 0.9146 0.9224
0.50 0.9506 0.9214 0.9404 0.9214  0.9276
0.70 0.9518 0.9206 0.9400 0.9206 0.9266

50 0.10 0.01 0.9532 0.9376 0.9462 0.9376  0.9466
0.03 0.9548 0.9434 0.9486 0.9434  0.9486
0.05 0.9514 0.9364 0.9420 0.9364  0.9424
0.07 0.9520 0.9386 0.9464 0.9386  0.9448
0.09 0.9576 0.9446 0.9522 0.9446  0.9504
0.10 0.9486 0.9342 0.9428 0.9342  0.9386
0.30 0.9496 0.9394 0.9450 0.9394  0.9438
0.50 0.9506 0.9396 0.9474 0.9396  0.9450
0.70 0.9458 0.9348 0.9434 0.9348  0.9426

100 0.10 0.01 0.9508 0.9448 0.9472 0.9448 0.9502
0.03 0.9536 0.9462 0.9490 0.9462 0.9524
0.05 0.9514 0.9416 0.9464 0.9416 0.9492
0.07 0.9512 0.9458 0.9478 0.9458 0.9516
0.09 0.9540 0.9480 0.9510 0.9480  0.9536
0.10 0.9576 0.9506 0.9534 0.9506 0.9552
0.30 0.9512 0.9462 0.9492 0.9462 0.9510
0.50 0.9498 0.9456 0.9478 0.9456 0.9500
0.70 0.9488 0.9444 0.9468 0.9444  0.9482

200 0.10 0.01 0.9520 0.9470 0.9492 0.9470 0.9546
0.03 0.9506 0.9472 0.9480 0.9472 0.9524
0.05 0.9500 0.9458 0.9480 0.9458 0.9524
0.07 0.9510 0.9464 0.9472 0.9464  0.9530
0.09 0.9476 0.9456 0.9474 0.9456 0.9514
0.10 0.9502 0.9462 0.9484 0.9462 0.9526
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0.30
0.50
0.70

0.9528
0.9518
0.9492

0.9528
0.9484
0.9474

0.9558
0.9500
0.9486

0.9528
0.9484
0.9474

79

0.9580
0.9546
0.9522

Table 4. The average lengths of 95% two-sided confidence intervals for the
common inverse mean of normal distributions: 6 sample cases

n o1 o4 Clga Clis Clami Clamz  Clawms
10 0.10 0.01 0.0088 0.0065 0.0075 0.0065 0.0067
0.03 0.0257 0.0187 0.0216 0.0187 0.0192

0.05 0.0401 0.0290 0.0335 0.0290 0.0298

0.07 0.0515 0.0369 0.0427 0.0369 0.0379

0.09 0.0602 0.0430 0.0498 0.0430 0.0441

0.10 0.0637 0.0456 0.0528 0.0456 0.0467

0.30 0.0871 0.0619 0.0718 0.0619 0.0635

0.50 0.0911 0.0639 0.0741 0.0639 0.0655

0.70 0.0937 0.0644 0.0746 0.0644 0.0660

20 0.10 0.01 0.0056 0.0048 0.0052 0.0048 0.0050
0.03 0.0162 0.0139 0.0149 0.0139 0.0143

0.05 0.0253 0.0216 0.0231 0.0216 0.0222

0.07 0.0325 0.0276 0.0296 0.0276 0.0283

0.09 0.0380 0.0322 0.0345 0.0322 0.0331

0.10 0.0403 0.0341 0.0365 0.0341 0.0350

0.30 0.0542 0.0460 0.0492 0.0460 0.0472

0.50 0.0561 0.0475 0.0508 0.0475 0.0487

0.70 0.0569 0.0480 0.0514 0.0480 0.0493

50 0.10 0.01 0.0033 0.0031 0.0032 0.0031 0.0032
0.03 0.0096 0.0091 0.0093 0.0091 0.0093

0.05 0.0150 0.0141 0.0144 0.0141 0.0144

0.07 0.0192 0.0180 0.0185 0.0180 0.0185

0.09 0.0225 0.0210 0.0216 0.0210 0.0216

0.10 0.0238 0.0222 0.0228 0.0222 0.0228

0.30 0.0319 0.0298 0.0306 0.0298 0.0306

0.50 0.0330 0.0309 0.0317 0.0309 0.0317

0.70 0.0333 0.0312 0.0320 0.0312 0.0320

100 0.10 0.01 0.0023 0.0022 0.0023 0.0022 0.0023
0.03 0.0067 0.0065 0.0065 0.0065 0.0066
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0.05 0.0104 0.0100 0.0102 0.0100 0.0103
0.07 0.0133 0.0129 0.0130 0.0129 0.0132
0.09 0.0155 0.0150 0.0152 0.0150 0.0154
0.10 0.0164 0.0159 0.0161 0.0159 0.0163
0.30 0.0220 0.0213 0.0216 0.0213 0.0219
0.50 0.0227 0.0220 0.0223 0.0220 0.0226
0.70 0.0230 0.0222 0.0225 0.0222 0.0228
200 0.10 0.01 0.0016 0.0016 0.0016 0.0016 0.0016
0.03 0.0046 0.0046 0.0046 0.0046 0.0047
0.05 0.0072 0.0071 0.0072 0.0071 0.0073
0.07 0.0093 0.0091 0.0092 0.0091 0.0094
0.09 0.0108 0.0107 0.0107 0.0107 0.0109
0.10 0.0115 0.0113 0.0113 0.0113 0.0115
0.30 0.0154 0.0151 0.0152 0.0151 0.0155
0.50 0.0159 0.0156 0.0157 0.0156 0.0160
0.70 0.0160 0.0158 0.0159 0.0158 0.0162

4. An Empirical Application

An example, given in Walpole et al. [16], was exhibited to illustrate the
generalized confidence interval approach, the large sample approach and
the adjusted MOVER approach. Four different levels of financial leverages
given in Table 5 were used to estimate the inverse mean in rates of return on
equity. The Shapiro-Wilk normality tests indicated that the four data sets
come from normal populations with p-values 0.4770, 0.7172, 0.6736 and
0.4477. The sample means (sample variances) are 4.3833 (4.8257), 5.1000
(3.8840), 8.4167 (5.9937), and 8.3333 (5.4707) for control level, low level,
medium level, and high level, respectively. The sample inverse means are
0.2281, 0.1961, 0.1188, and 0.1200 for control level, low level, medium
level, and high level, respectively. The 95% two-sided confidence intervals
for the common inverse mean were evaluated. The confidence interval
based on the generalized confidence interval approach, Clgc,, was (0.0948,

0.1631) with the length of interval 0.0683. The confidence interval based on
the large sample approach, Cl, s, was (0.1124, 0.1485) with the length

of interval 0.0361. Finally, the confidence intervals based on the adjusted
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MOVER approach, Cl y; was (0.1094, 0.1619) with the length of interval
0.0525, Clyo Was (0.1124, 0.1485) with the length of interval 0.0361,
and Cl py3 was (0.1119, 0.1489) with the length of interval 0.0370. These
results support the simulation results in the previous section.

Table 5. Rates of return on equity for 24 randomly selected firms

Financial leverage

Control Low Medium High
2.1 6.2 9.6 10.3
5.6 4.0 8.0 6.9
3.0 8.4 5.5 7.8
7.8 2.8 12.6 5.8
5.2 4.2 7.0 7.2
2.6 5.0 7.8 12.0

5. Discussion and Conclusions

The study was conducted to investigate the performance of
confidence intervals based on the generalized confidence interval approach
(Clger ), the large sample approach (Clg), and adjusted MOVER

approach (Clam1, Clama, Clams). The simulation studies showed that

the generalized confidence intervals provide the best coverage probabilities
for all cases. The large sample confidence intervals and adjusted MOVER
confidence intervals have coverage probabilities close to nominal confidence
level of 0.95 when the sample size is large, i.e., n >100. All confidence
intervals perform similarly for large sample size in terms of maintaining
the coverage probability and the length of all confidence intervals by
adjusted MOVER approach is slightly narrower than that of the generalized
confidence interval approach. Hence, for sample sizes, i.e., n =10 and 20,
we chose the generalized confidence interval approach for the confidence
interval for the common inverse mean based on several independent normal
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samples. However, the adjusted MOVER approach should be chosen to
estimate the common inverse mean of several normal populations for large
sample sizes because it is based on the formulas (24)-(26) and is more easy to
use than that of the generalized confidence interval approach which is based
on a computational approach.
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