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Abstract

For given graphs G and H, the Ramsey number R(G, H) is the

smallest positive integer N such that for every graph F of order N the
following holds: either F contains G as a subgraph or the complement
of F contains H as a subgraph. In this paper, we determine the Ramsey
numbers of cycles with respect to even wheels of two hubs:

R(Cp, Wy ;) =3n—2 foreven m > 4 and n > 9Tm+1.

1. Introduction

Throughout the paper, all graphs are finite and simple. Let G be such a
graph. We write V(G) or V for the vertex set of G and E(G) or E for the
edge set of G. For given graphs G and H, the Ramsey number R(G, H) is
the smallest positive integer N such that for every graph F of order N the
following holds: either F contains G as a subgraph or the complement of F
contains H as a subgraph. Since then the Ramsey numbers R(G, H) for
many combinations of graphs G and H have been extensively studied by
various authors, see nice survey paper “small Ramsey numbers” in [8].
In particular, the Ramsey numbers for combination involving cycles and
wheels have also been investigated.

Let Cp be a cycle of n vertices and Wy 1, be the join Ky + Cp,. It is

called a wheel with m spokes. Burr and Erdoés [3] showed that
R(C3, Wi ;m) = 2m +1 for each m > 5. Ten years later Radziszowski and

Xia [9] gave a simple and unified method to establish the Ramsey number

R(Cs, G), where G is either a path, a cycle or a wheel. Surahmat et al. [12]
showed R(Cy, Wl’m) =9,10 and 9 for m=4,5 and 6, respectively.

Independently, Tse [14] showed R(C4, Wy ) =9, 10,9, 11, 12, 13, 14, 15

and 17 form=4,5,6,7,8,9, 10, 11 and 12, respectively. Recently, in [11],
the Ramsey numbers of cycles versus small wheels were obtained, e.g.,
R(Cp, W, 4) =2n—1for n > 5 and R(Cp, W, 5) =3n—-2 for n > 5.
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The aim of this paper is to determine the Ramsey number of cycles Cj,
with respect to wheels of two hubs W, . The main result of this paper is the
following.

Theorem. R(Cp, W, ) =3n—2 foreven m > 4 and n > 97m+ 1.

Before proving the Theorem let us present some notation used in this
note. For xeV and a subgraph B of G, define Ng(x)={ye

V(B): xy € E} and Ng[x] = Ng(x)U {x}. The degree dg(x) of a vertex
x is | Ng(x)|; 8(G) denotes the minimum degree in G. For any nonempty
subset S — V, the subgraph induced by S is the maximal subgraph of G with
the vertex set S, it is denoted by G[S]. A cycle C,, of length n>3 is a

connected graph on n vertices in which every vertex has degree two. A wheel

W n = K; + Cp is a graph on n + 1 vertices obtained from a Cp, by adding

one vertex X, called the hub of the wheel, and making X adjacent to all
vertices of Cy, called the rim of the wheel. A wheel of t-hubs W; =
K + C,, is a graph on n +t vertices obtained form a cycle Cp, by adding a

complete graph K; and making vertices of K; adjacent to all vertices of C,.

If G contains cycles, let ¢(G) be the circumference of G, that is, the
length of a longest cycle, and g(G) be the girth of G, that is, the length of a

shortest cycle. A graph on n vertices is pancyclic if it contains cycles of
every length I, 3 <1 < n. A graph is weakly pancyclic if it contains cycles of

length from the girth to the circumference.
We will also use the short notations H c F, F o H, H g F, and
F 2 H to denote that H is (is not) a subgraph of F, with the obvious

meanings.

For given graphs G and H, Chvatal and Harary [5] established the lower
bound R(G, H) > (C(G)-1)(x(H)—1)+1, where C(G) is the number of

vertices of the largest component of G and (H) is the chromatic number of
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H. In particular, if G =Cj, and H =W, , for even m, then we have

R(Cp, Wy ;) 23n—2. In order to prove this Theorem, we need the

following known results and lemmas.
2. Some Lemmas

Some lemmas in what follows will be used to prove the main result of
this paper.

Proposition 1 (Faudree and Schelp [7], Rosta [10]).
R(Ch, Cm)

2n—1 for 3 <m <n, modd, (n, m) = (3, 3).

= n+%—1 for 4 <m < n, meven and n even, (n, m) = (4, 4).
max{n+%—l, 2m—1}for 4 <m<n, meven and n odd.

Theorem 1 (Surahmat et al. [13]). R(Cp,, W} 1y) = 2n —1 for even m > 4

51
> -

Lemma 1 (Bondy [1]). Let G be a graph of order n. If §(G) > g then

either G is pancyclicornisevenand G = K, .
2

N>

Lemma 2 (Brandt et al. [2]). Every non-bipartite graph G of order n

n+2
3

Lemma 3 (Dirac [6]). Let G be a 2-connected graph of order n > 3 with
8(G) = &. Then ¢(G) > min{25, n}.

with 8(G) >

is weakly pancyclic and has girth 3 or 4.

Lemma 4. Let F be a graph with |V (F)| > R(C,, W; ) + 1. If there
is a vertex x eV(F) such that |Ng[x]| <[V(F)|-R(Cy, W, ) and
F 2 Cp, then F oW, .
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Proof. Let A =V(F)\Ng[x] and so |A|> R(Cp, W, ). Since the
subgraph F[A] of F induced by A contains no C,,, by the definition of
R(Cp, W, ) we get F[A] 2 W, 1y and hence F contains a W, p,. O

Lemma 5 (Chvatal and Erdds [4], Zhou [15]). If H =Cs = F for a
graph F, while F 2Cg,; and F 2 K,, then | Ny (x)|<r -2 for each
x e V(F)\V(H).

3. Proof of Theorem

Proof of Theorem. Let G be a graph of order 3n — 2, where n > 9Tm +1

for even m >4 and containing no C,. We shall show that G contains
W5 m. By contradiction, suppose G contains no W5 . By Lemma 4,
we have §(G)>n—1 since |Ng[x]|>V(F)—-R(Cy, W n)=(3n-2)-
(2n—=1)=n-1 for any x € V(G). Now we shall distinguish two cases

below.

Case 1. 5(G) = n.

Subcase 1.1. G is non-bipartite.

Since 8(G)>n = w

, by Lemma 2, we get that G is weakly
pancyclic with girth 3 or 4.

If k(G)> 2, then G is a 2-connected graph. By Lemma 3, we have

¢(G) > min{2n, 3n — 2}. This implies that G contains C,, a contradiction.

Let x(G) = 1. There exists a cut-vertex V € V(G) such that G —v is
disconnected. Let Gy, ..., G, be the components of G —v. Since 8(G) > n
we deduce 8(Gj) = n—1, hence |V(Gj)|=n forevery i =1, 2, ..., r. This
implies r=2 and G -V has two components G; and G,, such that

[V(G)|+|V(G,)| =3n—-3. This implies that, we have at least one
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component, say Gj, such that |V(G;)| < 3n2— 3. So, we find 8(G;) > n—1

3n-3
> 2 > |V(§1)| Now Lemma 1 applies to G;, hence G, is pancyclic

2
and G; contains Cy, a contradiction, or G; = Ky ,, where p =|V(G))|
22
om +2

. . 9m
> n is even. Since n27+landm24,gz >m+ 2, sowe

deduce that G o W, 1, a contradiction.

Let k(G) = 0. Then G is disconnected and we deduce as above that G
has exactly two components, G; and G,. Since 8(G)>n, we deduce
[V(Gj)| =2 n+1 for each ie {l, 2}. Suppose |V(G)|<|V(G;y)|, which

3”2_2. We find that §(Gy) 2 n > —35— > |V(§1)|,

By Lemma 1, we get that Gy is either pancyclic and so Gy o C, a

implies |V(G;)| <

contradiction, or Gy = K, ,, where p=|V(G;)|=n+1 is even. Since

9m

Nzt +1and m >4, g2n+1 om + 4

2>
2 4

> m+ 2, so we deduce that

G o Wz’ m» a contradiction.

Subcase 1.2. G is bipartite.

Since G is bipartite and 8(G) > n, we deduce that G is a spanning

subgraph of Kj ¢ for j>n and t>n. This implies G o Wr m, a
contradiction, since E(G) o E(K;)UE(K¢) and n > 9Tm +1>m+2.
Case2. 3(G)=n—1.

Let x € V(G) such that | Ng(x)| = 8(G) = n — 1. Let H be the subgraph
of G induced by Ng(x). Let A =V(G)\Ng[x]. So, we have | A| = 2n - 2.
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Let T be the subgraph of G induced by A. Now, we shall consider in what
follows two subcases.

Subcase 2.1. §(T) < n — % -3.

m

5 3. Let B=V(T)\

Let y € V(T) such that | N7 (y)|=8(T)<n—

Nt[y]. So, we have |B|2(2n—2)—(n—%—2)=n+%>n+%—1>

2m —1. Since by Proposition 1, we have R(Cp, Cpy)=n+ % —1 the
complement of the subgraph T[B] of T induced by B contains C,,, which

implies T o Wi, m, hence Go W3 m, a contradiction.

Subcase 2.2. §(T) > n — % -3.

In this situation, we also consider two subcases: (a) T is non-bipartite and
(b) T is bipartite.

(a) In the first case, let T be non-bipartite. Since 8(T)>n — % -32

% = m, by Lemma 2, we get that T is weakly pancyclic with
girth 3 or 4.

If (T)>2, then T is a 2-connected graph. By Lemma 3, we have
¢(T) > min{28(T ), 2n — 2}. This implies that T contains C,, a contradiction.

Let k(T)=1. There exists a cut-vertex Vo € V(T) such that T — v,

is disconnected. Let Ty, ..., T, be the components of T —v,. Since 8(T) >
n —%—3 we deduce §(T;) > n—%—4, hence |V(T;)| = n —%—3 for
every i =1, 2, ..., r. This implies r = 2 and T — Vv, has two components T,

and T,, such that |V (T)| +|V(T,)| = 2n - 3. Suppose that T — Vv, contains
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Wi . Since in G, x is adjacent to all vertices in T, it follows that G

contains W, p, and the proof is complete in this case. Otherwise, T -V
contains no W . Since T —Vy has 2n-3 vertices, its complement
contains no W; p, and by Theorem 1 R(Cp_;, W) y) = 2n -3, we obtain
that T — v contains Cp_;. This implies that C,,_; will be contained in one
of the components of T — Vg, say T;, such that Tj © C,,_;. Thus, we have
[IV(T}))|=2n—-1 and |[V(T,)[<n-2. Let X =V(C,_;). If T contains
Wi m we deduce as above that G contains W, m and we are done.
Otherwise, T contains no Wi m. Since T contains no Wi, m, it contains also

no K1 and by Lemma 5, we have:

[Ny (V)| £ m—1 foreach v e V(T)\X. (1)

If there exists zg € V(Tj)\X, then by (1) and &(T;) > n — % — 4, we have:

| Nymnx (zo) [ =1 Ny,)(z0) | =] Nx (zo) |
2(n—%—4j—(m—l)

=n—7—3. (2)

Thus, by (2) we have

V[ 2 [ X | +] Nymyxlzo]|

2(n—1)+((n—37m—3)+1j=2n—37m—3

which implies |V (T,)] < 37”‘ a contradiction with [V (T,)| > n -} - 3.

We deduce that [V(T;)| = n—1 and |V(T,)| = n — 2. Since §(T,) > n —%
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n-2_|V(T)|
2 2

T, =K n-2 n-2- This implies that T, also contains Cp,_5.
2 2

4>

, we have that T, is pancyclic or n —2 is even and

Let D =V(T,)(J{Vo} and also T3 be the subgraph T[D] of T induced

by D. Since §(T) > n—%—3 and by (1) we have | Ny, (vo)[<m—1,

|NTZ(VO)|2n—%—3—(m—l)=n—37m—2>m—l. By Lemma 5, we

get T3 © Cy_;. The same conclusion holds by observing that n — 3Tm -2
>0

2
Thus, we also have:

2 L . . .
, hence Vv is adjacent to two consecutive vertices of C,_, in T,.

| N7, (v) | < m—1 foreach v e V(T)\V(T3). (3)

Because G contains no W5 m, it follows that G also contains no Ky,

hence by Lemma 5, we get

| N7,(v) | £ m foreach v e V(G)\V(T;) 4)
and
| N7, (v) | < m foreach v e V(G)\V(T3). ®)
Claim1l. H = K,_;.

Suppose H is not complete, so there exist hy, h, e V(H) such that
hihy & E(H). By (4) and (5), we have | Ny (hy)[+| Ny (hy)|<2m and
| Nty (hy) [ +] Ngy(ho) | < 2m. Let Y =V(T)\(Nq, (h)U N, (ho)U N, (hy)
UNz,(hy)), andso [Y [>2n-2-4m>n+ % — 1. Let F be the subgraph

T[Y] of T induced by Y. By Proposition 1, one deduces that C,, = F which

implies G o W3 ., a contradiction.
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It follows that by Claim 1, we have that H + {x} = K,, hence C,, < G,

a contradiction.

Let k(T) = 0. Then T is disconnected and we deduce as above that T has

exactly two components, Z; and Z,. Since 8(T) > n— % — 3, we deduce

8(Z;) = n—%—3 for each ie{l,2} and so n—%—2 <|V(Zj)] <
2n — 2. By a similar argument as in the case x(T)=1, we also obtain
Zy, 2Ch_1, Zy 2Cph_jand H + {x} = K, hence C, < G, a contradiction.

(b) In the second case, let T be bipartite. Since T is bipartite and
[V(T)|=2n-2, we deduce that T is a spanning subgraph of K; i,

where max{j, t} >n—1. This implies T oW, ,, hence G oW, a

_ . = 9m
contradiction, since E(T ) 2 E(K;)U E(K¢) and n~12> - >m+ 2.

The proof is complete. H
4. Open Problems
For t 21, we define Wi , = K¢ + Cp. We shall propose some open

problems:

(1) Determine the Ramsey numbers R(C,,, Wi ) for even m >4 and

t > 3.

(2) Determine the Ramsey numbers R(Cy, W; ) for odd m > 5 and
t>2.

References

[17 J. A. Bondy, Pancyclic graphs, J. Comb. Theory Ser. B 11 (1971), 80-84.

[2] S. Brandt, R. J. Faudree and W. Goddard, Weakly pancyclic graphs, J. Graph
Theory 27 (1998), 141-176.



On Ramsey Numbers of Cycles with Respect even Wheels of Two Hubs 359

(3]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

S. A. Burr and P. Erdés, Generalization of a Ramsey-theoretic result of Chvatal,
J. Graph Theory 7 (1983), 39-51.

V. Chvatal and P. Erd6s, A note on Hamiltonian circuits, Discrete Math. 2 (1972),
111-113.

V. Chvatal and F. Harary, Generalized Ramsey theory for graphs, III. Small off-
diagonal numbers, Pacific J. Math. 41 (1972), 335-345.

G. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952),
69-81.

R. J. Faudree and R. H. Schelp, All Ramsey numbers for cycles in graphs,
Discrete Math. 8 (1974), 313-329.

S. P. Radziszowski, Small Ramsey numbers, Electron. J. Comb. (2004), DS1.8.

S. P. Radziszowski and J. Xia, Paths, cycles and wheels without antitriangles,
Australas. J. Comb. 9 (1994), 221-232.

V. Rosta, On a Ramsey type problem of J. A. Bondy and P. Erdds, I and II,
J. Comb. Theory Ser. B 15 (1973), 94-120.

Surahmat, E. T. Baskoro and H. J. Broersma, The Ramsey numbers of large cycles
versus small wheels, Integer: The Electronic J. Comb. Number Theory 4 (2004),
1-9.

Surahmat, E. T. Baskoro and S. M. Nababan, The Ramsey numbers for a cycle of
length four versus a small wheel, Proceedings of the 11th Conference Indonesian
Mathematics, Malang, Indonesia, 2002, pp. 172-178.

Surahmat, E. T. Baskoro and loan Tomescu, The Ramsey numbers of large cycles
versus wheels, Discrete Math. 306(24) (2006), 3334-3337.

Kung-Kuen Tse, On the Ramsey number of the quadrilateral versus the book and
the wheel, Australas. J. Comb. 27 (2003), 163-167.

H. L. Zhou, The Ramsey number of an odd cycle with respect to a wheel (in
Chinese), J. Mathematics, Shuxu Zazhi (Wuhan) 15 (1995), 119-120.



