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Abstract 

The problem we deal with is to find the minimum size of the four 
color classes among all proper 4-edge colorings of a cubic graph G. 
The bound for the number t of times that color 4 is required given in 
[8] is modified for the case of cubic graphs G having subgraphs that 
contain all the crossing points with l connected edges common to the 
rest of graph. The new bound becomes much better than the previous 
one if the fraction of the order of subgraphs to the order of whole G is 
“small” or if the number of connected edges l is “small”. 

1. Introduction 

1.1. Motivation 

We deal with the following problem: “among all proper 4-edge colorings 
of a cubic and bridgeless graph G with colors 1, 2, 3 and 4 what is the 
minimum number t of times that color 4 is required?” So, we ask for an upper 
bound for t. This number is related to the existence (or non-existence) of 
bicolor paths between the pairs of crossing edges in G and therefore is related 
to the distance d between the crossing points of G. Such an upper bound for t 
is given in [8]. 
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In the present note, we demonstrate in brief the concept of “bicolor 
connections” (a kind of Kempe chains) as it is described in [8] and study the 
case of cubic graphs G that have “small” subgraphs which contain all the 
crossing points. 

The new bound for t we found is better than the previous one if the 
fraction of the order of subgraphs to the order of whole G is “small” or if the 
number of connected edges l is “small”. Moreover, our result gives the 
possibility to apply the previous upper bound only for subgraphs of G. 

1.2. Definitions and related work 

1.2.1. Definitions 

The graphs we consider are without loops or multiple edges. We recall 
some definitions and results we need. 

The chromatic index of a graph G is the minimum number of colors that 
color all edges, such that adjacent edges have different colors and it is 
denoted by ( ).Gχ′  A graph is called 3-regular or cubic if all the vertices 

have degree 3. 

Vizing [12] proved that each graph belongs to one of two classes: In 
class 1, if ( ) ( )GG Δ=χ′  or in class 2, if ( ) ( ) ,1+Δ=χ′ GG  where ( )GΔ=Δ  

denotes the maximum degree of the graph G. Recognizing these classes is a 
difficult problem, even when it is limited to cubic graphs [6] or in triangle 
free graphs with 3=Δ  [7]. 

So, it is reasonable to search for approximating algorithms that decide 
whether a graph with k=Δ  is k-edge colorable for some restricted classes 
of graphs as for example in [3], [1] and [10]. 

A new definition follows: 

Let G be a non-planar graph with .3=Δ  We construct from G another 
graph H by adding to every crossing point a vertex and the corresponding 
four edges. We define distance d between two crossing points in G, say p and 
q, to be the length of the shortest path in H between vertices p and q minus 
the number of the intermediate vertices of degree 4 in this path. 
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1.2.2. Related work 

Related to the k-edge coloring problem is the max edge k-coloring 
problem: “Given a graph G and a number k, color as many edges as possible 
using k colors”. In the max edge k-coloring problem, we try to find the best 
possible ratio of the number of edges that are colored with k-colors to the 

size of the given graph. Some known approximating ratios are: 
k

k ⎟⎠
⎞

⎜
⎝
⎛ −−

111  

in [5], 
1+k

k  in [2]. In [9] and for ,3=k  a ratio 
9
7  is achieved and in [11], 

is shown that a triangle free graph with maximum degree 3 has 3 matchings 

which cover at least 
15
13  of its edges. 

Our approach to max 3-edge coloring problem is different and deals with 
the concept of bicolor connection. 

We demonstrate the framework we need. In [8], an algorithm is used that 
gives a 4-edge assignment to G; where color 4 appears only on crossing 
edges and after that tries to reduce the number of edges with color 4, 
replacing it by one of the colors 1, 2 or 3. 

Two crossing edges have a “bad” coloring if they get color 4 otherwise 
they have a “good” coloring. 

The algorithm in [8] consists of two parts. The first part transforms graph 
G into another graph G′  replacing each crossing point by a configuration, 
which is called “basic configuration” or BASCON for short, cf. Figure 1, and 
gives an assignment with colors 1, 2 and 3 to .G′  

In the colored graph ,G′  BASCONs have their own 3-edge coloring. A 

BASCON, as one can see in Figure 1, has four outer edges and each pair of 
opposite outer edges corresponds to a crossing edge. According to the 
coloring of the outer edges of a BASCON, we say that a BASCON has a 
“bad” or a “good” coloring, giving in this way, respectively, the “bad” or the 
“good” coloring to the pairs of crossing edges in graph G, cf. Figure 2. 
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Figure 1. In the crossing point p, we put the configuration shown on the 
right. We called it basic configuration or BASCON for short. This BASCON 
has four outer edges: a, b, c and d, where the pairs a, b and c, d are opposite 
outer edges. 

 

Figure 2. In (a) and in (b) is assigned a good coloring. In (c) is assigned a 
bad coloring. The two crossing edges that correspond in (a) get both color 1. 
The two crossing edges that correspond in (b) get a different color. The first 
gets color 1 and the second one color 2. The crossing edges that correspond 
in (c) both get color 4. 

We say that a bicolor circle passes from a BASCON if it passes from two 
outer edges of the BASCON, which are not opposite edges. We say that two 
BASCONs are connected by a bicolor circle if this circle passes from both of 
them. 
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At this point starts the second part of the algorithm, which is called 
“procedure recover” or prorec for short. Procedure recover tries to reduce 
the number of BASCONs with a “bad” coloring based on the following facts: 

Fact 1. In every BASCON, exactly two bicolor circles pass. These circles 
are both colored with the same pair of colors, 1-2, 1-3 or 2-3. 

Fact 2. The “bad” coloring of a BASCON can always change to a 
“good” coloring by interchanging the colors of two of its outer edges that are 
not opposite edges. 

So, prorec starts from a BASCON with a “bad” coloring and follows a 
bicolor circle, interchanging its colors, say colors 1-2. But, in this way, there 
is the possibility to “spoil” the “good” coloring of another BASCON turning 
it into a “bad” one. Trying to recover the “good” coloring in the second 
BASCON, it is possible to spoil the “good” coloring of a third BASCON and 
so on. 

In other words, prorec fails to turn the “bad” colorings into “good” 
colorings for all the BASCONs if it is forced to return again and again to 
BASCONs that it has already tried to change the “bad” coloring into a 
“good” one. A necessary condition for this failure of prorec is given below: 

If the recproc fails to assign a “good” coloring in two crossing edges in 
G, then for every 3-edge coloring of ,G′  each one of the two bicolor circles 

that pass from the corresponding to these crossing edges BASCON always 
passes from another BASCON (one that corresponds to a different pair of 
crossing edges), cf. Figure 3. 
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Figure 3. The BASCON on the left has a “bad” coloring. Interchanging 
colors 1-2, see the colors on the brackets, this BASCON gets a “good” 
coloring but the “good” coloring of the BASCON on the right turn a “bad” 
one. Trying to recover the previous “good” coloring, by interchanging colors 
1-2 in the other bicolor circle, the current “good” coloring of the BASCON 
on the left “spoils” and returns to the previous “bad” coloring. 

The main result in [8], that is Theorem 3, is proved using the previous 
condition. The key idea is that the bicolor circles that connect pairs of 
BASCONs cannot cover more vertices than the order of graph G′  and 
therefore combining the minimum distance d with the order n, we can find an 
upper bound for t. 

Notice that since G′  is a cubic planar and bridgeless graph, in a 3-edge 
coloring all of its vertices can be covered by 1-2 circles and some of these         
1-2 circles can connect pairs of BASCONs. Can by 1-2 and 1-3 circles that 
connect BASCONs be covered all the vertices of ?G′  The answer is “no”. 

This case is impossible and all the vertices of G′  can be covered only with 
the existence of extra 1-2 circles that do not connect any pair of BASCONs. 
Take for example two pairs of BASCONs such as the first one is connected 
by 1-2 circles and the second one by 1-3 circles and suppose that these 
circles share m edges with the common color “1”. In that case, the sum of the 
distances between the corresponding pairs of crossing points is not 2d but 

md +2  otherwise two crossing points in G are at distance less than the 



On 4-edge Coloring of Cubic Graphs … 323 

minimum distance d. Therefore, since nothing change in our calculations, we 
can assume that only 1-2 circles are involved in the connected pairs of 
BASCONs. 

Now, if we consider the BASCONs in G′  as crossing points, we return 
from graph G′  to the graph G, we get the inequality in the following 
theorem: 

Theorem 3 [8]. Let G be a bridgeless non-planar cubic graph, of order 
n. Let d be the minimum distance between any pair of crossing points for a 
drawing of G. If G is in class 2 and in a 4-edge coloring, color 4 is required 
at most t times, then the following holds: 

(i) 
( )

.
12 −

≤
d

nt  

1.3. Comments on inequality (i) 

We can use inequality (i) without the need to find a drawing of G with 
the minimum possible number of crossings. Actually, this is a NP-hard 
problem [4]. On the other hand, “many” crossings means “small” value for 
distance d. Also, “big” values of d usually means “big” values of n. The ratio 
of the number of crossing points to the order n balances around the value 

( )
.

12
1
−d

 We try to find conditions under which this ratio deviates to smaller 

values. 

It is clear from the proof that having distance 1=d  does not make 
sense, since covering two vertices of degree 4 in H no vertex is covered in 
the corresponding graph G. 

We also note that the inequality (i) works very well either in the case of 
replacement of minimum distance d with an “average” distance d or with the 
use of other proper techniques. 

For example, suppose that two pairs of crossing points are at distance 3 
apart and all the other pairs are at distance 5. In that case, for the first two 
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pairs, it is possible that color “4” be required twice and ( ) 8134 =−  vertices 

be covered by four bicolor paths. That means that inequality (i) takes the 
form: 

( )
.1

8152
82 +≤=
−
−

≤−
ntnt  

Sometimes inequality (i) gives as an upper bound of t an odd integer, for 
example .3≤t  The times that color “4” is required is always less than or 
equal to the number of crossing points when this number is even but less than 
or equal to the number of crossing points minus 1 when this number is odd. 
So, in the case where color “4” is required, at most 3 times two pairs of 
BASCONs must be connected by bcircles (so inequality (i) takes the form 

)4≤t  and at least one of these pairs shares a common outer edge. 

It is obvious that the knowledge of the minimum length of bicolor paths 
that are realizable in a 3-edge coloring of G′  and connect BASCONs would 
improve inequality (i). Distance d is used instead, since it is easy to get 
computed and is always less than the minimum length of bicolor paths that 
connect BASCONs. 

2. The Main Result 

2.1. How to use the upper bound in [8] in subgraphs of G 

The basic idea is to find structures of G which either “prevent” the 
connection of BASCONs by bicolor circles or “impose” these connections. 
We study the case of cubic graphs having each crossing point “close” to the 
other ones. 

The reason for that choice is based on the fact that a bicolor connected 
pair of BASCONs needs more edges than a pair of BASCONs without this 
connection. So, if bicolor paths are very “close” to each other, some bicolor 
connections cannot be completed unless there exist “long” bicolor paths that 
first go away from the other ones and then return back to them. In other 
words, we study cubic and bridgeless graphs G having “small” subgraphs 
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which contain all the crossing points of G. The existence of “long” bicolor 
paths that go out of the subgraphs and return to them depends on the number 
of connected edges of these subgraphs with the rest graph and therefore this 
number involves upper bound. 

For short by bpath, bpaths or bcircles, we mean bicolor path, bicolor 
paths or bicolor circles, respectively. Now, we state the following theorem: 

Theorem 1. Let G be a cubic graph with n vertices. Suppose that G 
belongs to class 2 and t is the minimum number of times that need the fourth 
color (over all possible 4-edge colorings). Let H be a subgraph of G having l 
connecting edges with the rest graph .HG −  Suppose that all crossing 
edges of G belong to H and the order of H is .n′  Let d be the minimum 
distance between any pair of crossing points inside H for a drawing of G. 
Then the followings hold: 

  (i) ( ) ;12 −
≤ d

nt  

 (ii) 
( )12 −

′
≤

d
nt  for ;5≤d  

(iii) 
( ) ( )1412 −

−+
−
′

≤
d

ll
d
nt  for .5≥d  

Proof. Due to the assumption that color “4” is required to t edges, there 
exist at least 2t crossing edges in G. We can transform G to another cubic 
graph G′  by setting BASCONs into the place of the crossing points. So, 
subgraph H is transformed to another subgraph H ′  and has all the 
BASCONs. We know from [8] that in any 3-edge coloring of ,G′  there exist 

t pairs of BASCONs each one of which consists from a BASCON with a 
“good” coloring and a BASCON with a “bad” coloring. We also know that 
these two BASCONs are connected by two bcircles, so there are 4 bpaths 
that connect them. Some of these bpaths can pass from the connected edges 
leaving subgraph H ′  and return to it passing again from the connecting 
edges, cf. Figure 4. 
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Figure 4. Subgraph H is connected with the rest graph by 8 connected edges. 
H contains all the crossing points of G. In ,H ′  some of bpaths that connect 

pairs of BASCONs pass from the connected edges into subgraph HG ′′-  and 

return to .H ′  The rest of the connecting bpaths cover vertices that belong 
only to .H ′  

We shall try to use inequality (i) for subgraph H. It is clear that as many 
vertices are covered by the bpaths inside H ′  a better upper bound for t is 
achieved. So, we try to find the worst case that is the case with the minimum 
covering by the bpaths. 

Assume that bpaths pass from a fraction of the l connecting edges, so 
from kll =′  connected edges, where .10 ≤≤ k  We choose 1-2 paths be the 
bpaths that will cover the vertices of H ′  and we notice that in every one        
3-edge coloring of subgraph H ′  at most one 1-2 path can pass from one 

connected edge. Therefore, at most 
2
l′  1-2 paths go out from H ′  and return 

to it. We also suppose that these 
2
l′  1-2 paths have “almost” all of their edges 

outside of graph .H ′  It means that we can have 2t 1-2 paths in total and 

2
2 lt

′
−  1-2 paths having all of their edges inside the subgraph .H ′  
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Considering BASCONs as crossing points, we return to graph G and to 
subgraph H. Notice that the 1-2 paths in H ′  cover vertices in H and the 
number of these vertices does not exceed the order n′  of H minus .2l′  
Indeed, if a 1-2 path passes from one of the l′  connected edges, it covers at 
least two vertices of H. The first one is the endpoint of the connected edge 
that belongs to H. The 1-2 path that we consider goes to a crossing point and 
therefore passes from one crossing edge. So, the second vertex that is 
covered is the endpoint of a crossing edge that also belongs to H. Finally, we 

get: ( ) lndlt ′−′≤−⎟
⎠
⎞

⎜
⎝
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− 21
2

2  or 
( )

,
1412 −

−+
−
′

≤
d

klkl
d
nt  since .kll =′  

For ,5≤d  the right side of the last inequality takes a maximum when 0=k  

which gives the upper bound in (ii). In the case where ,5≥d  the right side 

of the inequality takes a maximum when 1=k  and this gives the upper 

bound in (iii).  

Corollary 1. Let G be a bridgeless non-planar cubic graph. Suppose that 
instead of a subgraph H in the previous Theorem 1, there are k disjoint 
subgraphs ,iH  ki ...,,2,1=  with corresponding minimum distances 

between their crossing points ....,,2,1, kidi =  If all the crossing points of 

G are contained in these subgraphs, then the inequalities (ii) and (iii) of 
Theorem 1 can be applied for each one of these subgraphs and get an 
inequality for graph G using the sum of these inequalities. 

Proof. In the case where ddi =  for all ,...,,2,1 ki =  we can simply 

consider the subgraph H of Theorem 1 as a disjoint union of the iH  

subgraphs. In the case where we have different distances ,id  we have only to 

notice that the structure of graph HG −  does not involve in the proof of 
Theorem 1 and the minimum distance d is used only in subgraph H. So, each 
one of the iH  subgraphs can be considered as the subgraph H in Theorem 1 

and therefore the inequalities we get from subgraphs iH  are independent of 

each other.  
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2.2. Some examples 

In Figure 5 is shown the Petersen graph with 5 crossing points, say a, b, 
c, d and e, and 10 vertices: 0, 1, 2, ..., 9. Let us forget for the moment that 
Petersen graph needs color “4” only twice and it can be drawn with only two 
crossing points. We can see that four possible bpaths that can connect a and 
d are: a-9-1-2-3-5-d, a-8-0-4-6-d, a-c-e-d and a-b-d. That means that the 
corresponding distances between crossing points a and d are: 6, 5, 0 and 0, so 

we get an average distance 
4

11
=d  and the times t that color “4” is required 

is less than: 
7
20

1
4

112

10
=

⎟
⎠
⎞

⎜
⎝
⎛ −

 and since t is an integer, color “4” is needed at 

most twice. If another pair of crossing points has been chosen, say for 
example, a and b, we can have as possible bpaths connecting a and b to be: 
a-8-0-4-6-b, a-9-1-2-3-5-d-b, a-b and a-c-e-d-b. The corresponding distances 
are: 5, 6, 0 and 0 and we get the previous result. Due to the symmetry 
between these crossing points, it is no need to check any other pair. 

 
Figure 5. The Petersen graph in a drawing with 5 crossings is shown. 
Crossing points are denoted by letters and vertices by numbers. 

In Figure 6, a subdivision of the Petersen graph is shown. We assume 
that it is a subgraph of a cubic and bridgeless graph G and as in Figure 5 
crossing points are denoted by letters and vertices by numbers. The 
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connected edges with the rest of graph are four. Suppose that from graph G, 
we construct graph .G′  We can see that it is possible to exist bcircles that 
connect the BASCONs corresponding to crossing points e and b. The first 
one can be: e-5-3-10- ... -12-4-6-b-8-0-13-...-11-2-7-e and the second one: e-
d-b-a-c-e. In that case, there is no vertex left inside the subgraph to complete 
a second bicolor connection between another pair of BASCONs. There is no 
connected edge left and therefore it is not possible to use outside of the 
subgraph. So, color “4” is needed at most twice. Using inequality (ii), we get 
the same conclusion, since ,14=′n  4=l  and as in the previous example, 

we get an average distance .
4

13
=d  Indeed, 

⎟
⎠
⎞

⎜
⎝
⎛ −

≤
1

4
132

14t  or 
9
28

≤t  and 

finally .3≤t  Since 3 is an odd integer, color “4” is required at most twice, 
as already noticed. 

 

Figure 6. Here we have a subdivision of the Petersen graph as a subgraph of 
a graph G. It is connected with G by four edges. Crossing points are denoted 
by letters and vertices by numbers. 
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