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Abstract 

This paper describes the effect of the thermal radiation on peristaltic 
transportation of a couple stress fluid in an asymmetric channel in the 
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presence of external magnetic field. The governing equations are 
reduced by using very low Reynolds number and long-wavelength 
rough calculations. Closed-form analytical expressions for axial 
velocity and temperature distribution have been obtained. Graphs are 
presented and analyzed for various parameters involved in the 
problem. 

Introduction 

The peristaltic flow has been a focus of scientific study during the past 
few decades but in recent years it has established much attention due to its 
wide applications in manufacturing engineering and physiology. Few 
applications of the peristaltic mechanism include the urine transport from a 
kidney to the bladder and the transport of the spermatozoa in the cervical 
canal, the chime movement in the large intestine. Numerous theoretical and 
experimental studies have been conducted to understand the peristaltic action 
after the first study of Latham [1]. The pre-results of the testing were in good 
agreement with the theoretical results of Shapiro et al. [2]. Then, Burns and 
Parkes [3] have studied the peristaltic motion of a viscous fluid through the 
channel. Detailed discussions of the peristaltic flow under various 
assumptions have been presented in the studies [4-7] (several references 
therein). 

The progress in the theory of peristaltic transport with heat transfer was 
given in [8-12]. The examination of heat transfer is of huge value in dilution 
method in examining blood flow and biological tissues, etc. The effect of 
mass and heat transfer on the MHD peristaltic transport of viscous fluid has 
been examined in the studies [13, 14]. Eldabe et al. [15] have employed the 
convective boundary conditions with mass and heat transfer on peristaltic 
transport. Mass and heat transfer effects on magnetohydrodynamics 
peristaltic flow through a porous medium with asymmetric flexible walls 
were discussed by Srinivas and Kothandapani [16]. 

Couple stress fluid is useful in learning some physical problems for the 
reason that it acquires the mechanism to depict rheological fluids such as oil 
containing a small quantity of high polymer chemical addition, liquid 
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crystals etc. Stokes [17] formulated to predict microstructural characteristics 
(particle size) of physiological suspensions with good precision. Mekheimer 
[18] studied the problem in the peristalsis of a couple stress fluid in an 
asymmetric channel. The MHD peristaltic transport of a couple stress fluid in 
an asymmetric channel was observed by Nadeem and Akram [19] and 
Mekheimer [20]. 

It is noted that the intra uterine fluid flow in a sagittal uterus cross-
section releases a channel enclosed by two parallel walls having different 
amplitudes and phase difference. Several authors have discussed the intra 
uterine transport [21-25]. 

The peristaltic flow of a coupled stress fluid through a porous 
asymmetric channel is considered. The flow equations are reduced under 
large wavelength and less Reynolds number. The closed-forms of 
temperature and velocity distribution are obtained. The effects of various 
parameters on fluid flow are discussed through graphs. 

Mathematical Formulation 

The flexible tapered asymmetric channel filled with porous medium is 
considered. The channel walls are given by 

( ) ( ),2sin, 22 tcXbXmdtXH ′−
λ
π+′+=′  (1) 

( ) ( ) ,2sin, 11 ⎥⎦
⎤

⎢⎣
⎡ ϕ+′−
λ
π−′−−=′ tcXbXmdtXH  (2) 

where 1b  and 2b  are the amplitudes of walls, d is the semi-average width of 

the channel, λ is the wavelength, ( )1<<′′ mm  is the parameter of non-

uniform. dbb ,, 21  and ϕ satisfy the following condition: 

 ( ) ( ) ,2cos2 2
21

2
2

2
1 dbbbb ≤ϕ++  (3) 

where 0T  - temperature of the lower wall and the temperature at the upper 

wall is .1T  The governing equations of continuity and momentum are given 
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as follows: 
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where U and V are the velocities in X and Y directions, t′  is the time, μ is the 
viscosity, ρ is the fluid density, pC  is the specific heat, P is the pressure, T is 

the temperature, η is the constant associated with couple stress, κ is the 
thermal conductivity and rq  is the radiative heat flux. 

 
Figure 1. Tapered flexible walls diagram. 

By using Rosseland approximation for radiation, the radiative heat flux 

rq  is given by 
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where ∗σ  and ∗k  are the Stefan-Boltzmann constant and mean absorption 
coefficient, respectively, and 
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The problem statement in the dimensionless form is given by 
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where 
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By assuming the long wavelength and low Reynolds number, we find 
from equations (10) to (13), 
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where 

 ,Pr
1+=ξ nR  (17) 

where R - Reynolds number, p - dimensionless pressure, a and b - amplitudes 
of lower and upper walls, δ - wave number, m - non-uniform parameter, θ - 
dimensionless temperature, Pr - Prandtl number, nR  - radiation parameter, S  

- couple stress parameter and E - Eckert number. 

The corresponding boundary conditions are: 
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Analytical Solution of the Problem 

The governing equations (14)-(16), subject to boundary conditions (18)-
(19) are solved exactly for velocity ( )u  and temperature ( ).θ  

(i) Velocity distribution 

 ,2sinhcosh 4321
yx

p

SycSycyccu
⋅

∂
∂

++++=  (20) 

where 

,sinhcosh2
.

141312
2
1

1
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++

∂∂
−= ShcShchchxpc  

( ) ( )

( )
( ) ,sinhsinh

coshcosh2
.

12
214

213
2
2

2
1

2 hh
ShShc

ShShchhxp

c
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+

−+
−∂∂

=  

,
cosh

sinh

1
2

1
2

4
3

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +∂∂
−=

ShS
ShScxpc  

( )
( )

.
sinh

coshcosh

12
2

12
4

hhSS
ShShxpc

−

−∂∂
=  

(ii) Temperature distribution 
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Results and Discussion 

This section details the behavior of the various parameters on axial 
velocity ( )u  and temperature distribution ( ).θ  

Flow characteristics 

Figures 2-5 show the behavior of couple stress parameter (S), a non-
uniform parameter (m), phase shift (ϕ) and amplitude of the lower wall (a) on 
the axial velocity u. Figure 2 shows that an increase in S causes increase in 
velocity u. The amplitude of the lower wall (a) effect on u is sketched in 
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Figure 3. It is shown that the axial velocity increases with an increase in a. 
The effect of non-uniform parameter (m) and phase shift of the channel (ϕ) 
on the axial velocity (u) are displayed in Figures 4 and 5. It is noted that the 
velocity profile u increases with a corresponding increase in m and opposite 
behavior observed for the phase shift ϕ. 

 

Figure 2. Variation of S on u for ,3.0=a  ,5.0=b  ,4π=ϕ  ,5.0=x  

,2.0=m  .2.0=t  

 

Figure 3. Variation of a on u for ,5.0=b  ,4π=ϕ  ,5.0=x  ,2.0=m  

,2.0=t  .5.0=S  
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Figure 4. Variation of m on u for ,3.0=a  ,5.0=b  ,4π=ϕ  ,5.0=x  

,2.0=t  .5.0=S  

 

Figure 5. Variation of ϕ on u for ,3.0=a  ,5.0=b  ,5.0=x  ,2.0=m  
,2.0=t  .5.0=S  

Heat transfer distributions 

Figures 6-11 depict temperature profiles for several values of radiation 
parameter ),( nR  Eckert number (E), Prandtl number (Pr), couple stress 

parameter (S), a non-uniform parameter (m) and amplitude of the lower wall 
(a). The influence of thermal radiation parameter )( nR  on temperature 

distribution θ is plotted in Figure 6. It is noted that the temperature 
distribution θ increases with decrease in .nR  The variation of Eckert number 

E on θ is shown in Figure 7. This figure shows that an increase in E results 
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into an increase in θ. Figure 8 depicts the effect for various values of Prandtl 
number Pr. 

From Figure 8, it is seen that the temperature θ increases as Prandtl 
number Pr increases. Figure 9 shows that the temperature profile θ increases 
with increase of couple stress parameter S. Figure 10 shows that the fluid 
temperature increases with an increase in non-uniform parameter (m). Figure 
11 represents the temperature profile θ for various values of amplitude of 
lower wall a. It is clearly noticed that increasing a leads to increase in the 
fluid temperature θ. 

 
Figure 6. Variation of nR  on θ for ,3.0=a  ,4.0=b  ,π=ϕ  ,5.0=x  

,2.0=m  ,2.0=t  ,2.6Pr =  ,75.0=E  .5.1=S  

 
Figure 7. Variation of E on θ for ,2.0,5.0,,4.0,3.0 ==π=ϕ== mxba  

.5.1,2.6Pr,3.0,2.0 ==== SRt n  
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Figure 8. Variation of Pr on θ for ,3.0=a  ,4.0=b  ,π=ϕ  ,5.0=x  

,2.0=m  ,2.0=t  ,3.0=nR  ,75.0=E  .5.1=S  

 
Figure 9. Variation of S on θ for ,2.0,5.0,,4.0,3.0 ==π=ϕ== mxba  

.75.0,2.6Pr,3.0,2.0 ==== ERt n  

 
Figure 10. Variation of m on θ for ,2.0,5.0,,4.0,3.0 ==π=ϕ== txba  

.5.1,75.0,2.6Pr,3.0 ==== SERn  
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Figure 11. Variation of a on θ for ,4.0=b  ,π=ϕ  ,5.0=x  ,2.0=m  

,2.0=t  ,3.0=nR  ,2.6Pr =  ,75.0=E  .5.1=S  

Conclusion 

The present paper discussed the radiation effects on peristaltic transport 
of a couple stress fluid in a flexible tapered channel. Under the assumptions 
of large wavelength and low Reynolds number, analytic solutions have been 
derived for the amplitude of velocity and temperature. Effects of a variety of 
parameters with peristaltic transfer are also discussed. The main findings are 
summarized as follows: 

1. The velocity profile increases with an increase in couple stress 
parameter, non-uniform parameter and amplitude of the lower wall. 

2. The velocity of the fluid decreases with an increase in phase shift ϕ. 

3. The temperature profile increases with an increase in Prandtl number 
Pr, Eckert number, couple stress parameter and non-uniform 
parameter m. 

4. The temperature distribution decreases with increase in .nR  
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