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Abstract 

In this paper, we propose a new distribution for modeling count 
datasets with some unique characteristics, obtained by mixing the 
generalized Poisson distribution (GPD) and the generalized inverse 
Gaussian distribution (GIGD) and using the framework of the 
Lagrangian probability distribution. Some structural properties of the 
proposed new distribution are discussed. Parameter estimates are 
computed using the method of maximum likelihood. A real-life data 
set is used to examine the performance of the new distribution. 
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1. Introduction 

The basic Poisson distribution for analyzing count data can generate 
biased results and inconsistent parameter estimates when used for modeling 
observations where over-dispersion and/or under-dispersion may be present. 
Crucially, the model works based on its restrictive assumption of equality           
of the mean and variance; which is inconsistent with situations where 
observations are either over-dispersed or under-dispersed. To overcome the 
limitation of the model caused by this restrictive assumption, Greenwood and 
Yule [4] considered the average outcome, say t, from the Poisson distribution 
as a realization of a gamma random variable, and used the convolution to 
define the negative binomial (NB) distribution ( )⋅F  with: 

( ) ( ) ( ) .∫ ⋅=⋅ dttftFF  (1) 

Although the NB distribution has the major advantage of being able to 
quantify the amount of variability in the Poisson rate (also called the average 
outcome), it lacks, in some of the ways, the capability to capture the long tail 
characteristics of some count datasets. Consul and Jain [1] developed the 
generalized Poisson distribution from the Lagrangian probability distribution 
(and discussed their preference for the Lagrangian basis among other 
possible candidate distributions). But the model still suffers from adequacy 
problems when used in describing datasets characterized by a large amount 
of zeros in addition to a very long tail (Geedipally et al. [3] and Li et al. 
[13]). In this paper, we proposed a new mixture model which addresses these 
problems. 

The paper is organized as follows: Section 2 shows how the framework 
of Lagrangian probability distribution is used to derive a mixture of the 
generalized Poisson and the generalized inverse Gaussian (GPGIG) to obtain 
the new proposed model. In Section 3, we study the statistical properties of 
the new distribution, and consider maximum likelihood estimates of model 
parameters in Section 4. A real-life dataset is used to test the adequacy of the 
new model in Section 5, while Section 6 provides some concluding remarks 
on the new model. 
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2. A New Probability Model 

In this section, we define a new probability mass function generated from 
mixing the generalized Poisson distribution with the generalized inverse 
Gaussian distribution. The work borrows some ideas from the approach of 
Consul and Jain [1] and several more recent contributions and/or extensions 
of it. Because the work relies heavily on the Lagrangian formulation, it 
seems reasonable to situate this aspect of its property in the discussion ahead. 
Jensen [6] gave the first kind of Lagrange expression using the argument 
immediately below. 

Let ( )zf  and ( )zg  be analytic functions of z, which can be successfully 

differentiated in a closed uniform interval in such a way that ( ) ( ) 111 == gf  

and ( ) .00 ≠g  Then, under the transformation ( ),zugz =  where 1=u  and 

,1=z  Lagrange inverted the function ( )zf  in the neighborhood of ,0=z  

and expressed the inversion as a power series of u as follows: 

( ) [ ( )( ) ( )] ,!
0

0
1∑

∞

=
=

− ′=
x

z
yy

y
zfzgDy

uuf  (2) 

where zD
∂
∂≡  and ( ) ( ) .zzfzf ∂∂=′  

If every term of the series equation (2) is non-negative, then the series 
becomes a probability generating function in variable u and leads to the 
probability mass function 

( )
( )

{ [ ( )( ) ( )]}





=′

=
==

=
− ....,2,1,!

1
,0,0

0
1 yzfzgDy

yf
yYP

z
yy  (3) 

Li et al. [14] relaxed the assumption ( ) ( ) 111 == fg  in the general 

Lagrangian distribution and defined the class of generalized Lagrangian 
distributions through the introduction of an extra parameter called - the 
Lagrangian expression point - into the probability mass function using the 
following argument. 
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Suppose ( )zf  and ( )zg  are analytic functions such that 

[ [ ( )( ) ( )]] 00
1 ≥′ =
−

z
yy zfzgD  

and ( ) ,00 ≠g  where D is a partial differential operator as defined above, for 

any point ,0>t  such that ( ) 0>tf  and ( ) ,0>tg  .Ny ∈∀  The generalized 

Lagrangian probability distribution of the first kind is defined as: 

( )( )
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By letting ( ) zezf θ=  and ( ) ,zezg λ=  we get the probability mass function 

(pmf) for the generalized Lagrangian distribution to be: 

( )( ) ( ) ...,2,1,0,!

1
=λ+θθ== λ−θ−

−
yey

tyttytYP tyt
y

 (5) 

when ,1=t  the (pmf) formulation in (5) above reduces to the generalized 
Poisson distribution (GPD). More generally, assuming that the conditions 
that generated equation (5) hold, and letting the variable t to be a continuous 
random variable from the generalized inverse Gaussian (GIG) distribution 
with density 
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 and ,0≥b  (6) 

where ( )tKr  is the modified Bessel function of the third kind of order r with 

argument t (Jorgensen [8]). Then the proposed new model obtained from 
mixing (5) and (6) is: 
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 (7) 



A New Mixture Model from Generalized Poisson … 143 

Equation (7) can be transformed using the modified Bessel expansion, 
denoted by ( ),, ψχrK  and defined in Paolella [15] as: 

( )
( )

( ),2
1,

0
2
1

1
1

∫
∞ ψ+χ−− ζη==ψχ

−

r
ryyr

r KdyeyK  (8) 

where 
ψ
χ=η  and .χψ=ζ  In this re-definition, ( )⋅rK  is the modified 

Bessel function of the third kind with parameters χ and ψ. These parameters 
regulate both the concentration and the scaling of densities through ζ and η, 
respectively. 

In equation (8), if we define a=χ  and ( ),22 by +λ+θ=ψ  then we 

have 

by
a

+λ+θ
=η 22  (8a) 

and 

( ) .22 bya +λ+θ=ζ  (8b) 

Given (8a) and (8b), the distribution of variable Y can be defined as:  
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From Jorgensen [8], it is known that if ,0→a  then .0→z  When the first 

part of the modified Bessel arguments is zero, then  

( ) ( ),2 1 λΓ= λ−−λ
λ zzK  



J. S. Olumoh, O. O. M. Sanni, O. O. Ajayi and E. T. Jolayemi 144 

so that we have: 

( ) ( ) ( )rababK rr
r Γ= −−12  

and  

( ) ( )[ ] ( ) ( ).22222 2
11 rybyabyaK ryry

ry +Γ+λ+θ=+λ+θ +−−+
+  

Consequently, we give the new mass function 
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as the limiting function of (9) with parameters bound ( ) ,0,, >θ br  and 

.11 <λ<−  

3. Statistical Properties 

In discussing the properties of the proposed model, we agreed that the 
two theorems of Li et al. [12] (presented with the proofs) hold. To avoid 
ambiguity, we restate (without proof) the two theorems here. 

3.1. The new model as a probability mass function 

A mixture of discrete Lagrangian probability distribution and continuous 
distribution would form a new probability distribution function if the 
following (Li et al. [12]) theorems hold: 

Theorem 1. If ( ) 0>zf  and ( ) ,0>zg  where ,0>z  are analytic 

functions such that ( ) ,00 ≠g  [ ( )( ) ( )] ,00
1 ≥′ =
−

z
yy zfzgD  and ( ) 00 ≥f  

and the series in equation (2) converges uniformly on any closed and 
bounded interval, then a random variable Y has a uniform mixture of 
Lagrangian distribution with probability density function 
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Theorem 2. Let ( )tf  and ( )tg  satisfy the conditions of Theorem 1,            

and let ( )ts  be a probability density function for some continuous random 

variable T. Then: 

(i) ( ) ( ) ( )
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is the joint probability density function of the random variables ( ),, TY  

where Y is the discrete and T is the continuous. 

(ii) The marginal distribution of Y is defined as: 
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(see Li et al. [12]) for the proofs of the theorems.  

3.2. The non-central moment of the new model 

The jth raw (non-central) moment ( )j
j YE=µ′  of the discrete variable Y 

from the mass function (12) is: 

( ) ( )∑
∞

=

===µ′
0y

jj
j yYPyYE  (14) 
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and 
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Jensen [6] showed that the Lagrange expansion could be written as 
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By differentiating (17) partially with respect to t, we have 
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so that 
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3.3. The first and second moments 

Equation (14) gives the general procedure for defining the non-central 
moments of the new model. We evaluate this for the first two moments. 

The first moment is obtained by setting 1=j  and using equations (16) 

and (19), we obtained the first moment of Y as: 
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By differentiating equation (19) partially with respect to t, we obtain: 
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If both the sides of equation (22) are multiplied by ( )
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Therefore, the second moment of ( ( ))2
2 yEY =µ′  could be written as: 
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The foregoing can be used to state that the jth non-central moment of the 
discrete variable Y can be generally defined as: 
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3.4. The mean of the new model 

Given that ( )tf  and ( )tg  are the analytic functions that generate 

generalized Poisson distribution (GPD) in equation (5) and that equation (6) 
defines the density function ( )ts  that leads to the new mass-function 

equation (10); the mean of the distribution from equation (21) is: 
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The quantity µ diverges when we try to write in compact form; consequently, 
we write the integral part with parameters restriction as 
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After re-parameterization, the µ is defined as: 
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It is important to observe that the second part of the incomplete gamma 
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 β−−Γ dr 2,  must not be positive so as to return a real number value.                  

A complex number value will be returned otherwise. 

Corollary. The moments of our distribution do not exist when .0>d  

Remark. These properties in the Corollary are present in Cauchy (a 
continuous distribution) and quasi-negative binomial distribution (a discrete 
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distribution). Both the distributions are described to be good for data that 
have very long or heavy tail and highly over-dispersed, respectively. 

4. Parameter Estimation 

The maximum likelihood method of estimation is used to estimate the 
parameters of the model. It is well known that the maximum likelihood 
estimator (MLE) converges in probability to the parameter it is estimating 
and achieves the Cramer-Rao lower bound on variance (see Cox and Hinkley 
[2]). 
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nYY ...,,3  from the new model (equation (10)) with parameter vector =Q  

( )Trb,,, λθ  is: 
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The partial derivatives of the log-likelihood equation with respect to each of 
the model parameters are: 
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These equations (29)-(32) cannot be solved analytically, and this means that 
unique maximum likelihood estimator (UMLE) of the model parameters does 

not exist. However, by cleverly re-parameterizing the model with 
θ

=β b  and 

,
θ
λ=d  we reduced the four-parameter model to a three-parameter model 
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This is the negative-binomial distribution with success probability 






β+
β

2
 

when d is forced to be zero. 

The log-likelihood for the independent observations nYYYY ...,,,, 321  

from the new model (equation (32)) with parameter vector ( )TdrP ,, β=  is 

then: 

( ) ( )YdrP |β= ,,  
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we solve for ,M̂LEr  MLEβ̂  and MLEd̂  iteratively, using the Newton-Raphson 

method by estimating ( )drP ˆ,ˆ,ˆˆ β=  using algorithm: 
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where g is the vector of normal equation for which we want the gradient 
function. Using the idea of minimizing log-likelihood, we have 
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and H is the Hessian matrix 
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and ( )⋅ψ  and ( )⋅ψ′  are the di- and tri-gamma functions defined as ( ) =ψ r  
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The Newton-Raphson algorithms converge, as our estimates of r, β and d 
change by less than a tolerated amount with each successive iteration, to 

,M̂LEr  MLEβ̂  and .ˆ
MLEd  The algorithms were implemented in R-program 

language through subroutine function called non-linear minimization with 
bound (nlminb). 

5. Zero-inflated of the New Model 

Johnson et al. [7] suggested a dual-sate count model which separates the 
true-zero state process from the parent process in dataset with large number 
of zeros. The approach is to add extra proportion of zeros, ω, (such that 

)10 <ω≤  to the proportion of zeros from the original count distribution. 

This is done while decreasing the remaining proportions of zeros in an 
appropriate way. Following that proposition, we defined the zero-inflated 
version of the new model as: 
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where ( ) 














β+
β−ω−=

r
p 211  and p is the probability of observing at 



A New Mixture Model from Generalized Poisson … 155 

least one count in a given day. Lambert [9] used the same argument when 
dealing with datasets in manufacturing equipment. The situation relates the 
perfect state in which a machine does not produce a defective item and 
therefore (seen as zero point mass) and an imperfect state in which the 
machine produces a number of defective items according to a Poisson 
distribution. The logic generated the zero inflated Poisson (ZIP) model. 
Other works on the zero inflated models include Heilborn [5] on the negative 
binomial to get the zero inflated negative binomial (ZINB). Lawal [11] 
assessed the fit of the generalized Poisson and the zero inflated generalized 
Poisson (ZIGP) to a dataset on mosquito count in Kenya. 

Application of the new count model to “Boko Haram” (BH) attacks data 

The “Boko-Haram” insurgency is a well-known security problem in 
northern-eastern Nigeria. The “Boko-Haram” group comes out with sporadic 
attacks of various forms against the location population in their domain of 
operation. 

In applying the new model to the “Boko-Haram” data, we used the 
timeline of “Boko Haram” attacks that was published by “The Nation”             
(a Nigerian newspaper). The nation’s comprehensive data validated the daily 
newspapers reports already collected by the Department of Mathematics and 
Statistics at American University of Nigeria, Yola, Adamawa State, Nigeria. 
The data reported the time and location of every form of attack from 2009 to 
2014, as well as the outcome of a particular attack including the number of 
deaths, injuries, etc. The new model was fitted to data on records of the 
number of attacks which take place per day, from June 11, 2009 till July 23, 
2014. The characteristics of the attacks data include: 

  (i) The number of daily attacks which leads to deaths. 

 (ii) The number of daily attacks which results no deaths (which can be 
described as structural zeros). 

(iii) The days when there are no attacks results to sampling zeros. 
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(iv) Repeated numbers of deaths for some days (same number of deaths 
are recorded for some days that cause some spikes in the pattern of the 
distribution). 

(v) Since the day when the attacks will end is unknown; the sample size 
is not fixed. 

(vi) A specific attack can result in a very high number of deaths 
(heavy/long tail in the distributional pattern). 

The characteristics of the data listed above clearly influenced a plot                
of it which was constructed for visualizing many of its spikes, extreme 
skewness with an unusually long tail. These properties make the usual 
candidate count data models of Poisson and negative binomial distribution to 
be unsuitable for analyzing the data. The results of applying all the models to 
the data are tabulated in Tables 1 and 2. 
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6. Conclusion 

In this article, we have proposed a new more flexible three-parameter 
model for analyzing the types of count data which may be characterized by 
attributes that were observed in the “Boko-Haram” insurgency data. 

The model allows the probability of “success” to vary depending not  
only on the parameters of the distribution, but also on the value of the 
random variable. We have evaluated the performance of the model and its 
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zero-inflated extension in comparison with several established distributions 
and their zero-inflated using the “Boko Haram” dataset as inputs. The 
performance of the model fittings are compared by using maximized log-
likelihood statistic (MLL), the Chi-squared goodness-of-fit statistic, the 
Akaike information criteria (AIC), and the deviance statistic (to an extent). 
Table 1 shows the grouped expected count under the different models. It is 
important to also note that to generate the expected probabilities for each of 

the models, we note that ∑ = ι =π800
0 ,1ˆi  but there were no observed values at     

a number of design points like ,41,38,37,36,34,33,32,31,27,22=Y  etc. 

In particular, for example, in the case of the Poisson model, all the 

probabilities are accounted for, at ,1ˆ,isthat18 18
0 






 =π≤ ∑ = ιiY  whereas 

the remaining probabilities become zeros. However, none of the other 
model’s probability also sum to 1 and by extension the sum of fitted values 
did not sum to .1868=n  Furthermore, the expected values under the models 
are relatively small. Consequently, we decided for other models (except the 
ZIP that could not follow the procedure) to truncate the values of Y  
satisfying Lawal and Upton [10] rule which states the condition under which 
the Chi-square approximation will be appropriately used in grouped data 
which have a number of small expectations. Our results show that the data is 
actually zero-inflated since the extra parameter for all zero-inflated models 
( )ω  are significant. The new model performed like the QNBD but better than 

all the other established models. 
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