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Abstract

In this paper, we propose a new distribution for modeling count
datasets with some unique characteristics, obtained by mixing the
generalized Poisson distribution (GPD) and the generalized inverse
Gaussian distribution (GIGD) and using the framework of the
Lagrangian probability distribution. Some structural properties of the
proposed new distribution are discussed. Parameter estimates are
computed using the method of maximum likelihood. A real-life data
set is used to examine the performance of the new distribution.
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1. Introduction

The basic Poisson distribution for analyzing count data can generate
biased results and inconsistent parameter estimates when used for modeling
observations where over-dispersion and/or under-dispersion may be present.
Crucially, the model works based on its restrictive assumption of equality
of the mean and variance; which is inconsistent with situations where
observations are either over-dispersed or under-dispersed. To overcome the
limitation of the model caused by this restrictive assumption, Greenwood and
Yule [4] considered the average outcome, say ¢, from the Poisson distribution
as a realization of a gamma random variable, and used the convolution to
define the negative binomial (NB) distribution F(-) with:

FO) = [F(/0) @ M

Although the NB distribution has the major advantage of being able to
quantify the amount of variability in the Poisson rate (also called the average
outcome), it lacks, in some of the ways, the capability to capture the long tail
characteristics of some count datasets. Consul and Jain [1] developed the
generalized Poisson distribution from the Lagrangian probability distribution
(and discussed their preference for the Lagrangian basis among other
possible candidate distributions). But the model still suffers from adequacy
problems when used in describing datasets characterized by a large amount
of zeros in addition to a very long tail (Geedipally et al. [3] and Li et al.
[13]). In this paper, we proposed a new mixture model which addresses these
problems.

The paper is organized as follows: Section 2 shows how the framework
of Lagrangian probability distribution is used to derive a mixture of the
generalized Poisson and the generalized inverse Gaussian (GPGIG) to obtain
the new proposed model. In Section 3, we study the statistical properties of
the new distribution, and consider maximum likelihood estimates of model
parameters in Section 4. A real-life dataset is used to test the adequacy of the
new model in Section 5, while Section 6 provides some concluding remarks
on the new model.
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2. A New Probability Model

In this section, we define a new probability mass function generated from
mixing the generalized Poisson distribution with the generalized inverse
Gaussian distribution. The work borrows some ideas from the approach of
Consul and Jain [1] and several more recent contributions and/or extensions
of it. Because the work relies heavily on the Lagrangian formulation, it
seems reasonable to situate this aspect of its property in the discussion ahead.
Jensen [6] gave the first kind of Lagrange expression using the argument
immediately below.

Let f(z) and g(z) be analytic functions of z, which can be successfully
differentiated in a closed uniform interval in such a way that /(1) = g(1) =1
and g(0) # 0. Then, under the transformation z = ug(z), where u =1 and
z =1, Lagrange inverted the function f(z) in the neighborhood of z = 0,
and expressed the inversion as a power series of u as follows:

o0

1w =Y D Y 1. @

x=0

where D = % and f'(z) = of (z)/0z.

If every term of the series equation (2) is non-negative, then the series
becomes a probability generating function in variable u# and leads to the
probability mass function

£(0), y =0,

R N (0 0/ T

3)

Li et al. [14] relaxed the assumption g(1)= f(1)=1 in the general

Lagrangian distribution and defined the class of generalized Lagrangian
distributions through the introduction of an extra parameter called - the
Lagrangian expression point - into the probability mass function using the
following argument.
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Suppose f(z) and g(z) are analytic functions such that
-1 '
[0 (g(2)) f'(2)]._ 2 0
and g(0) # 0, where D is a partial differential operator as defined above, for

any point # > 0, such that f(z) > 0 and g(z) > 0, Vy € N. The generalized
Lagrangian probability distribution of the first kind is defined as:

/(0)
YA y = O,

P(Y = y|s(t)) = (j;/(;)(t))y - - (4)
B0 (D" (g f'(D)}0ps » =12,

By letting f(z) = €% and g(z) = €%, we get the probability mass function

(pmf) for the generalized Lagrangian distribution to be:

_ 000+ 2 —or-np

" y=0,12,.. (5)

P(Y(1) = y)
when ¢ =1, the (pmf) formulation in (5) above reduces to the generalized
Poisson distribution (GPD). More generally, assuming that the conditions
that generated equation (5) hold, and letting the variable ¢ to be a continuous
random variable from the generalized inverse Gaussian (GIG) distribution
with density

r
b

2
(5) r-1 ‘%(b”%j
s(t)=————1t"""¢ ,t>0,—0<r<ow,a>0, and b >0, (6)

2K, \[(ab)

where K,.(¢) is the modified Bessel function of the third kind of order r with
argument ¢ (Jorgensen [8]). Then the proposed new model obtained from
mixing (5) and (6) is:

Pr(Y = y)

[SIR
—
—
N

bj

oo -1 a -

_ J‘ 01(0t + Aty)” o0ty (a rly 2
0

v 2K, +/(ab)
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Equation (7) can be transformed using the modified Bessel expansion,

denoted by K,(x, v), and defined in Paolella [15] as:

Lo 1
5O +wy)
le 2

K w) =5 [ 5" dv ="K, Q). ®)

where M = \/% and ¢ = /xv. In this re-definition, K,.(-) is the modified

Bessel function of the third kind with parameters y and . These parameters
regulate both the concentration and the scaling of densities through £ and n,

respectively.

In equation (8), if we define y = a and y = (20 + 2Ly + b), then we

a
N=\20+ 20y + b (8a)

¢ =+a(20 + 20y + b). (8b)

have

and

Given (8a) and (8b), the distribution of variable Y can be defined as:
Pr(Y =y)

7

b
_ 00+ ) (5)2
0 K(ab)

a 20 20+ 24y + b
(29+2xy+bj K+ (a(20 + 24y + b)),

©)
From Jorgensen [8], it is known that if @ — 0, then z — 0. When the first

part of the modified Bessel arguments is zero, then

K, (z) = 2271272 (),
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so that we have:

K,\J(ab) = 2" (Vab) " T(r)

and

1
Ko Ja(20 + 20y + b) = 27" U[a(20 + 20y + B 20Ty + 1),
Consequently, we give the new mass function
b " ¢

| ) F(y+l’) 0 3 (9+7»y)
f(; 0, b, 1) = () ((9 + 7»)/)) (0 + Ay) +% (6+2y) +%

(10)
as the limiting function of (9) with parameters bound (r, 6, ) > 0, and
-1<A <.

3. Statistical Properties

In discussing the properties of the proposed model, we agreed that the
two theorems of Li et al. [12] (presented with the proofs) hold. To avoid
ambiguity, we restate (without proof) the two theorems here.

3.1. The new model as a probability mass function

A mixture of discrete Lagrangian probability distribution and continuous
distribution would form a new probability distribution function if the
following (Li et al. [12]) theorems hold:

Theorem 1. I f(z) >0 and g(z) >0, where z >0, are analytic

functions such that g(0) # 0, [Dy_l(g(z))yf'(z)]Z:O >0, and f(0)>0

and the series in equation (2) converges uniformly on any closed and
bounded interval, then a random variable Y has a uniform mixture of
Lagrangian distribution with probability density function
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fo 560 1
PY =y)= ( t )y (11)

_[0 yl(]t’)(t) [Dy 1(g(Z))yf(Z)]Z Odt y>0.

Theorem 2. Let f(t) and g(t) satisfy the conditions of Theorem 1,

and let s(t) be a probability density function for some continuous random

variable T. Then:

Y
() by 1) = 50 (g(})(}) (D7 () G (12)

is the joint probability density function of the random variables (Y, T),

where Y is the discrete and T is the continuous.

(i1) The marginal distribution of Y is defined as:

@ [ s(0) _
rof” [ 5] y =0,
P(Y =y)= ( t jy 13)
[ 7 s D ) S gt 21
(see Li et al. [12]) for the proofs of the theorems. O

3.2. The non-central moment of the new model

The jth raw (non-central) moment u’j = E(Y J ) of the discrete variable ¥

from the mass function (12) is:

W= E(Y) =3 y/P(Y = y) (14)

y=0
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and

t
B =3 [ s(r>(g,(})2) (D" (=)’ £(2)]. gt
y=0

Hence,

y
0= }(<?>Zy (g(”) [0 (Y Syt

Jensen [6] showed that the Lagrange expansion could be written as

Yy
=70+ (g(f)) (D" (g2 /().

y=I

By differentiating (17) partially with respect to ¢, we have

y
Df(0) = 18()D| 5t }i v (m) D" (g(2)) (=)o

y=1

so that

D) Z ( <f))y (D" (g(2)) ()],
(f)D[ @l A i

3.3. The first and second moments

(15)

(16)

(17

(18)

(19)

Equation (14) gives the general procedure for defining the non-central

moments of the new model. We evaluate this for the first two moments.

The first moment is obtained by setting j =1 and using equations (16)

and (19), we obtained the first moment of Y as:
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W= B = Y Py =)= [0 DOy g
’ y=0 j f(t) (t)D[ (t):l

_E(Y)_ZyP(Y y) = J s@DInf(1) 4 1)

oG

By differentiating equation (19) partially with respect to z, we obtain:

t V!
D{ tDf (¢) ] Z 2(g(t)) D[gzt)}[Dy—l(g(z))yff(z)]z_o, (22)

02l5q)| A
If both the sides of equation (22) are multiplied by [f(t)g:)(tD) (ﬁﬂ ,
then we have:
ts(z) D{ tDf (¢) }
e0n( 55| | 00
y
= i v S(t)%zggj [ g(t)} (DY (g(2)) 1(2)],—o- (23)

y=1

Therefore, the second moment of ¥ (u5 = E( %)) could be written as:

y
ZyZP(Y y)-zyj s(t)(g,(})(;) (DY (g(2)) 1),

t Y
15 A o
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[~ ts(t) tDf (¢)
oo )] eonl)

_” s(t) p P f() . (24)
Lo Tromn ] Lowlot)

The foregoing can be used to state that the jth non-central moment of the

discrete variable Y can be generally defined as:
, o0
W = j sOK; (0, (25)

where
ki) = 2O gy = PO
1 [D ln( Et)ﬂ ? [D ln( (t)ﬂ

DK,(t) _ DK; 4(t)

Kyt) = ———"—, .. Ki(t) = ———==.
R CE T I LI )

3.4. The mean of the new model

Given that f(¢z) and g(¢) are the analytic functions that generate

generalized Poisson distribution (GPD) in equation (5) and that equation (6)

defines the density function s(¢) that leads to the new mass-function

equation (10); the mean of the distribution from equation (21) is:

= E(Y)—Zym y= |7 BRI,

D fr)J
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0 t
where Dln f(¢) = ln(exp(et)) 0 and D 1n( (t)j ln(mj =

Ly
t

Thus, we have

o2 . .
h= g(zj) ) o7 a 20

The quantity p diverges when we try to write in compact form; consequently,

we write the integral part with parameters restriction as

r(—%)rr(r)r -r, —@

o v %) 2
Jo (1-nr) M) *dr = - (%) ,v,b>0,and A <0.
S

re

After re-parameterization, the u is defined as:

oA D @7

It is important to observe that the second part of the incomplete gamma

(F (—r, —(%)D must not be positive so as to return a real number value.

A complex number value will be returned otherwise.
Corollary. The moments of our distribution do not exist when d > 0.

Remark. These properties in the Corollary are present in Cauchy (a

continuous distribution) and quasi-negative binomial distribution (a discrete
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distribution). Both the distributions are described to be good for data that

have very long or heavy tail and highly over-dispersed, respectively.
4. Parameter Estimation

The maximum likelihood method of estimation is used to estimate the
parameters of the model. It is well known that the maximum likelihood
estimator (MLE) converges in probability to the parameter it is estimating

and achieves the Cramer-Rao lower bound on variance (see Cox and Hinkley

[2D).
The log-likelihood equation for the independent observations Y, 1,

Y;, ..., Y, from the new model (equation (10)) with parameter vector Q =

0, 1, b, ) is:

Q) =140,N, b, r|Y)

n b
i=1 6+7\’yi+§ 9+dyl~+§

0
+ log(e+—7%) +logl(y; + r)—log(y; +1)—log'(r)¢. (28)

The partial derivatives of the log-likelihood equation with respect to each of

the model parameters are:

2 40) = Z”:y. 43227 + 2bAy; + 8A0y; + b% + 2b0 + 46>
20 il b(2hy; + b + 20)(y; + 0)

set

n
2r
_;2Kyi+b+26:0’ 29)
=
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2
) | b
710 ;y’[zxy,-(x;vi +0) + (20 +6)(hy; + G)J

27]/1 ?et
Z 2hy; + b+ 20 Z kyl (30)

set

d ~ 2(Ay; +0) < 1
7 1@ = Z}”(b(zxy,- +b+ 29)) - ;yi(zxy,. +b+ 29) =90 Gb

set

0= Zlog(m) iR =0 ()

These equations (29)-(32) cannot be solved analytically, and this means that

unique maximum likelihood estimator (UMLE) of the model parameters does

not exist. However, by cleverly re-parameterizing the model with = % and

A
d= R we reduced the four-parameter model to a three-parameter model

r Y

B
. _Ty+r)(_ 1 2 (1+dy)
fOs ) = TR (s e el (33)

This is the negative-binomial distribution with success probability (Lj

2+PB

when d is forced to be zero.
The log-likelihood for the independent observations Y, Y5, 13, ..., ¥,

from the new model (equation (32)) with parameter vector P = (r, B, d )T is

then:

U(P)=((r, B, d|Y)
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B

—Z y; log I+d ylb +rlog+

1+dy; + 3 1+a’yl~+E

2

+ logT(y; + r)—logD(y; +1) = logT'(r)¢, (34)

we solve for 7y £, B mLe and d wLE iteratively, using the Newton-Raphson
method by estimating P = (7, B, d) using algorithm:

Ba=PE-Hg, (35)

where g is the vector of normal equation for which we want the gradient

function. Using the idea of minimizing log-likelihood, we have
0 0 0
¢ =| S CUP) S UP) )

with

D (P = mylr) - INCELED) o 5505 ) GO

+ 2dyl
(1+ dy,
Henr)- Z(2 B+ 2d) 2r2 pa+prady 7
C Vi
ad (~4(P)) = Z(l Td) 2”21:(2+B—+2dy,~)
2
BZ(de, (2+B+2dyl) 9

and H is the Hessian matrix
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62
3 up) araﬁ( Py )

o’ o’
H = | a55 (H(P) a;““m) apaa D |

o 0?
m(‘ap ) M(—K(P ) ad—z(—f(P )

where

—( (P)) = ny'(r) - Zw (i + 1), (39)

i=1
a? 1+ dy;) 1+ dy;)
= (=¢(P)) =
) Z(2+B+2aly,)2 p’ Z(2+B+2dyz

- 40
Z(2+B+2dy1)2 (40)

3

a+4%X2+ﬁ+2@g2 §:U+dwﬂ2+ﬁ+2@ﬂ

—( «(P)) = BZ

n 2
- Yi
N Z(z+s+zdy,)2 lzl(ndy,-)z’ w
(1+dy;)
6[36 ( op ))_6_6[3 5(1’))_—sz, (42)
6d6 ( U(P)) = aﬁd( U(P)) = 22(2+B—+2d)’z) (43)

2 2 ;
agw(‘”(’))) = aSW(J(P)) = —2g(zy+i(+++zrd)y,-) (44)
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and y(-) and y'(-) are the di- and tri-gamma functions defined as y(r) =

' ' " 1-N\2
T Y= T = T e =

n ! 2
'y +r) T +r) .
T(y; +7) T'(y; +I”)2

The Newton-Raphson algorithms converge, as our estimates of », 3 and d

change by less than a tolerated amount with each successive iteration, to
PMLE ﬁ mLe and d wmLEe- The algorithms were implemented in R-program

language through subroutine function called non-linear minimization with
bound (nlminb).

5. Zero-inflated of the New Model

Johnson et al. [7] suggested a dual-sate count model which separates the
true-zero state process from the parent process in dataset with large number
of zeros. The approach is to add extra proportion of zeros, ®, (such that
0 < o < 1) to the proportion of zeros from the original count distribution.
This is done while decreasing the remaining proportions of zeros in an
appropriate way. Following that proposition, we defined the zero-inflated

version of the new model as:

P(Yi = J’i)
1-p, , r ., if y; =0,
=\r ry(,-y!irzr;)((l +1dyi)j (1+dy2,-)+% (1(+1;yf)yi+)% [1—(21[3 Bﬂ o
+
(45)

-
where p = (1—(0){1 —(%) } and p is the probability of observing at
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least one count in a given day. Lambert [9] used the same argument when
dealing with datasets in manufacturing equipment. The situation relates the
perfect state in which a machine does not produce a defective item and
therefore (seen as zero point mass) and an imperfect state in which the
machine produces a number of defective items according to a Poisson
distribution. The logic generated the zero inflated Poisson (ZIP) model.
Other works on the zero inflated models include Heilborn [5] on the negative
binomial to get the zero inflated negative binomial (ZINB). Lawal [11]
assessed the fit of the generalized Poisson and the zero inflated generalized
Poisson (ZIGP) to a dataset on mosquito count in Kenya.

Application of the new count model to “Boko Haram” (BH) attacks data

The “Boko-Haram” insurgency is a well-known security problem in
northern-eastern Nigeria. The “Boko-Haram” group comes out with sporadic
attacks of various forms against the location population in their domain of

operation.

In applying the new model to the “Boko-Haram” data, we used the
timeline of “Boko Haram” attacks that was published by “The Nation”
(a Nigerian newspaper). The nation’s comprehensive data validated the daily
newspapers reports already collected by the Department of Mathematics and
Statistics at American University of Nigeria, Yola, Adamawa State, Nigeria.
The data reported the time and location of every form of attack from 2009 to
2014, as well as the outcome of a particular attack including the number of
deaths, injuries, etc. The new model was fitted to data on records of the
number of attacks which take place per day, from June 11, 2009 till July 23,
2014. The characteristics of the attacks data include:

(i) The number of daily attacks which leads to deaths.

(i) The number of daily attacks which results no deaths (which can be

described as structural zeros).

(ii1) The days when there are no attacks results to sampling zeros.
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(iv) Repeated numbers of deaths for some days (same number of deaths
are recorded for some days that cause some spikes in the pattern of the
distribution).

(v) Since the day when the attacks will end is unknown; the sample size
is not fixed.

(vi) A specific attack can result in a very high number of deaths
(heavy/long tail in the distributional pattern).

The characteristics of the data listed above clearly influenced a plot
of it which was constructed for visualizing many of its spikes, extreme
skewness with an unusually long tail. These properties make the usual
candidate count data models of Poisson and negative binomial distribution to
be unsuitable for analyzing the data. The results of applying all the models to
the data are tabulated in Tables 1 and 2.

Table 1. Observed and expected “Boko Haram® death counts with goodness-of-fit tests based on Lawal and Upton [10] rule
Death Dy P NB GP ZIP ZINB ZIGP ONB GPGIG ZIONBE ZIGPGIG
0| 1663 573833 | 16621253 1663 | 1663.0003 | 166299949 1661743 1661741 | 166300002 | 166300102
1 27 | 1998588 38.4494 LO7E-10 30.1981 20,7176 40.03229 40.03241 2430048 2430075
2 14 | 3480409 19.5417 1.70E-09 17.1368 17.1701 20.31627 20.31634 1624627
3 13.002 E 12143 14.1472 13.5844 1249793
4 98295 10,9907 S4612 11.7958 7iT 110, 27
5 THSG8 704209 TTT22 9.097099 176
G 65342 GOBLG G041 BAGI2 176 i
7 5.5851 484706 57446 35 5.744984 5.745005 G.7 1002
L] 4. 8707 39804 5.0839 b > 4098934 4098953 0] 238G
4 43132 33437 45589 57834 4416972 4416989 5438955
10 18661 4.1311 50667 3050279 3050205 49578306
11 2 34994 3.7752 4649 356768 3567695 4547516
12 K 03817 31933 34741 4.20097 3248339 4. 192592
13 2 01023 249337 19355 2977753 3EEI007
14 3 00254 27109 1.7328 2745561 2745573 3609693
15 5 00059 25176 15631 25441689 254418 f
16 3 o013 2.3482 1.4193 2367839 2367849
17 G 00003 2,1 TR 1.2962 [ 03192888 2212184 194 S35
18 3 00001 20655 11898 [ 05629521 i 2776138
19 1 1] 1.9463 L0971 | 09403253 10949941 104995 26150059 2614972
20 4 1] 1.E389 L0158 i 20899 1838484 13845973 2AGTRS 2. 7
21 1 L] 1741z 44 2553015 1S i) 1.7 476G 1.7376GE 23320806
23 2 0 1.5724 08234 4 ABBGAT 18048 18539 15623099 1562407 2004601
24 2 i 1. 408G £ 1.7245 1.7404 1485TH I A85TRT 1.OBHEIZ
23 5 ] 1.4305 L6503 1654 1415336 1415343 LBUDTAS
20 4 0 13676 15814 L5665 1350358 1350365 1709598
28 1 i 125353 14575 14121 1234478 1.234484 1635487
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“Table 1. {Conti Js
Fatl 1 0 11,5808 1541024 1405 1441 15614206
kG 2 ] 1418651 1.34491 1 AD20RE 1492075
a5 1 i 0906306 11.72477 11290 1.2 a0 1 2
a1 i i 00,8441 254497 0,027 8127008 1025441 105405
40 3 0 0,515 4.7807 19 0.Mi26 0786144 [ Ds67042 | 0
42 2 ] 0767 2 e 0MIGS 0.73659584 O150285 | 09150252
4% 2 i 07472 ZAMVARLE OHR0 07141452 OERIRLE | OBBI8ES2
14 | 0 03086 | 1488607 08553 . 24182 0.8
45 1 0 0,7053 02082 | 1049851 08513 07021 | 06717005 (LB 20198
46 1 0 06857 0.2884 | 07243194 0.8084 06787 | 06519264 0.7
45 1 i 06491 02703 | 03231788 i, a G 1459726 0.7 0
50 2 0 06153 0.254 | 01320432 0,7250 05811317 0895579 | 06893578
Al 2 i 0.2464 B.2TE-02 070659 1150652057 (LGGGEA48 (LGRS
e 1 i i, 2 b 05500435 G451 216G 45122
a4 1 i i, H 01,5214011 (LGO4204 | OG0 800
35 1 4] { 2
Al 1 i AT85
K 1 i 04718
a1 2 i 04551
) 3 0 04819 ) 05011127 | 05001146
[0 1 ] 04015 134E-04 04231 DATINNGE | 04719184
05 1 1] 0431 LGAEDS . 0nany AS21915 | 0.4 130
Bl 1 i i,1104 7 02444 2470121 02479149
a5 | 0 00,1045 0.2348 0,2460405 | 02362264 | 02362201
M 1 ] 01028 0236642 2404
10l 1 i 02205 L 01754177
108 1 i 01971 00774 L7267 L IS10IES
125 1 4] 0, 1520 0,001 T 01318421 i1, 1077445
126 1 1] 01504 (LO00E 1,1 298404 (L1 2EGE 01057357
151 1 0 10, LTHi7 00456 OD0EGDES | (MAET07S 2
i3 ] 0 0,058 2| GsIEG] 0,093 00713 | 007460202 | 007460817
“Table I. (Continued)”

188 1 [ LGTE 003zl 2AGE-TT DLOGSG (0G40 391E02
189 1 i TLONGGS 00319 4.14E-78 00647 OGG2I44 FBGE0Z
193 1 i (L3S L0308 FI2ERT O0G1E 0052 | 005365109 | 005365203 BGGEAR
200 1 i) (LOSES L0291 B.7OE-RT L0557 (0482 | 004948275 0, (4948 304 BAREA
00 1 [ (L0202 00149 | 3.24E-176 0157 G0167 | 001812126 | 001812173 1LI2ZEA2
[0 1 [ 0.0 2 D044 1.O0E-30 L0005 0.0024 | 0002261967 | 0.002262072 00017021
) 1 [ CLOO0E 00025 1.00E-48 L0001 00008 | 0000850388 | 0L000E50438 T7.O95E04

Poisson

13+ a5 01353

P 1117269

se o

of 12

ap

N

126+ 10 413514

x° 132.6885

se 5.56-10

of 53

GP

65+ 17 22465

¥ 375 6848

se 3.206-04

of A6

DINE

126+ 10 44,5085

z 107861

e 3.04E-06

of 51

o)

126+ 10 38,7585

x 12117
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“Fable 1. (Continued)"
Se 7.55€-06
of 51
ane
126+ 10 3827786
1 1389827
se 4.396.10
ot 52
GPGIG
126+ 10 3827386
x 1389833
of 52
DONS
108+ 12 38.631845
x 90.71846
se 0000134314
of 28
2GPGIG
108+ 12 35631922
X 90,71879
Se 0.000134302
of AR
Table I, Farameters estimate
Paramecters d " - S p— " By F " PG
P NB ar ZIP ZINE e QNB GIGIG ZIGNE ZIGPGIG
" 12470 12479 12470 Tas7E 2758 33537
' (0.01239775) | (0.1521243)° | (0.3600339) (DI9IH62ZI4T) | (4, T0663024) (4.4THETT) NA NA NA NA
- NA NA NA paN] 1.2346 1976 NA NA 73 T
R 07781 [ESEE)
o A NA NA (0007231989} | (0.06079543)° | (0.0404456)° NA
B SOz
NA NA NA NA NA NA (00020413
N D08 194 SRS
NA NA NA NA NA NA (0.0017523)° (00038739)"_| (0.016008)"
{ AL OOFF MM AR 7908 DLO04E070] 00086067
‘ NA A NA NA NA NA @000525) | (0.000826) | (0.00177641)° | (0.002264)°
Dispersion 420418 RO5K 6574 IRy
parameterk) NA (33745795)" | (0572B409)° NA s2sissy | (0.0085575)" NA NA NA NA
MLL 2201552 -1 134742 8346 358 1408 702 14017 146,938 14963 140,37 148037
Proportion of
Fero A1L0307 0 REYE AL ¥RT [LRLNEY LECES eSS (e AR 0. 8595812 0.KHI25T 0.RWI25TS
Deviamce( D) A3 I67.65 4551558 05,7667 1480252 4714131 S19.095 Na NA NA NA
Chi-sq 4145417 Hssie 1253807 2 403511 241389 187515 1878057 2151835 2051109
Pealnc o a [ o [ 4107075 0411307 36
e 0334 30016 SRS 1687672 2997584 208439 2877 209 877 2084741
bf 1567 1 Bishr 1R 1866 1865 1865 1865 1865 1565 1865
Mea e ol N
.I: asure of NA
e 21214 02439 0.2174 79329 0.252% 0.278% NA N NA
The true proportion of ks 08926
 Indicates significant at 5% point

6. Conclusion

In this article, we have proposed a new more flexible three-parameter
model for analyzing the types of count data which may be characterized by
attributes that were observed in the “Boko-Haram” insurgency data.

The model allows the probability of “success” to vary depending not
only on the parameters of the distribution, but also on the value of the
random variable. We have evaluated the performance of the model and its
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zero-inflated extension in comparison with several established distributions
and their zero-inflated using the “Boko Haram” dataset as inputs. The
performance of the model fittings are compared by using maximized log-
likelihood statistic (MLL), the Chi-squared goodness-of-fit statistic, the
Akaike information criteria (AIC), and the deviance statistic (to an extent).
Table 1 shows the grouped expected count under the different models. It is

important to also note that to generate the expected probabilities for each of
800 ~
i=0 ™
a number of design points like Y =22, 27, 31, 32, 33, 34, 36, 37, 38, 41, etc.

the models, we note that Z . = 1, but there were no observed values at

In particular, for example, in the case of the Poisson model, all the

probabilities are accounted for, at ¥ < 18[that 1s, Zio T, = IJ, whereas

the remaining probabilities become zeros. However, none of the other
model’s probability also sum to 1 and by extension the sum of fitted values
did not sum to n = 1868. Furthermore, the expected values under the models
are relatively small. Consequently, we decided for other models (except the
ZIP that could not follow the procedure) to truncate the values of Y
satisfying Lawal and Upton [10] rule which states the condition under which
the Chi-square approximation will be appropriately used in grouped data
which have a number of small expectations. Our results show that the data is
actually zero-inflated since the extra parameter for all zero-inflated models
(w) are significant. The new model performed like the QNBD but better than

all the other established models.
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