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Abstract

A hypergraph is an ordered pair H = (V, E), where V is a finite

nonempty set called vertices and E is a collection of subsets of V,
called hyperedges or simply edges. A subset T of vertices in a
hypergraph H is called a vertex cover if T has a nonempty intersection
with every edge of H. The vertex covering number t(H) of H is the

minimum size of a vertex cover in H. Let C(H, i) be the family of

vertex covering sets of H with cardinality i and let C(H,i) be

the cardinality of C(H, i). The polynomial ZLZ&HH))‘C(H, X s
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defined as vertex cover polynomial of H. For a graph G = (V, E),
Hg denotes the hypergraph with vertex set V and edge set
{Ng(x)|x e V}. In this paper, we prove that the total domination

polynomial of a connected graph G is the vertex cover polynomial of
Hg. Using this result, we determine total domination polynomials of

splitting graphs of order k of paths and cycles. Moreover, we introduce
the terminology of iterated splitting graph Si(G) of a graph G and
determine its total domination polynomials.

1. Introduction

All graphs considered in this paper are simple and connected unless
otherwise stated. Notations and definitions not given here can be found in
[1, 4, 8]. A graph is an ordered pair G = (V(G), E(G)), where V(G) is a
finite nonempty set and E(G) is a collection of 2-point subsets of V. The sets
V(G) and E(G) are the vertex set and edge set of G, respectively. The open
neighbourhood of a vertex v e V(G) is Ng(v) = {u eV |uv € E(G)}. If the
graph G is clear from the context, then we write N(v) rather than Ng(v). A
total dominating set, abbreviated TD-set, of a graph G = (V, E) with no

isolated vertex is a set S of vertices of G such that every vertex is adjacent to
a vertex in S. If no proper subset of S is a TD-set of G, then S is a minimal
TD-set of G. The total domination number of G, denoted by y{(G), is the

minimum cardinality of a TD-set of G. A TD-set of G of cardinality v;(G) is

called a v{(G)-set. Let D;(G, i) be the family of total dominating sets

of G with cardinality i and let d{(G, i) =|D;(G, i)|. The polynomial
MO N o _

Dy(G, x)= > dy(G,i)x' is defined as total domination polynomial of
i=1t(G)

G. A hypergraph H =(V, E) is a finite nonempty set V =V(H) of

elements called vertices, together with a finite multiset E = E(H) of subsets

of V, called hyperedges or simply edges. The order and size of H are |V |
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and | E |, respectively. A k-edge in H is an edge of size k. A subset T of

vertices in a hypergraph H is a transversal (also called vertex cover) if T has
a nonempty intersection with every edge of H. The transversal number t(H)

of H is the minimum size of a transversal in H. For further information on
hypergraphs, refer [3]. Let C(H, i) be the family of vertex covering sets of

H with cardinality i and let C(H, i) =|C(H, i)|. The polynomial C(H, x) =

[V(H)| :
Z C(H, i)x" is defined as vertex cover polynomial of H. For a graph
i=t(H)

G =(V, E), the ONH(G) or Hg is the open neighbourhood hypergraph
of G; Hg = (V, C) is the hypergraph with vertex set V(Hg) =V and with
edge set E(Hg ) =C ={Ng(x)|x €V} consisting of the open neighbourhoods

of vertices of V in G.

Theorem 1.1 [7]. The ONH of a connected bipartite graph consists of
two components, while the ONH of a connected graph that is not bipartite is
connected.

Theorem 1.2 [8]. If G is a graph with no isolated vertex and Hg is the
ONH of G, then y4(G) = ©(Hg).

Theorem 1.3 [9]. Dy(Cp,, X) = X[D¢(C,_1, X) + D¢(Cp_2, X)]-

The corona G o K; of a graph G is the graph obtained from G by adding

a pendant edge to each vertex of G. The splitting graph of G is defined as, for
each vertex v of G, take a new vertex v’ and join Vv’ to all vertices of G

adjacent to v. The graph spl(G) thus obtained is called the splitting graph of
G. The splitting graph of order k of a graph G, denoted by splk(G) is
defined as for each vertex v of G, take k new vertices vy, Vp, ..., V¢ and join
each of these vertices to all vertices of G adjacent to v. The iterated splitting
graph Si(G) of a graph G is defined as Si(G) = S(Si_l(G)), where S1(G)
denotes the splitting graph spl(G) of G.



334 A. R. Latheeshkumar and V. Anil Kumar
2. Main Results

Theorem 2.1. The total domination polynomial of a connected bipartite
graph G is the product of the vertex cover polynomials of the two
components of Hg, while the total domination polynomial of a connected

graph that is not bipartite is the vertex cover polynomial of Hg.

Proof. The proof follows immediately from the definitions of total
dominating set of G and vertex cover polynomial of Hg. O

Using Theorem 2.1, we can easily prove Theorems 2.2 and 2.3 due to
Chaluvaraju and Chaitra [2].

Theorem 2.2. Dy(Kp, n, X) = [+ )™ = 1][(1 + x)" - 1].

Proof. Let (X,Y) be the bipartition and Hg be the open neighbourhood
hypergraph of K, . Then E(Hg)={X, Y} and the vertex cover polynomial

of Hg is
m m
Ve LN IR LU P B | L VO L P R NN
1 2 m 1 2 n
Thus the proof follows by Theorem 2.1. O

Theorem 2.3. Let G be a connected graph with n vertices. Then
Di(G o Ky, x) = x"(1+ x)".

Proof. Let V(G)={1, 2,3,..,n} and ay, ay, as, ..., &, be the new
vertices of G o K; such that N(a;) = {i} for i=1,2,3, ..,n. SoifSisa
total dominating set of G o Ky, then {1, 2, 3, ..., n} < S. Therefore,

n

n
Di(G oKy, x)=x"+| [x"14
t( 1, X) [J )

n
Jx”*z + ---+(n)x”+” =x"1+x)".

This completes the proof. O
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Theorem 24. If Bp , is the bistar graph, then Di(Bp n, X) =
x2(L+ x)™*"N.

Y

Um-'

Figure 1. The graph By, .

Proof. Let us label the vertices of By, , as shown in Figure 1. Since

N(u) = {v, Uy, Uy, ..., Up '}, N(V)={u, v, Vo, ..., Vo), N(uj) = {u} and N(v;)
=1{v}, aset S is a TD-set of By, , if and only if {u, v{ c S. So the TD-

polynomial is
m+n m+n m+n
Di(By -, X) = X2 + X3+ Xt g xM*n
AR P 0 i
U2 m+n
=x(L+x)" .
This completes the proof. O

Theorem 2.5. Let G and H be graphs of order m and n, respectively.
Then D{(G v H, x) = [1+ x)" =1][1+ x)" = 1] + D{(G, x) + D{(H, x).
Proof. If S cV(G)UV(H), such that SNV(G)= & and SNV(H)

# ¢, then S is a TD-set of G v H. Moreover, if S is a TD-set of
G or H, then S is a TD-set of G v H. Therefore, D;(G v H, x) =

[+ x)™ —1][@+ x)" =1] + D{(G, x) + Di(H, x). O
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Theorem 2.6. D;(C»,,, X) = [C(C,,, ).

Proof. The ONH of C,, consists of two components isomorphic to C,,.
Therefore, the proof follows from Theorem 2.1. O

Lemma 2.7. If G is bipartite, then splk(G) and Sk(G) are bipartite.

Proof. Let (X, Y) be the bipartition of G and X', Y’ be collections of
new vertices of splk(G) corresponding to the vertices of X and Y,
respectively. Then X U X" and Y UY' are the partite sets of splk(G).
Similarly, we can show that Sk(G) is bipartite. O

Theorem 2.8. C(C,,, X) = X[C(Cp_1, X) + C(Cph_2, X)]-

Proof. The proof follows from Theorem 1.3 and from the definition of
vertex cover polynomial. O

Theorem 2.9. If

C(Cp, X) = bgX® + b, 1 x3H + b ox32 4o 4 by x" L X,

k k k
then C(Gy, s+ j) = bs(nj j+bs+1(jn 1)+bs+2(jn 2)+"'+bs+j' where

n
G, is a component of ONH of splk(CZH) and (r) =0=b, if r>n.

Proof. Let X ={1,3,5,..,2n-1} and Y ={2, 4,6, .., 2n} be the
bipartitions of C,,. Let G; be the component of ONH(spIk(CZn))
corresponding to the partite set X U X". For i =1, 2, 3, ..., k, let v; denote

the new vertex in spli(Czn), corresponding to the vertex v in Cy,. Then
N(1) = {2} and N(2n;) = {2n -1} and for vin {2, 3, 4, ..., 2n -1}, N(v;)
={v-1v+1}. So if S is a vertex covering set of C, with V(C,) =

{2, 4, 6, ..., 2n}, then S is a vertex covering set of G;. Also, V(splk(CZH))
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consists of (k +1)2n vertices. So if ©(Cy)=s and C, has by, vertex

nk nk
covering subsets of order s+ j, then G; has bs[ jj+bs+l(' 1j+

nk
bs+2( . 2} 4+t bsﬂ- vertex covering sets of order s + j. This completes
J .

the proof. O
Theorem 2.10. If G; is a component of ONH of splk(CZn), then

k
Dy(spl* (Can. X)) = [C(Gy, ).
Proof. The proof follows from Theorems 2.1 and 2.9. O
Theorem 2.11. If

C(Cpy X) = bX® + b 1™ 4 g, X2 4 o by XL+ bx"

then C(Gli s+j)= bs(n(Zk__ 1)J + bs+1(n(2_k ll)j + bs+2(n(?k _1)J e
J

j—2

n
+Dbs,j, where Gy is a component of ONH of Sk(CZn), where [rj =
0=>Db if r>n.

Proof. Let X ={1,3,5,..,2n-1} and Y ={2, 4,6, .., 2n} be the
bipartitions of C,,. Let aj, a3, as, ..., ayp_1 be the vertices of a component
G; of ONH of Sk(CZn) of degree 2. Let N(aj) = {2n, 2}, N(a3) = {2, 4},
N(ag) = {4, 6}, ..., N(abp_1) = {2n — 2, 2n}. If v e V(Gy), then there is a
vertex af such that N(aj) < N(v). So if S is a vertex covering set of C,

with V(Cp,) = {2, 4, 6, ..., 2n}, then S is a vertex covering set of G;. Also, if
|[V(G)|=n, then |V(Sk(G))|= 2n. so if ©Cy)=s and Cp has b,

. . n(2k —1)
vertex covering subsets of order s+ j, then G; has bg ) +
J
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k k
b5+1(n(2_ - Dj + b5+2(n(? _Zl)j +---+ bg j vertex covering sets of order
J —

S + J. This completes the proof. O

Theorem 2.12. If G; is a component of ONH of S¥(C,,,), then
Dy(S*(Can, X)) = [€(Gy, VI
Proof. The proof follows from Theorems 2.1 and 2.11. O

Theorem 2.13. If nis odd and D;(Cy,, X) = bgX® + b, 1x*1 + by, o X512

nk nk
+ oot by X"+ bx™, then dy(spl*(Cp), s+ j) = bs( _ j + bs+1[_ J
J ] -

nk

n
b <+ + b, and =0=Db ifr>n.
+ S+2(j—2j+ + Dsy (rj r >

Proof. Since n is odd, ONH(C,,) is isomorphic to C,, and C(C,;, X) =
D;(Cp, X). The rest of the proof is exactly similar to Theorem 2.9. O

Theorem 2.14. If nis odd and Dy(Cp, X) = bgx® + bg,1x3*1 + by, px5*2

1

+ -+ by X" + b, x", then

e I Y
J j—

n(2* -1
+bs+2( (J s )J+"'+bs+j

and(?j:O:br if r>n.

Proof. Since n is odd, ONH(C,,) is isomorphic to C,, and C(C,;, X) =
D;(Cp, X). The rest of the proof is exactly similar to Theorem 2.11. O
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Next, we determine the total domination polynomials of splk(Pn) and
k
S (Pn)-

Let P, be the graph shown in Figure 2.

1 2 3 4 n-2 n-1 n

Figure 2. The graph P;.

Theorem 2.15. C(P,, i +1) = C(Pi_1, i) + C(Pi_o, i).

Proof. Let C(Py_1,1)=A,_1UA where A,_1 ={S|S eC(P_, 1)
and n—1e S} and A =C(P_1, iI)\A,_1. Then A< C(Py_5, i). Also, let
B=C(R_p i)\A If SeA 4 then SU{nleC(P, i+1). If SeA
then SU{n -1} and SU{n} e C(P;,i+1). If SeB, then SU{n-1}e
C(P, i +1).

Conversely, let S e C(P;, i +1). Then either n—-1€S or ne S or
both.

Casel.n—1eS and n ¢ S. Inthiscase, S\{n -1} € AUB.
Case2.n—1¢S and n e S. Inthis case, S\{n} € A
Case3. n—1eS and n e S. Inthiscase, S\{n} € A,_;. Therefore,
CR,i+1) =|Aq|+2 Al+|B|=C(Piy, i)+ C(Rj_p,i). O
Theorem 2.16. C(P;, x) = X[C(P_1, X)+ C(P1_2, X)], with initial values
C(Ps, X) = X + X2, C(P4, X) = 2x° + X3,

Proof. The proof follows immediately from Theorem 2.15. O
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Theorem 2.17. Dy(Py, X) = [C(Py, X)I.
Proof. The open neighbourhood hypergraph of P,, consists of two

components isomorphic to P;. Then, by Theorem 2.1, Di(P,,, X) =

[c(P:, X)I. 0

Theorem 2.18. If C(P}, X)=bsX® + by x*™ +bg, o X3+ 4o+ by X"

+b,x", then

i nk nk nk
C(Gl,s+1)=bs(jj+bs+l(j J+bs+2(j 2j+---+bs+j,

n
where G, is a component of ONH of splk(PZn) and (r] =0=Db, if r>n.

Proof. For i =1, 2, ..., k, let v; be the new vertex corresponding to the

vertex in spli(P2n). Then for all i, N = Np,, (V). If Sis a vertex

spl' (Pan)

covering subset of P,, then S is a vertex covering subset of G;. So, if

C(P}, X) = bx® + b x5 4+ bg ox3*2 4+ by x" L 4+ by X", then
) nk nk nk
C(Gy, s+ j)=bg| . |+bgq| . +bg,o| . + oo+ by
] -1 1-2
This completes the proof. O

Theorem 2.19. If G; is a component of ONH of splk(PZn), then

Dy(spl* (Pzn, X)) = [C(Gy, ).

Proof. The proof follows immediately from Theorems 2.1 and 2.18. [
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Theorem 2.20. If the vertex cover polynomial of Py is C(P;, x) = bgx®

+ b XSt 4 b ox3 T2 4o+ by X"+ byx™ and if Gy is a component

of ONH(SK(Py)), then C(Gy, s + j) = bs[n(zk_‘l)j N bs+1(n(2k _1)J
j

j-1
n(2¥ —1) n _
+bg, s P2 +:++bgyjand ) =0=Db ifr>n.

Proof. Observe that |V(Sk(P2n)) | = 2Ky, V(G| = 25N and [V(Py)]

= n. The remaining part can be proved as in Theorem 2.18. O

Corollary 2.21. If Gy is a component of ONH(SK(Py,)), then

De(S (Pan %)) = [€(Gy, ).
Proof. The proof is obvious. O

Let Py be the graph shown in Figure 3.

——e

1 2 3 B n-2 n-1 n

Figure 3. Py.

Theorem 2.22. C(R, X) = X[C(Py_1, X) + C(Py_5, X)] with initial values

C(Ps, x) = x2 and C(P§, x) = x* + x>,

Proof. Let S e C(Py_5,i). Then SU{n} e C(Py,i+1). If SeC(Py_y, i),
then SU{n} e C(Ry, i+1). Conversely, if S € C(Py, i +1), then either S e
C(Py_q, i) or S e C(Py_p,i). Hence, C(Py,i+1)=C(Py_q, 1)+ C(Py_5, i).
Therefore, C(Py, x) = X[C(Py_1, X) + C(Py_2, X)]. O
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Observation 2.23. C(P, + 2, X) = X[C(Py41, X) + C(P,, x)] with initial

values C(P,, X) = 2x + x2 and C(Ps, x) = X + 3% + x5,

Theorem 2.24. Dy(Pop.1, X) = [C(PY, X)][C(Py11, X)]-

Proof. Let X ={1,3/5,..,2n-1} and Y ={2,4,6, .., 2n} be the
partite sets of P,,,q1. Let G; and G, be the components of ONH (P, 1)

corresponding to the open neighbourhoods of vertices in X and Y,
respectively. Then G, is isomorphic to Py and G, is isomorphic to Po, 1.

Therefore, the result follows from Theorem 2.1. O

Theorem 2.25. Let C(P!, X) = beX® + bg xSt + b, ox3*2 + o +

I+2+

by X"+ b,x"™ and C(Py.q, X) = ¢;X + 14X L+ ¢, oX ot X"

+¢y,X"L 1f Gy and G, are the components of ONH(spIk(P2n+1)), then

the coefficients of x5*1 in C(Gy, x) and C(Gy, x) are C(Gy, s+ j) =

nk nk nk . n+1)k
bs(jJ+bs+1(j—lj+bs+2(j 2j+"'+bs+ja C(G2,5+j)=c|(( J) J

(n+1)k (n+1)k n .
+bs+1( i1 + by, > -2 +++++ €y j, Where ) =b =0ifr>n

andc, =0 if r>n+1

Proof. For i=1 2, ..k, let v; be the new vertex corresponding
to the vertex v in spl¥(Poy,q) and X ={&, 3;, ..., (2n +1);} and Y =
{2i, 4i, ..., (2n);} be the partite sets. Let G; and G, be the components of

ONH(spIk(P2n+1)) corresponding to X and Y, respectively. Then as in the
previous results, we can prove the result immediately. O

Corollary 2.26. If G; and G, are the components of

ONH(spIk(P2n+1)), then

Dy(sp1* (Pons1, X)) = C(Gy, X)C(Gy, X).
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Proof. The proof is obvious. O

Observation 2.27. Adopting the procedure in Theorem 2.25, we can

easily derive the total domination polynomial of Sk(P2n+1) also.
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