Far East Journal of Mathematical Sciences (FJMS)
© 2017 Pushpa Publishing House, Allahabad, India
http://www.pphmj.com
http://dx.doi.org/10.17654/MS102020349
Volume 102, Number 2, 2017, Pages 349-359

ON RAMSEY NUMBERS OF CYCLES WITH RESPECT EVEN WHEELS OF TWO HUBS

Surahmat ${ }^{*}$, Syafrizal Sy ${ }^{*}$, Dafik and Ioan Tomescu
Department of Mathematics Education
Universitas Islam Malang
Jalan MT Haryono 193
Malang, 65144, Indonesia
Department of Mathematics
Faculty of Mathematical and Natural Science
Universitas Andalas
Kampus Unand Limau Manis
Padang, 25163, Indonesia
Department of Mathematics Education
Universitas Negeri Jember
Jalan Kalimantan 37 Tegalboto Jember, 68121, Indonesia
Faculty of Mathematics and Computer Science
University of Bucharest
Str. Academiei, 14, 010014 Bucharest
Romania

Received: February 7, 2017; Accepted: April 25, 2017
2010 Mathematics Subject Classification: 05C55, 05D10.
Keywords and phrases: Ramsey number, cycle, wheel, graph join.
*Corresponding authors

Abstract

For given graphs G and H, the Ramsey number $R(G, H)$ is the smallest positive integer N such that for every graph F of order N the following holds: either F contains G as a subgraph or the complement of F contains H as a subgraph. In this paper, we determine the Ramsey numbers of cycles with respect to even wheels of two hubs: $$
R\left(C_{n}, W_{2, m}\right)=3 n-2 \text { for even } m \geq 4 \text { and } n \geq \frac{9 m}{2}+1
$$

1. Introduction

Throughout the paper, all graphs are finite and simple. Let G be such a graph. We write $V(G)$ or V for the vertex set of G and $E(G)$ or E for the edge set of G. For given graphs G and H, the Ramsey number $R(G, H)$ is the smallest positive integer N such that for every graph F of order N the following holds: either F contains G as a subgraph or the complement of F contains H as a subgraph. Since then the Ramsey numbers $R(G, H)$ for many combinations of graphs G and H have been extensively studied by various authors, see nice survey paper "small Ramsey numbers" in [8]. In particular, the Ramsey numbers for combination involving cycles and wheels have also been investigated.

Let C_{n} be a cycle of n vertices and $W_{1, m}$ be the join $K_{1}+C_{m}$. It is called a wheel with m spokes. Burr and Erdös [3] showed that $R\left(C_{3}, W_{1, m}\right)=2 m+1$ for each $m \geq 5$. Ten years later Radziszowski and Xia [9] gave a simple and unified method to establish the Ramsey number $R\left(C_{3}, G\right)$, where G is either a path, a cycle or a wheel. Surahmat et al. [12] showed $R\left(C_{4}, W_{1, m}\right)=9,10$ and 9 for $m=4,5$ and 6 , respectively. Independently, Tse [14] showed $R\left(C_{4}, W_{1, m}\right)=9,10,9,11,12,13,14,15$ and 17 for $m=4,5,6,7,8,9,10,11$ and 12 , respectively. Recently, in [11], the Ramsey numbers of cycles versus small wheels were obtained, e.g., $R\left(C_{n}, W_{1,4}\right)=2 n-1$ for $n \geq 5$ and $R\left(C_{n}, W_{1,5}\right)=3 n-2$ for $n \geq 5$.

On Ramsey Numbers of Cycles with Respect even Wheels of Two Hubs 351
The aim of this paper is to determine the Ramsey number of cycles C_{n} with respect to wheels of two hubs $W_{2, m}$. The main result of this paper is the following.

Theorem. $R\left(C_{n}, W_{2, m}\right)=3 n-2$ for even $m \geq 4$ and $n \geq \frac{9 m}{2}+1$.
Before proving the Theorem let us present some notation used in this note. For $x \in V$ and a subgraph B of G, define $N_{B}(x)=\{y \in$ $V(B): x y \in E\}$ and $N_{B}[x]=N_{B}(x) \cup\{x\}$. The degree $d_{G}(x)$ of a vertex x is $\left|N_{G}(x)\right| ; \delta(G)$ denotes the minimum degree in G. For any nonempty subset $S \subset V$, the subgraph induced by S is the maximal subgraph of G with the vertex set S, it is denoted by $G[S]$. A cycle C_{n} of length $n \geq 3$ is a connected graph on n vertices in which every vertex has degree two. A wheel $W_{1, n}=K_{1}+C_{n}$ is a graph on $n+1$ vertices obtained from a C_{n} by adding one vertex x, called the hub of the wheel, and making x adjacent to all vertices of C_{n}, called the rim of the wheel. A wheel of t-hubs $W_{t, n}=$ $K_{t}+C_{n}$ is a graph on $n+t$ vertices obtained form a cycle C_{m} by adding a complete graph K_{t} and making vertices of K_{t} adjacent to all vertices of C_{n}.

If G contains cycles, let $c(G)$ be the circumference of G, that is, the length of a longest cycle, and $g(G)$ be the girth of G, that is, the length of a shortest cycle. A graph on n vertices is pancyclic if it contains cycles of every length $l, 3 \leq l \leq n$. A graph is weakly pancyclic if it contains cycles of length from the girth to the circumference.

We will also use the short notations $H \subseteq F, F \supseteq H, H \nsubseteq F$, and $F \nsupseteq H$ to denote that H is (is not) a subgraph of F, with the obvious meanings.

For given graphs G and H, Chvátal and Harary [5] established the lower bound $R(G, H) \geq(C(G)-1)(\chi(H)-1)+1$, where $C(G)$ is the number of vertices of the largest component of G and $\chi(H)$ is the chromatic number of
H. In particular, if $G=C_{n}$ and $H=W_{2, m}$ for even m, then we have $R\left(C_{n}, W_{2, m}\right) \geq 3 n-2$. In order to prove this Theorem, we need the following known results and lemmas.

2. Some Lemmas

Some lemmas in what follows will be used to prove the main result of this paper.

Proposition 1 (Faudree and Schelp [7], Rosta [10]).

$$
\begin{aligned}
& R\left(C_{n}, C_{m}\right) \\
= & \left\{\begin{array}{l}
2 n-1 \text { for } 3 \leq m \leq n, m \text { odd, }(n, m) \neq(3,3) . \\
n+\frac{m}{2}-1 \text { for } 4 \leq m \leq n, m \text { even and } n \text { even, }(n, m) \neq(4,4) . \\
\max \left\{n+\frac{m}{2}-1,2 m-1\right\} \text { for } 4 \leq m<n, m \text { even and } n \text { odd. }
\end{array}\right.
\end{aligned}
$$

Theorem 1 (Surahmat et al. [13]). $R\left(C_{n}, W_{1, m}\right)=2 n-1$ for even $m \geq 4$ and $n \geq \frac{5 m}{2}-1$.

Lemma 1 (Bondy [1]). Let G be a graph of order n. If $\delta(G) \geq \frac{n}{2}$, then either G is pancyclic or n is even and $G \cong K_{\frac{n}{2}, \frac{n}{2}}$.

Lemma 2 (Brandt et al. [2]). Every non-bipartite graph G of order n with $\delta(G) \geq \frac{n+2}{3}$ is weakly pancyclic and has girth 3 or 4 .

Lemma 3 (Dirac [6]). Let G be a 2-connected graph of order $n \geq 3$ with $\delta(G)=\delta$. Then $c(G) \geq \min \{2 \delta, n\}$.

Lemma 4. Let F be a graph with $|V(F)| \geq R\left(C_{n}, W_{1, m}\right)+1$. If there is a vertex $x \in V(F)$ such that $\left|N_{F}[x]\right| \leq|V(F)|-R\left(C_{n}, W_{1, m}\right)$ and $F \nsupseteq C_{n}$, then $\bar{F} \supseteq W_{2, m}$.

On Ramsey Numbers of Cycles with Respect even Wheels of Two Hubs 353
Proof. Let $A=V(F) \backslash N_{F}[x]$ and so $|A| \geq R\left(C_{n}, W_{1, m}\right)$. Since the subgraph $F[A]$ of F induced by A contains no C_{n}, by the definition of $R\left(C_{n}, W_{1, m}\right)$ we get $\bar{F}[A] \supseteq W_{1, m}$ and hence \bar{F} contains a $W_{2, m}$.

Lemma 5 (Chvátal and Erdös [4], Zhou [15]). If $H=C_{s} \subseteq F$ for a graph F, while $F \nsupseteq C_{s+1}$ and $\bar{F} \nsupseteq K_{r}$, then $\left|N_{H}(x)\right| \leq r-2$ for each $x \in V(F) \backslash V(H)$.

3. Proof of Theorem

Proof of Theorem. Let G be a graph of order $3 n-2$, where $n \geq \frac{9 m}{2}+1$ for even $m \geq 4$ and containing no C_{n}. We shall show that \bar{G} contains $W_{2, m}$. By contradiction, suppose \bar{G} contains no $W_{2, m}$. By Lemma 4, we have $\delta(G) \geq n-1$ since $\left|N_{G}[x]\right|>V(F)-R\left(C_{n}, W_{1, m}\right)=(3 n-2)-$ $(2 n-1)=n-1$ for any $x \in V(G)$. Now we shall distinguish two cases below.

Case 1. $\delta(G) \geq n$.
Subcase 1.1. G is non-bipartite.
Since $\delta(G) \geq n=\frac{(3 n-2)+2}{3}$, by Lemma 2, we get that G is weakly pancyclic with girth 3 or 4 .

If $\kappa(G) \geq 2$, then G is a 2 -connected graph. By Lemma 3, we have $c(G) \geq \min \{2 n, 3 n-2\}$. This implies that G contains C_{n}, a contradiction.

Let $\kappa(G)=1$. There exists a cut-vertex $v \in V(G)$ such that $G-v$ is disconnected. Let G_{1}, \ldots, G_{r} be the components of $G-v$. Since $\delta(G) \geq n$ we deduce $\delta\left(G_{i}\right) \geq n-1$, hence $\left|V\left(G_{i}\right)\right| \geq n$ for every $i=1,2, \ldots, r$. This implies $r=2$ and $G-v$ has two components G_{1} and G_{2}, such that $\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|=3 n-3$. This implies that, we have at least one
component, say G_{1}, such that $\left|V\left(G_{1}\right)\right| \leq \frac{3 n-3}{2}$. So, we find $\delta\left(G_{1}\right) \geq n-1$ $\geq \frac{\frac{3 n-3}{2}}{2} \geq \frac{\left|V\left(G_{1}\right)\right|}{2}$. Now Lemma 1 applies to G_{1}, hence G_{1} is pancyclic and G_{1} contains C_{n}, a contradiction, or $G_{1} \cong K_{\frac{p}{2}, \frac{p}{2}}$, where $p=\left|V\left(G_{1}\right)\right|$ $\geq n$ is even. Since $n \geq \frac{9 m}{2}+1$ and $m \geq 4, \frac{p}{2} \geq \frac{9 m+2}{4} \geq m+2$, so we deduce that $\bar{G} \supseteq W_{2, m}$, a contradiction.

Let $\kappa(G)=0$. Then G is disconnected and we deduce as above that G has exactly two components, G_{1} and G_{2}. Since $\delta(G) \geq n$, we deduce $\left|V\left(G_{i}\right)\right| \geq n+1$ for each $i \in\{1,2\}$. Suppose $\left|V\left(G_{1}\right)\right| \leq\left|V\left(G_{2}\right)\right|$, which implies $\left|V\left(G_{1}\right)\right| \leq \frac{3 n-2}{2}$. We find that $\delta\left(G_{1}\right) \geq n>\frac{\frac{3 n-2}{2}}{2} \geq \frac{\left|V\left(G_{1}\right)\right|}{2}$. By Lemma 1, we get that G_{1} is either pancyclic and so $G_{1} \supseteq C_{n}$, a contradiction, or $G_{1} \cong K_{\frac{p}{2}}, \frac{p}{2}$, where $p=\left|V\left(G_{1}\right)\right| \geq n+1$ is even. Since $n \geq \frac{9 m}{2}+1$ and $m \geq 4, \frac{p}{2} \geq \frac{n+1}{2} \geq \frac{9 m+4}{4} \geq m+2$, so we deduce that $\bar{G} \supseteq W_{2, m}$, a contradiction.

Subcase 1.2. G is bipartite.
Since G is bipartite and $\delta(G) \geq n$, we deduce that G is a spanning subgraph of $K_{j, t}$ for $j \geq n$ and $t \geq n$. This implies $\bar{G} \supseteq W_{2, m}$, a contradiction, since $E(\bar{G}) \supseteq E\left(K_{j}\right) \cup E\left(K_{t}\right)$ and $n \geq \frac{9 m}{2}+1>m+2$.

Case 2. $\delta(G)=n-1$.
Let $x \in V(G)$ such that $\left|N_{G}(x)\right|=\delta(G)=n-1$. Let H be the subgraph of G induced by $N_{G}(x)$. Let $A=V(G) \backslash N_{G}[x]$. So, we have $|A|=2 n-2$.

On Ramsey Numbers of Cycles with Respect even Wheels of Two Hubs 355 Let T be the subgraph of G induced by A. Now, we shall consider in what follows two subcases.

Subcase 2.1. $\delta(T)<n-\frac{m}{2}-3$.
Let $y \in V(T)$ such that $\left|N_{T}(y)\right|=\delta(T)<n-\frac{m}{2}-3$. Let $B=V(T) \backslash$ $N_{T}[y]$. So, we have $|B| \geq(2 n-2)-\left(n-\frac{m}{2}-2\right)=n+\frac{m}{2}>n+\frac{m}{2}-1>$ $2 m-1$. Since by Proposition 1, we have $R\left(C_{n}, C_{m}\right)=n+\frac{m}{2}-1$ the complement of the subgraph $T[B]$ of T induced by B contains C_{m}, which implies $\bar{T} \supseteq W_{1, m}$, hence $\bar{G} \supseteq W_{2, m}$, a contradiction.

Subcase 2.2. $\delta(T) \geq n-\frac{m}{2}-3$.
In this situation, we also consider two subcases: (a) T is non-bipartite and (b) T is bipartite.
(a) In the first case, let T be non-bipartite. Since $\delta(T) \geq n-\frac{m}{2}-3 \geq$ $\frac{2 n}{3}=\frac{|V(T)|+2}{3}$, by Lemma 2, we get that T is weakly pancyclic with girth 3 or 4 .

If $\kappa(T) \geq 2$, then T is a 2-connected graph. By Lemma 3, we have $c(T) \geq \min \{2 \delta(T), 2 n-2\}$. This implies that T contains C_{n}, a contradiction.

Let $\kappa(T)=1$. There exists a cut-vertex $v_{0} \in V(T)$ such that $T-v_{0}$ is disconnected. Let T_{1}, \ldots, T_{r} be the components of $T-v_{0}$. Since $\delta(T) \geq$ $n-\frac{m}{2}-3$ we deduce $\delta\left(T_{i}\right) \geq n-\frac{m}{2}-4$, hence $\left|V\left(T_{i}\right)\right| \geq n-\frac{m}{2}-3$ for every $i=1,2, \ldots, r$. This implies $r=2$ and $T-v_{0}$ has two components T_{1} and T_{2}, such that $\left|V\left(T_{1}\right)\right|+\left|V\left(T_{2}\right)\right|=2 n-3$. Suppose that $\overline{T-v_{0}}$ contains
$W_{1, m}$. Since in \bar{G}, x is adjacent to all vertices in T, it follows that \bar{G} contains $W_{2, m}$ and the proof is complete in this case. Otherwise, $\overline{T-v_{0}}$ contains no $W_{1, m}$. Since $T-v_{0}$ has $2 n-3$ vertices, its complement contains no $W_{1, m}$ and by Theorem $1 R\left(C_{n-1}, W_{1, m}\right)=2 n-3$, we obtain that $T-v_{0}$ contains C_{n-1}. This implies that C_{n-1} will be contained in one of the components of $T-v_{0}$, say T_{1}, such that $T_{1} \supseteq C_{n-1}$. Thus, we have $\left|V\left(T_{1}\right)\right| \geq n-1$ and $\left|V\left(T_{2}\right)\right| \leq n-2$. Let $X=V\left(C_{n-1}\right)$. If \bar{T} contains $W_{1, m}$ we deduce as above that \bar{G} contains $W_{2, m}$ and we are done. Otherwise, \bar{T} contains no $W_{1, m}$. Since \bar{T} contains no $W_{1, m}$, it contains also no K_{m+1} and by Lemma 5, we have:

$$
\begin{equation*}
\left|N_{X}(v)\right| \leq m-1 \text { for each } v \in V(T) \backslash X . \tag{1}
\end{equation*}
$$

If there exists $z_{0} \in V\left(T_{1}\right) \backslash X$, then by (1) and $\delta\left(T_{1}\right) \geq n-\frac{m}{2}-4$, we have:

$$
\begin{align*}
\left|N_{V\left(T_{1}\right) \backslash X}\left(z_{0}\right)\right| & =\left|N_{V\left(T_{1}\right)}\left(z_{0}\right)\right|-\left|N_{X}\left(z_{0}\right)\right| \\
& \geq\left(n-\frac{m}{2}-4\right)-(m-1) \\
& =n-\frac{3 m}{2}-3 . \tag{2}
\end{align*}
$$

Thus, by (2) we have

$$
\begin{aligned}
\left|V\left(T_{1}\right)\right| & \geq|X|+\left|N_{V\left(T_{1}\right) \backslash X}\left[z_{0}\right]\right| \\
& \geq(n-1)+\left(\left(n-\frac{3 m}{2}-3\right)+1\right)=2 n-\frac{3 m}{2}-3
\end{aligned}
$$

which implies $\left|V\left(T_{2}\right)\right| \leq \frac{3 m}{2}$, a contradiction with $\left|V\left(T_{2}\right)\right| \geq n-\frac{m}{2}-3$. We deduce that $\left|V\left(T_{1}\right)\right|=n-1$ and $\left|V\left(T_{2}\right)\right|=n-2$. Since $\delta\left(T_{2}\right) \geq n-\frac{m}{2}$

On Ramsey Numbers of Cycles with Respect even Wheels of Two Hubs 357 $-4 \geq \frac{n-2}{2}=\frac{\left|V\left(T_{2}\right)\right|}{2}$, we have that T_{2} is pancyclic or $n-2$ is even and $T_{2} \cong K_{\frac{n-2}{2}, \frac{n-2}{2}}$. This implies that T_{2} also contains C_{n-2}.

Let $D=V\left(T_{2}\right) \bigcup\left\{v_{0}\right\}$ and also T_{3} be the subgraph $T[D]$ of T induced by D. Since $\delta(T) \geq n-\frac{m}{2}-3$ and by (1) we have $\left|N_{T_{1}}\left(v_{0}\right)\right| \leq m-1$, $\left|N_{T_{2}}\left(v_{0}\right)\right| \geq n-\frac{m}{2}-3-(m-1)=n-\frac{3 m}{2}-2>m-1$. By Lemma 5, we get $T_{3} \supseteq C_{n-1}$. The same conclusion holds by observing that $n-\frac{3 m}{2}-2$ $\geq \frac{n-2}{2}$, hence v_{0} is adjacent to two consecutive vertices of C_{n-2} in T_{2}. Thus, we also have:

$$
\begin{equation*}
\left|N_{T_{3}}(v)\right| \leq m-1 \text { for each } v \in V(T) \backslash V\left(T_{3}\right) . \tag{3}
\end{equation*}
$$

Because \bar{G} contains no $W_{2, m}$, it follows that \bar{G} also contains no K_{m+2}, hence by Lemma 5, we get

$$
\begin{equation*}
\left|N_{T_{1}}(v)\right| \leq m \text { for each } v \in V(G) \backslash V\left(T_{1}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|N_{T_{3}}(v)\right| \leq m \text { for each } v \in V(G) \backslash V\left(T_{3}\right) . \tag{5}
\end{equation*}
$$

Claim 1. $H \cong K_{n-1}$.
Suppose H is not complete, so there exist $h_{1}, h_{2} \in V(H)$ such that $h_{1} h_{2} \notin E(H)$. By (4) and (5), we have $\left|N_{T_{1}}\left(h_{1}\right)\right|+\left|N_{T_{1}}\left(h_{2}\right)\right| \leq 2 m$ and $\left|N_{T_{3}}\left(h_{1}\right)\right|+\left|N_{T_{3}}\left(h_{2}\right)\right| \leq 2 m$. Let $Y=V(T) \backslash\left(N_{T_{1}}\left(h_{1}\right) \cup N_{T_{1}}\left(h_{2}\right) \cup N_{T_{3}}\left(h_{1}\right)\right.$ $\left.\cup N_{T_{3}}\left(h_{2}\right)\right)$, and so $|Y| \geq 2 n-2-4 m \geq n+\frac{m}{2}-1$. Let F be the subgraph $T[Y]$ of T induced by Y. By Proposition 1, one deduces that $C_{m} \subseteq \bar{F}$ which implies $\bar{G} \supseteq W_{2, m}$, a contradiction.

It follows that by Claim 1, we have that $H+\{x\} \cong K_{n}$, hence $C_{n} \subseteq G$, a contradiction.

Let $\kappa(T)=0$. Then T is disconnected and we deduce as above that T has exactly two components, Z_{1} and Z_{2}. Since $\delta(T) \geq n-\frac{m}{2}-3$, we deduce $\delta\left(Z_{i}\right) \geq n-\frac{m}{2}-3$ for each $i \in\{1,2\}$ and so $n-\frac{m}{2}-2 \leq\left|V\left(Z_{i}\right)\right| \leq$ $2 n-2$. By a similar argument as in the case $\kappa(T)=1$, we also obtain $Z_{1} \supseteq C_{n-1}, Z_{2} \supseteq C_{n-1}$ and $H+\{x\} \cong K_{n}$, hence $C_{n} \subseteq G$, a contradiction.
(b) In the second case, let T be bipartite. Since T is bipartite and $|V(T)|=2 n-2$, we deduce that T is a spanning subgraph of $K_{j, t}$, where $\max \{j, t\} \geq n-1$. This implies $\bar{T} \supseteq W_{1, m}$, hence $\bar{G} \supseteq W_{2, m}$ a contradiction, since $E(\bar{T}) \supseteq E\left(K_{j}\right) \cup E\left(K_{t}\right)$ and $n-1 \geq \frac{9 m}{2}>m+2$.

The proof is complete.

4. Open Problems

For $t \geq 1$, we define $W_{t, m}=K_{t}+C_{m}$. We shall propose some open problems:
(1) Determine the Ramsey numbers $R\left(C_{n}, W_{t, m}\right)$ for even $m \geq 4$ and $t \geq 3$.
(2) Determine the Ramsey numbers $R\left(C_{n}, W_{t, m}\right)$ for odd $m \geq 5$ and $t \geq 2$.

References

[1] J. A. Bondy, Pancyclic graphs, J. Comb. Theory Ser. B 11 (1971), 80-84.
[2] S. Brandt, R. J. Faudree and W. Goddard, Weakly pancyclic graphs, J. Graph Theory 27 (1998), 141-176.

On Ramsey Numbers of Cycles with Respect even Wheels of Two Hubs 359
[3] S. A. Burr and P. Erdős, Generalization of a Ramsey-theoretic result of Chvátal, J. Graph Theory 7 (1983), 39-51.
[4] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972), 111-113.
[5] V. Chvátal and F. Harary, Generalized Ramsey theory for graphs, III. Small offdiagonal numbers, Pacific J. Math. 41 (1972), 335-345.
[6] G. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69-81.
[7] R. J. Faudree and R. H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Math. 8 (1974), 313-329.
[8] S. P. Radziszowski, Small Ramsey numbers, Electron. J. Comb. (2004), DS1.8.
[9] S. P. Radziszowski and J. Xia, Paths, cycles and wheels without antitriangles, Australas. J. Comb. 9 (1994), 221-232.
[10] V. Rosta, On a Ramsey type problem of J. A. Bondy and P. Erdös, I and II, J. Comb. Theory Ser. B 15 (1973), 94-120.
[11] Surahmat, E. T. Baskoro and H. J. Broersma, The Ramsey numbers of large cycles versus small wheels, Integer: The Electronic J. Comb. Number Theory 4 (2004), 1-9.
[12] Surahmat, E. T. Baskoro and S. M. Nababan, The Ramsey numbers for a cycle of length four versus a small wheel, Proceedings of the 11th Conference Indonesian Mathematics, Malang, Indonesia, 2002, pp. 172-178.
[13] Surahmat, E. T. Baskoro and Ioan Tomescu, The Ramsey numbers of large cycles versus wheels, Discrete Math. 306(24) (2006), 3334-3337.
[14] Kung-Kuen Tse, On the Ramsey number of the quadrilateral versus the book and the wheel, Australas. J. Comb. 27 (2003), 163-167.
[15] H. L. Zhou, The Ramsey number of an odd cycle with respect to a wheel (in Chinese), J. Mathematics, Shuxu Zazhi (Wuhan) 15 (1995), 119-120.

