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Abstract 

Agglomeration of particles in a fluid environment is an integral part of 
many industrial processes and has been the subject of scientific 
investigation. One model of the fundamental mathematical problem of 
determining the number of particles of each particle-size as a function 
of time for a system of particles that may agglutinate during two 
particle collisions uses the coagulation or Smoluchowski’s equation. 
With initial conditions, it is called the discrete agglomeration model. 
Several problems have been associated with this model allowing 
progress to proceed separately. To facilitate this progress, in this 
paper, we develop and solve the fixed agglomeration problem and 
establish the fundamental agglomeration problem for all cases of the 
autonomous quadratic kernel. 

1. Introduction 

Agglomeration of particles in a fluid environment (e.g., a chemical 
reactor or the atmosphere) is an integral part of many industrial processes 
(e.g., Goldberger [3]) and has been the subject of scientific investigation 
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(e.g., Siegell [20]). A fundamental mathematical problem is the 
determination of the number of particles of each particle-type as a function of 
time for a system of particles that may agglutinate during two particle 
collisions. Little analytical work has been done for systems where particle-
type requires several variables. Efforts have focused on particle size (or 
mass). This allows use of the coagulation equation which has been well 
studied in aerosol research and other areas (e.g., Drake [2], Escobedo et al. 
[1], Leyvraz [4] and Wattis [24]). Original work on this equation was done 
by Smoluchowski [21] and it is also referred to as Smoluchowski’s equation. 
The agglomeration equation is perhaps more descriptive since the term 
coagulation implies a process carried out until solidification whereas we 
focus on the agglomeration process; that is, on the determination of a time-
varying particle-size distribution even if coagulation is never reached. 

In his original work, Smoluchowski considered the agglomeration 
equation in a discrete form. Later it was considered in a continuous form by 
Müller [16]. In either case, an initial particle-size distribution to specify the 
initial number of particles for each particle size is needed to complete the 
initial value problem (IVP). We refer to these as the discrete agglomeration 
model and the continuum agglomeration model, respectively. Solution of 
either model yields an updated particle-size distribution giving number 
densities as time progresses. For various conditions, studies of these and more 
general models include Morganstern [11], Melzak [10], McLeod [9], Marcus 
[7], White [25], Spouge [22], Shirvani and Stock [18], Treat [23], Yu [26], 
Shirvani and Van Roessel [19], McLaughlin et al. [8] and Moseley [12-15]. 

Let R be the real numbers, IIInto :{ R⊆=  is a finite, infinite or semi-

infinite open interval} and for ,oIntI ∈  ( ) { fIfI ::, RR →=A  is analytic 

on } ( ) { fIfICI ::,1 RR →=⊆  is continuously differential on } ⊆I  

( ) { fIfIC ::, RR →=  is continuous on } ( ) { ::, RR →=⊆ IfII F            

f is a function on }.I  If A is a subspace of a vector space B, then we write 

.BA vs⊆  These function spaces are vector spaces and ( ) vsI ⊆R,.A  

( ) ( ) ( ).,,,1 RRR IICIC vsvs F⊆⊆  
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To develop the discrete model, assume that all particles are a multiple of 
a particle of smallest size (volume), say Δv. Thus, a particle made up of i 
smallest-sized particles has size iΔv. In polymer chemistry, the particle is 
called an i-mer. The initial time is ,00 oIntIt ∈∈  where 0I  is the largest 

time interval of interest. We use the extended interval notation =0I  

( )+− 000 ,, ttt  and let ( ) { },: 00 IIIntIIInt oo ⊆∈=  and ( ) =00, ItInto  

{ }.: 00 IItIntI o ⊆∈∈  Unless otherwise specified, we assume ( ).0IIntI o∈  

Now, for each { },...,3,2,1=∈ Ni  let ( )tni  be a real-valued function (either 

in ( )R,11C  or ( ))R,IA  that approximates the number of i-mers in the 

reactor at time t. Since there are an infinite number of sizes, initially, we take 

the state (or phase) space to be {{ } }.:1 RR ∈= ∞
=

∞
iii aa  Assume the initial 

number density { } ∞∞
= ∈= R1

0
0 iinn  is known. As time passes, particles 

collide, agglutinations occur and larger particles result. The net rate of 
increase in ( )tni  with time, ,dtdni  is the rate of formation minus the rate of 

depletion (conservation of mass). For ( ),, 00 ItIntI o∈  we consider as a 

possible ∑ space (i.e., the designated space where we look for solutions) 

either ( )∞R,IcwA  for the analytic context or ( )∞R,1 ICcw  for the continuous 

context where 

( ) { ( ){ } ( ) ( )} ( )∞∞
=

∞ ⊆∈== RRR ,,:, 1
1 ICItntnnI cwvsiiicw AA  

{ ( ){ } ( ) ( )} ( )∞∞
= ⊆∈== RR ,,: 1

1 ICICtntnn cwvsiii  

{ ( ){ } ( ) ( )} ( )∞∞
= ⊆∈== RR ,,:1 IICtntnn vsiii F  

{ ( ){ } ( ) ( )}.,:1 RItntnn iii F∈== ∞
=  

Functions in ( )R,IC  are continuous, but functions in ( )∞R,ICcw  are not 

as we have not established a topology on .∞R  They are componentwise 

continuous. For ( ){ } ( ),,1
1

∞∞
= ∈= RICtnn cwii  we may define =dtnd  
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{ } .1
∞
=ii dtdn  The derivatives dtdni  exist and are in ( )., RIC  However, we 

cannot assert that ( ) ( )( )[ ]ttnhtndtnd
h

−+=
→0

lim  as we have no topology 

on .∞R  

Let {{ } }RR ∈= ∞
=

∞×∞
jijiji aa ,1,, :  be the set of “infinite matrices”. 

The kernel (which measures adhesion or “stickiness”), ( ) { ( )} ,1,,
∞

== jiji tKtK  

is a doubly infinite array of real-valued functions of time either in 

( ) { ( ) { ( )}∞ =
∞×∞ == 1,,0 , jijicw I tKtKRA  : for all ,, N∈ji  ( ) ∈tK ji,  

( )}R,0IA  (analytic context) or in ( ) { ( ) { ( )}∞ =
∞×∞ == 1,,0 , jijicw I tKtKRC  

: for all ,, N∈ji  ( ) ( )}RC ,0, ItK ji ∈  (continuous context). As with ,∞R  

we establish no topology on .∞×∞R  

The resultant discrete agglomeration model or discrete agglomeration 
problem (DAP) is an IVP consisting of an infinite system of ordinary 
differential equations (ODE’s) each with an initial condition (IC) that may be 
written in scalar (componentwise) form as: 

System of ODE’s: ( ) ( )∑ ∑
−

=

∞

=
−− −=

1

1 1
,, ,2

1 i

j j
jjiijijjji

i ntKnnntKdt
dn  

( )+−=∈ 0000 ,, tttIt  (1.1) 

IVP { }...,3,2,1=∈ Ni  

IC’s ( ) ( ),,,, 00000
0

0 +−∈∈== tttItntn ii  (1.2) 

where for ,1=i  the empty sum on the right hand side of (1.1) is assumed to 
be zero. The first sum in the scalar (componentwise) discrete agglomeration 
equation (1.1) is the (average) rate of formation of i-mers by agglutinations 
of ( )ji − -mers with j-mers. The 21  avoids double counting. The second 

sum is the (average) rate of depletion of i-mers by the agglutinations of             
i-mers with all particle sizes. We model a stochastic process as deterministic. 
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Much of the work cited above involves mathematical modeling (physics) of 

( ) { ( )} .1,,
∞

== jiji tKtK  The physical system is often stationary so that each 

jiK ,  is time independent and the model is said to be autonomous. In a 

physical context, we require ( ) ,0, >tK ji  ,00
1 >n  and 00 ≥in  for .1>i  

However, we will address DAP as a mathematical problem where we allow 

the initial number of particles ,0
in  the components of the kernel, ( ),, tK ji  and 

the components of the solution, ( ),tni  to be negative. The physical context 

will be a special case. 

Smoluchowski found in the physical context where ( ) 00, >= AtK ji  is 

a constant, that 

( )
( ) ( )

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+

−
+= ∑

−

=

+1

1 00,0

00
1

0

0

0

2
112

i

n

n

n
n

n
i

i
A
i

ttAM

ttAk
ntn  

( )
N∈>

⎟
⎠
⎞⎜

⎝
⎛ −+

× i
ttAM n

,0

2
11

1
2

00,0 0

 (1.3) 

with 

( ) ∑
=+++

+

+
+

≥=
iiii

iii
n

i
n

n
nnnk

121
121

,00001  and ∑
∞

=
>=

1

0
,0 00

i
in nM  (1.4) 

uniquely satisfies DAP on its interval of validity ( ) ∈0000 ,,, AntII IV  

( )., 00 ItInto  If we assume [ ),,00 ∞⊇ tI  then [ ) ( )00000 ,,,, AntIIt IV⊆∞  

0I⊆  as there is a lone singularity when .02
0,0

0
0

<−= AMtt
n

 

The infinite sum in (1.1) and the requirement on 0,0 nM  in (1.4) (the 

zeroth moment of n  is ( ) ( )∑
∞

=
=

1
0

j
j tntM  and we require ( )00,0 0 tMM n =  
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( )∑ ∑
∞

=

∞

=
∞<==

1 1

0
0 )

j j
jj ntn  motivate consideration of the Banach spaces =p  

{ } ,:
1

1
∞

∞

=

∞∞
= ⊆

⎭
⎬
⎫

⎩
⎨
⎧

∞<∈= ∑ RR vs
i

p
iii nnn  where 1≥p  (Martin [6, p. 3]) 

with norm 
p

i

p
ip nn

1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

∞

=
 (and hence a metric and a topology on 

).∞⊆ Rvs
p  Equality of two vectors in p  requires the metric (the norm of 

their difference) to be zero. This is equivalent to both vectors being in p  and 

being componentwise equal. If ( ) ,, pInt ×∈  then ( ) ( ) p
pp ntnt 1

,1, +  

defines a norm on pI ×  (Naylor and Sell [17, p. 58]). To insure that 0,0 nM  

exists (even for negative initial conditions), we will always require =0n  

{ } ∞∞
= ⊆∈ Rvsiin 1

1
0  so that ( ) .

1
0

0
10 0 ∞<== ∑

∞

=i
ni Mntn  

Moseley [12] considered the time-varying kernel ( ) ( )tAtK ji =,  which 

depends on time, but not on particle size. For this problem, in the continuous 
context where 

( ) ( ) { ( ) { ( )}∞ =
∞×∞ ∈=∈ 1,,0 , jijiCT tKtIt KRMK  

( ) ( ) ( ) ( )},,:, 0,0 RRC ICtAtKI jicw ∈=∈ ∞×∞  

the problem parameters are ( ( )) ( ).,,,, 0
1

0000 RICIInttAntI o ×××∈  In 

the analytic context where 

( ) ( ) { ( ) { ( )}∞ =
∞×∞ ∈=∈ 1,,0 , jijiAT tKtIt KRMK  

( ) ( ) ( ) ( )},,:, 0,0 RR ItAtKI jicw AA ∈=∈ ∞×∞  

the problem parameters are ( ( )) ( ).,,,, 0
1

0000 RIIInttAntI o A×××∈  

For any kernel, solution requires that both sides of (each equation given by) 
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(1.1) are continuous in the continuous context and analytic in the analytic 
context. 

The ith depletion coefficient associated with 0It ∈  and the distribution 

{ } ∞∞
= ∈= R1jjnn  is defined formally by the infinite series 

 ( ) ( ) { }....,3,2,1,;,
1

,∑
∞

=
=∈=

j
jji

d
i intKntf NK  (1.5) 

The only direct dependence of ( )K;, ntf d
i  on t is through ( ).tK  If (1.5) 

converges for all ( ) ,, 0
∞×∈ RInt  then ( )K;, ntf d

i  maps ∞× R0I  to R. 

We may view ( )K;, ntf d
i  as a function of an infinite number of real 

variables or as a function of time and a size distribution. Regardless, if ( ) ∈tn  

( ),, ∞RIF  and we have convergence, the composition ( )( )K;, tntf d
i  maps 

I to R. Implicit in (1.1) is that for solution in the continuous context, we must 

have for all ,N∈i  that ( )( ) ( ).,;, RK ICtntf d
i ∈  That is, DAP requires us to 

first find ( ) ( )∞∈ R,ICtn cw  such that for all N∈i  and ,It ∈  ( )( )K;, tntf d
i  

exists (i.e., converges) and defines a function in ( )., RIC  If, in addition, 

( ) ( )∞∈ R,1 ICtn cw  (the ∑ space where we look for solutions) and satisfies 

(1.1) on I and (1.2), then it solves DAP on I. This formulation of DAP does 
not require mathematics beyond calculus and is often used by engineers and 
scientists. 

For DAP with a time varying kernel, ( ) ( ),, tAtK ji =  in the analytic 

context, Moseley [12] established that the more general formula 

( )
( ) ( )

( ) ( ) ( ( ) ( ))
,

211
1

2112 2

1

1

1
0

00 tMtM
tk

ntn
n

i

n
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n
i

i
A
i
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A

+⎥
⎥
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⎤

⎢
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+

+= ∑
−

=

+
 

 (1.6) 

where ( ) ( )∫
=τ

=τ
ττ=

t
t

dAt
0

,A  satisfies DAP uniquely on its interval of validity 
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( )( ) ( ).,,, 0000 IInttAntII oIV ∈  For the physical context where ,00 ≥in  

( ) ,0>tA  again we have [ ) ( )( ) 00000 ,,,, ItAntIIt IV ⊆⊆∞  and require 

( )∑ ∑
∞

=

∞

=
∞<===≤

1 1
10

00
,0 .0 0

i i
iin tnnnM  The formula (1.6) satisfies 

(1.1) on I and (1.2) in the continuous context as well where we allow 
( ) ( ).,0 RICtA ∈  However, since (1.6) was not derived using equivalent 

equation operations, uniqueness has not been proved rigorously for ∈K  

( ).,0
∞×∞RM ICT  A step in this direction is given by Moseley [14]. 

Moseley [12] divided DAP into several problems which may be 
considered separately. Under certain conditions, a change of (both the 
independent and dependent) variables using (1.5) transforms DAP with a 
time varying kernel (Moseley [12]) into another IVP which Moseley called 
the fundamental agglomeration problem (FAP). The solution process for 
FAP is fully documented in Moseley [13]. For FAP, Moseley established 
existence and uniqueness for both the analytic and continuous contexts by 
using a sequential solution. He then used a generating function to obtain an 
explicit solution. Recursive methods using moments have been developed for 
DAP with an arbitrary initial condition for special cases of as well as the 
general quadratic or bilinear kernel (Lu [5]): 

( ) R∈+++= 000000, ,,, CBAijCjiBAK ji  

Quadratic or bilinear kernel. (1.7) 

Quadratic kernels arise in applications. They represent a certain kind of 
polymer formation (Ziff [27]) and approximate a combination of Brownian 
and shear-stress coagulation (Drake [2]). 

Special cases are: 

0, 000, === CBAK ji  Constant kernel (1.8) 

( ) 0, 000, =++= CjiBAK ji  Linear kernel (1.9) 

( ) 0, 000, ==+= CAjiBK ji  Sum kernel (1.10) 
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( )2
000000, ,00, FCEBAijCK ji =====  Product kernel (1.11) 

( ) ( )( ) 2
00000

2
000000, ,,, FCFEBEAjFEiFEK ji ===++=  

 Polymer kernel. (1.12) 

Shirvani and Stock [18] obtained rather complicated formulas for the 
solution of Smoluchowski’s equation with an autonomous quadratic 
(bilinear) kernel. Shirvani and Van Roessel [19] explain that the solutions 
can exhibit one of the following types of behavior: conservation of mass for 
all time, conservation of mass for a finite time only, or instantaneous 
gelation. 

To facilitate further progress with the goal of solving DAP with a time-
varying polynomial kernel, Moseley [15] developed and solved the moment 
problem (MP) for DAP with an autonomous quadratic kernel. The depletion 
coefficient containing moments is to be used to obtain FAP for various 
kernels. In this paper, we develop and solve the fixed agglomeration problem 
(FiAP) recursively and then establish FAP for the cases of the autonomous 
quadratic kernel given in Moseley [15]. Again, we hope to provide clear 
formulas for these cases using a generating formula and move toward time-
varying polynomial kernels. 

Hence we extend the quadratic kernel to time varying kernels where 
( ) ( ),, tBtA  and ( ) ( )R,0ItC ∈  or ( ):,0 RIC  

( ) ( ) ( ) ( ) ,, ijiCjitBtAK ji +++=  Time varying quadratic kernel (1.13) 

( ) ( ) ( ) 0,, === tCtBtAK ji  Time varying kernel (1.14) 

( ) ( ) ( ) ( ) 0,, =++= tCjitBtAK ji  Time varying linear kernel (1.15) 

( ) ( ) ( ) ( ) 0,, ==+= tCtAjitBK ji  Time varying sum kernel (1.16) 

( ) ( ) ( ) ( ( ) ( ) ( ) )2
, ,00, tFtCtEtBtAtCijK ji =====  

 Time varying product kernel (1.17) 
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( ) ( )( ) ( ) ( )( )( ) ( ) ( ) ( ) ( ) ( ),,, 2
, tFtEtBtEtAjtFtEitFtEK ji ==++=  

( ) ( )2tFtC =  Time varying polymer kernel. (1.18) 

Note that a time-varying quadratic kernel is symmetric as ( ) ( ) += tAtK ij,  

( ) ( ) ( ) ( )., tKjitCijtB ji=++  

2. The Fixed Agglomeration Problem (FiAP) 

We now rewrite (1.1) as the system of ODE’s: 

 ( ) ( ) ( ),,,, 00001 +−− =∈=+ tttIttgtpndt
dn

iii
i  (2.1) 

where 

( ) ( ) ( )( )∑
∞

=
==

1
, ,;

j

d
ijjii tnfntKtp K  (2.2) 

( ) ( )∑
−

=
−−− =

1

,1 .2
1 i

ij
jijjjii nntKtg  (2.3) 

We now cease to require (2.2) and define the IVP (2.1) and (1.2) to be the 

fixed agglomeration problem (FiAP) with an arbitrary ( ) ( ){ }∞== 1ii tptp  but 

maintain ( )tgi 1−  as (2.3). Hence we may consider FiAP with ( ) ∈tp  

( )∞R,ICcw  and ( ) ( )∞×∞∈ RCtK ,0Icw  (continuous context) or ( ) ∈tp  

( )∞R,IcwA  and ( ) ( )∞×∞∈ RtK ,0IcwA  (analytic context). Note that FiAP 

has no infinite series. Following Moseley [13], when we insert an appropriate 

( ) ( ){ }∞== 1ii tptp  for a particular kernel, we refer to (2.1) and (1.2) as the 

fundamental agglomeration problem (FAP) for this particular kernel. In this 
paper, we solve FiAP recursively in both contexts and establish FAP for the 
kernels given in Moseley [15]. 

To establish existence and uniqueness of the solution to FiAP, we 
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establish a recursive algorithm. For 1=i  and 2, we use any elementary 
differential equations text to obtain 

( ) ( ) ,exp 0
1

1
0
11

⎭
⎬
⎫

⎩
⎨
⎧
−= ∫

=

=

xs

ns
dsspntn  

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧−= ∫

=

=

ts

ts
dsspntn

0
2

0
22 exp  

( ) ( ) ( )∫ ∫
=

=

=

= ⎭
⎬
⎫

⎩
⎨
⎧+

ts

ts

sr

tr
dsdrrpsnsK

0
.exp2

1
2

2
11,1  (2.4) 

In general, (2.1) can be solved to obtain 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧−= ∫

=

=

ts

ts iii dsspntn
0

exp0  

( ) ( ) ( ) ( )∑∫ ∫
−

=

=

=

=

=
−−

⎭
⎬
⎫

⎩
⎨
⎧+

1

,
0

.exp2
1 i

ij

ts

ts

sr

tr ijijjji dsdrrpsnsnsK  (2.5) 

This establishes existence and uniqueness for FiAP. Later, we plan to 
establish existence and uniqueness for DAP by establishing that, with 
appropriate choice(s) of ( )tpi  for a particular kernel yielding a particular 

FAP, DAP is equivalent to this FAP. 

Alternately, we may use the substitution ( ) ( )tntx ipi iμ=~  and rewrite 

(2.1) as 

 ( )( ) ( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧=μ= ∫

=

=
−−

ts

ts iiip
i dssptgtgtdt

txd
i

0
exp

~
11  (2.6) 

which may be solved to obtain 

( ) ( ) ( ) ( )∑∫
−

=

=

=
−−+=
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1
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2
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ts jijjjiii sxsxsKntx  

( ( ) ( ) ( )) .exp
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−  (2.7) 



James L. Moseley 256 

If ( )tpi  is monotonic and not dependent on i (e.g., the positive constant 

coefficient kernel), we may let 

 ( ) ( )( ) ( )( ) .expexp
00 ⎭

⎬
⎫

⎩
⎨
⎧=

⎭
⎬
⎫

⎩
⎨
⎧=σ=τ ∫∫

=

=

=

=

sr

tr

sr

tr i drrpdrrpt  (2.8) 

We may then let ( )τσ= −1t  to obtain 

( ) ( ) ( ) ( )∑ ∫
−

=

=

=
−−+=

1

1
,

0

0

~~
2
1~

i

j

ts

ts jijjjiii sxsxsKntx  

( )( ) dsdrrp
sr

tr ⎭
⎬
⎫

⎩
⎨
⎧−× ∫

=

= 0
exp  

( ) ( ) ( )
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.

~~

2
1 1

1
1

,0
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−

=

=

= −
−−

σ
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i

j

ts

ts

jijjji
i ds

s

sxsxsK
n  (2.9) 

We also refer to (2.6) and the initial condition’s 

 IC’s ( ) ( )+−=∈= 00000
0

0 ,,,~ tttItntx ii  (2.10) 

as the fixed agglomeration problem (FiAP). 

3. Selection of ( )tp  for a Time-varying Quadratic Kernel 

The plan for solution of DAP requires computation of the depletion 

coefficient and then selecting ( ) ( ){ }∞== 1ii tptp  without first obtaining the 

particle size distribution { } .1
∞
== jjnn  Formally, for DAP with a non-

autonomous quadratic kernel, ( ) ( ) ( ) ( ) ( ) ,, ijtCjitBtAtK ji +++=  we 

have 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )∑ ∑
∞

=

∞

=
+++==

1 1
,;

j j
jjji

d
i tnijtCjitBtAtntKtnf K  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ,,, 010 ItitMtiCtBtMtiBtA ∈∈+++= N  

 (3.1) 
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where ( ) ( )∑
∞

=
=

1
0

j
j tntM  is the zeroth moment of ( )tn  (total number of 

particles) and ( ) ( )∑
∞

=
=

1
1

j
j tjntM  is the first moment of ( )tn  (which is 

proportional to total mass). Hence if we can solve for ( )tM0  and ( ),1 tM  we 

have ( )( ).;, Ktntf d
i  Moseley [15] solved the moment problem (MP) for the 

autonomous quadratic kernel. 

In the physical case, ( )tM0  is always decreasing and ( )tM0  is bounded 

below by one. However, we allow fractions of particles so that ( ) 00 ≥tM  

and the point 0Mt  occurs if and when ( ) .00 =tM  We recall from Moseley 

[15] that if ( )tK  is symmetric, then ( )tM1  is constant. Since the non-

autonomous quadratic kernel is symmetric, we have 

 ( ) ( ) ( ) ( )∑ ∑
∞

=

∞

=
====

1 1
,1

0
011 0

j j
njj MtjntMtjntM  (3.2) 

so that 

( )( ) ( ) ( )( ) ( ) ( ) ( )( ) .,,; 0,10 0 ItiMtiCtBtMtiBtAtnf n
d

i ∈∈+++= NK  

 (3.3) 

Following (1.4) we require not only ( ) ,1
00 ∈tM  

( ) ( ) ,
1

0

1
000 ⎟

⎟

⎠

⎞
∞<

⎜
⎜

⎝

⎛
== ∑∑

∞

=

∞

= j
j

j
j ntntM  

but also ( ) ( ) ( ) .,
1

0

1
011

1
01 ⎟

⎟
⎠

⎞
∞<⎜

⎜
⎝

⎛
==∈ ∑∑
∞

=

∞

= j
j

j
j njtnjtMtM  

For the zero kernel, ( ) ( ) ( ) ,0=== tCtBtA  ( ) ,0=tgi  and ( ) =tM0  

∑
∞

=
∞<=

1
,0

0 ,0
j

nj Mn  and we choose ( ) .0=tpi  Then FiAP becomes FAPZK 

with solution ( ) == 0
ii ntn  constant for all i. 
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4. Selection of ( )tp  for an Autonomous Quadratic Kernel 

For the autonomous quadratic kernel, we choose 

( ) ( )( ) ( ) ( ) ( ) ,; 0,100000 n
d

ii MiCBtMiBAtnftp +++== K  ., 0Iti ∈∈ N  

 (4.1) 

with ( )tM0  from Moseley [14]. For the constant kernel, ( ,00 ≠A  00 CB =  

),0=  from Moseley [15], 

 ( ) ( )00,0

,0
0

0

0
2

2
ttAM

M
tM

n

n
−+

=  (4.2) 

so that we choose 

 ( ) ( ) .,,2
2

0
00,0

,0
0

0

0 ItittAM
M

Atp
n

n
i ∈∈

−+
= N  (4.3) 

Hence FiAP becomes FAPCK where we replace (2.1) with the system of 
ODE’s: 

( ) ( ),2
2

1
00,0

,0
0

0

0 tgttAM
M

Andt
dn

i
n

n
i

i
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

+  

( ) .,,, 0000 N∈=∈ +− itttIt  (4.4) 

For the sum kernel ( )0,0 000 ≠== BCA  from Moseley [15], 

 ( ) ( )000,0
0,00

ttBM
n

neMtM
−−

=  (4.5) 

so that we choose 

 ( ) ( ) .,, 0,10,00 0
000,1

0 ItiMBeiMBtp n
ttBM

ni
n ∈∈+=

−− N  (4.6) 

Hence FiAP becomes FAPSK where we replace (2.1) with the system of 
ODE’s: 

 ( ( ) ) ( ) ., 01,10,00 0
000,1

0 IttgMBeiMBndt
dn

in
ttBM

ni
i n ∈=++ −

−−  (4.7) 
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For the product kernel ( )0,0 000 ≠== CBA  from Moseley [15], 

 ( ) ( ) ( )0
2

,10,00 00 2
1 ttMCMtM nn −−=  (4.8) 

so that we choose 

 ( ) .,, 0,10 0 ItiiMCtp ni ∈∈= N  (4.9) 

Hence FiAP becomes FAPPK where we replace (2.1) with the system of 
ODE’s: 

 ( ) ( ) .,, 01,10 0 ItitgiMCndt
dn

ini
i ∈∈=+ − N  (4.10) 

For the sum plus product kernel ( )0,0,0 000 ≠≠= CBA  from Moseley 

[15], 

( ) ( )
,22 0

00,10
00 ,1

0
0

,1
0

0
,00 n

ttMB
nn MB

CeMB
CMtM n −⎟

⎠
⎞

⎜
⎝
⎛ +=

−−
 

0, Iti ∈∈ N  (4.11) 

so that we choose 

( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ +=

−−
0

00,10
00 ,1

0
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,1
0

0
,00 22 n

ttMB
nni MB

CeMB
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( ) .,, 0,100 0 ItiMiCB n ∈∈++ N  (4.12) 

Hence FiAP becomes FAPSPPK where we replace (2.1) with the system of 
ODE’s: 

( )
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
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0
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0
0 22

ttMB
nnn

neMB
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CiBndt
dn  

( ) ( ) .,, 01,100 0 ItitgMiCB in ∈∈=⎥⎦
⎤++ − N  (4.13) 

For the linear kernel ( )0,0,0 00 =≠≠ CBA  from Moseley [15], 

( )
( )

( ( ) )
0

,00,10

,1,00
0 ,,

12

2
000,1

00

000,1
00 Iti

eMAMB

eMMB
tM ttBM
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n
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−+
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−−

N  (4.14) 
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so that we choose 

( ) ( )
( )

( ( ) )
,

12

2
0000,1

00

000,1
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,1,10
00 nttBM
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ttBM
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., 0Iti ∈∈ N  (4.15) 

Hence FiAP becomes FAPLK where we replace (2.1) with the system of 
ODE’s: 

( )
( )

( ( ) ) ⎟⎟
⎟
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⎞

⎜⎜
⎜

⎝

⎛
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i
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n

 

( ) .,, 01 Ititgi ∈∈= − N  (4.16) 

For the autonomous quadratic kernel case 1, ( ),,0 00
2
00 CABA >≠  we have 

from Moseley [15], 

( )
( ) ( )

( ) ( )

( )
( ) ( )

,,, 0
2
1

1,02,0

2
1

1,022,01
0
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 (4.17) 
where 

,
0

00
2
0,1,10

1
00

A
CABMMB

r nn ++
−=  

0

00
2
0,1,10

2
00

A
CABMMB
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−=  (4.18) 

so that we choose 
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( ) ( )

( ) ( )
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( ) ( )0120

00
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i
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iBAtp

−−−
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−−−
+=  

( ) .,, 0,100 0 ItiMiCB n ∈∈++ N  (4.19) 
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Hence FiAP becomes FAPAQKC1 where we replace (2.1) with the system of 
ODE’s: 

( )
( ) ( )

( ) ( )

( )
( ) ( )⎜

⎜
⎜
⎜

⎝
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( ) ( ) .,, 01,100 0 ItitgMiCB in ∈∈=
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⎟
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⎟

⎠

⎞

++ − N  (4.20) 

For the autonomous quadratic kernel case 2, ( ),,0 00
2
00 CABA =≠  we have 

from Moseley [15], 

( )
( ) ( ) ( )

( ) ( ) ,2
2

0,10,0000

0,10,00,00,00
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00
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so that we choose 
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0,10,00,10,00
00

00

0000
2

2
ttMBMAAA

ttMBMAMBMA
iBAtp

nn

nnnn
i −++

−+−
+=  

( ) ( ) .,, 00100 ItitMiCB ∈∈++ N  (4.22) 

Hence FiAP becomes FAPAQKC2 where we replace (2.1) with the system of 
ODE’s: 

( )
( ) ( ) ( )

( ) ( )⎜⎜
⎝

⎛
−++

−+−
++

0,10,0000

0,10,00,10,00
00
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( ) ( ) .,, 01,100 0 ItitgMiCB in ∈∈=⎟⎟
⎠

⎞
++ − N  (4.23) 

For the autonomous quadratic kernel case 3, ( ),,0 00
2
00 CABA <≠  we have 
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from Moseley [15], 
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where 
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so that we choose 
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Hence FiAP becomes FAPAQKC3 where we replace (2.1) with the system of 
ODE’s: 
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5. Summary and Future Work 

We have formulated and solved recursively the fixed agglomeration 
problem (FiAP). Also, the fundamental agglomeration problems (FAP’s) for 
all cases of the autonomous quadratic kernel are established. It remains to 

1. establish that each of these FAP’s is equivalent to their corresponding 
DAP’s so that uniqueness is established for DAP, 

2. use, if possible, generating functions to obtain explicit formulas for 
the solutions to the FAP’s and hence for each of the DAP’s, 

3. verify directly that the formulas for the FAP’s are correct for each 
DAP. 

We hope to accomplish this for each FAP and hence each DAP for the 
autonomous quadratic kernel and for at least some cases of the non-
autonomous quadratic and perhaps polynomial kernels in the future. 
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