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Abstract 

In this paper, we study a robust nonparametric estimator of a 
regression function when the response variable is subject to random 
right censorship and when the covariate is of functional nature.            
Under suitable conditions, we establish an almost complete (a.co.) 
consistency result with rate as well as an asymptotic distribution result 
of the estimator when observed data exhibit a mixing dependence. 

Introduction 

The study of the relationship between a variable of interest T and a 
covariate X is one of the most important problems in statistics. Recent years 
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have witnessed a renewal of interest in robust regression estimation. Here, 
we are interested in a right censorship robust regression model. The 
estimation of the robust regression is a problem of considerable interest, 
especially for medical researchers, and reliability engineers. The robust 
nonparametric estimation of the regression function was developed by 
Collomb and Härdle [12] in the real-valued data case. They established, 
under suitable conditions, the almost complete convergence rate of an M-
estimator with kernel weights when the observations are independent and 
identically distributed. Many important results have been developed in this 
field. For the real-valued data case, there is a huge literature on parametric or 
nonparametric estimation of the robust regression function, see for instance 
the key works of Robinson [32], Boente and Fraiman [5, 6], Fan et al. [18] 
for previous results and Laïb and Ould-Saïd [25], Boente and Rodriguez [7] 
and Ferraty and Vieu [19] for recent advances and references. 

Recently, the statistics of functional data have received a growing 
attention. The first result on robust estimates of the functional nonparametric 
function model was given by Azzedine et al. [4]. They established the almost 
complete convergence of robust estimators of the regression function when 
the regressors are functional and the observations are i.i.d. These results are 
extended to the dependent case by Attouch et al. [3] who established the 
almost complete convergence rate of the robust nonparametric regression 
estimation when the regressors is functional and the observation are alpha-
mixing. Asymptotic normality has been considered in Attouch et al. [1, 2] for 
i.i.d. and dependent data. Crambes et al. [13] stated the convergence in the 

qL  norm in both i.i.d. and alpha-mixing cases. Gheriballah et al. [20] 
established the almost complete convergence of a nonparametric M-
regression estimate for functional ergodic data. 

To the best of our knowledge, the problem of estimating the robust 
regression function under dependent right censored data and functional 
regressors has not been addressed in the literature. Some works were devoted 
to mean or quantile regression models when data are censored and some         
of them of functional nature. For instance, El Bahi and Ould Saïd [17] 
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established the strong uniform consistency of the nonparametric estimation 
of conditional quantile for functional regressors in the i.i.d. case. These 
results are extended (including an asymptotic normality result) to the 
dependent case by Horrigue and Ould-Saïd [21, 22]. Chaouch and Khardani 
[11] investigated asymptotic properties of the conditional quantile function of 
randomly censored data using functional stationary ergodic property. Under 
random left truncation (RLT model), Derrar et al. [15] have studied the 
asymptotic properties of robust nonparametric regression estimation in a 
context of functional covariate in the i.i.d. case. 

The central object of interest of this work is estimating a robust 
regression function under censored data and functional regressors. 

To that aim, let ( )XCT ,,  be a random vector, where T is the variable of 

interest, called the lifetime variable in the literature of censored data, with 
distribution function F. The variable C is the random right censoring time 
with distribution function G and X is a covariable that takes values in some 
semi-metric space E  which is endowed with a semi metric ( )...,d  Then in 

the right censorship model, one only observes ( ) ,,, ...,,1 niiii XY =δ  where 

( )iii CTY ,min=  and ( )iii CTI ≤=δ  is the indicator of censoring status. 

For any ,E∈x  we consider a real valued Borel function ( )..,ρ  satisfying 

some regularity conditions to be stated below. The nonparametric robust 
model studied in this paper, denoted by ,xθ  is implicitly defined as a zero 

with respect to (w.r.t.) the equation 

( ) ( )[ ] .0,, ==|ρ=Γ xXtYEtx  (1) 

We suppose that, for all ,E∈x  xθ  exists and is unique (see, for instance, 

Boente and Fraiman [5]). Our model is a generalization of the classical 
regression in sense that the latter can be obtained by taking ( ) =ρ tY ,  

( ).ty −  

The aim of this paper is to extend the results of Lemdani and Ould Saïd 
[26] to the functional case, and those of Azzedine et al. [4] and Attouch et al. 
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[3] to the incomplete data. More precisely, we propose a smooth estimator        
of the robust regression (1) for a censoring random model, when the data          
are both dependent and functional nature. We establish, under suitable 
conditions, the almost complete convergence and asymptotic normality of the 
proposed M-estimator with kernel weights. The paper is organized as 
follows. In Section 2, we define the kernel robust regression estimate in 
censoring model. Assumptions and main results are given in Section 3. 
Finally, the proofs of the main results are relegated to Section 4 with some 
auxiliary results. 

The Proposed Estimator 

For any distribution function H, let ( ){ }1:sup <=τ tHtH  be the 

support’s right endpoint. Let D be a compact such that ( ],, τ∞∈θ ∪Dx  

where ( ).,min FG ττ<τ  

Let ( ){ }1,,, ≥iXCT iii  be a sequence of strictly stationary random 

vectors where iX  takes the values in some semi-metric space ( )( )..,, dE  and 

ii CT ,  are real-valued. 

If no censoring is present, then it is well known that a nonparametric 

estimator of ( )tx,Γ  denoted by ( )tx,Γ̂  (see Attouch et al. [3]) is given by 

( )
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with K is a probability density function and nhh =  is a sequence of positive 

real numbers which goes to zero as n goes to infinity. In the censorship 
model, we adapt the idea of Carbonez et al. [10] given in the real-valued 

context, to our case, we define ( )tx,~Γ  as an estimate of ( )tx,Γ  by 
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where G  is the survival function of the random variable C. In practice, G  is 
usually unknown, hence it is impossible to use the estimator (2). Then, we 
replace G  by its Kaplan-Meier (KME) [24] estimate nG  defined by 
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where ( ) ( ) ( )nYYY <<< "21  are the order statistics of ( ) niiY ≤≤1  and ( )iδ  is 

the concomitant of ( ).iY  

The properties of the KME for dependent variables can be found in Cai 
[9]. Then a feasible estimator of ( )tx,Γ  considered in this work is given by 
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where ( ) ( )






=

h
XxdKxK i

i
,

 for ....,,1 ni =  

A natural estimator of xθ  denoted by ( ),ˆ xnθ  is a zero w.r.t. t of 

( ) .0,ˆ =Γ txn  

Assumptions and Main Results 

First, let { }1, ≥iWi  be a sequence of random variables and ( )Wk
iE  
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denote the σ-field of events generated by { }., kjiW j ≤≤  Given a positive 

integer n, set 

( ) { ( ) ( ) ( ) ( ) ( ) }.,,:sup 1
∗∞

+ ∈∈∈−=α NkWBWABPAPBAPn nk
k EE∩  

The sequence is said to be α-mixing if the mixing coefficient ( ) 0→α n  as 

.∞→n  The α-mixing condition is the weakest among mixing conditions 
known in the literature. Many stochastic processes satisfy the α-mixing 
condition; the ARMA processes are geometrically strongly mixing, i.e., there 

exists ( )1,0∈�  such that ( ) ( )nOn �=α  (see, e.g., Jones [23]). In what 

follows, we will use the notation ( ) ( ){ }rxxdxrxB <′∈′= ,;, E  and we 

will denote by C and C′  some strictly positive generic constants; x is a fixed 
point in E  and xN  denotes a fixed neighborhood of x. For now on, we set 

( ) [( ( ) ( )) ]uXtYYGEtu =|ρδ=λ γ−
γ ,, 1

1  

and 

( ) [( ( ) ( )( )) ],,, 1
1 uXtYYGEtu =|ρ′δ= γ−

γϒ  for { }.2,1∈γ  

Some assumptions needed to state our results are introduced and 
gathered below for easy reference: 

A1. The process ( )ii YX ,   satisfies: 

  (i) The function ( ) ( )[ ] .0,0, >∀>∈=φ rrxBXPrx  

 (ii) ,ji ≠∀  [ ( ) ( ) ] ∞<≤|ρρ CXXtYtYE jiji ,,,  and [( ) ∈ji XXP ,  

( ) ( )] ( ),,, rrxBrxB xζ=×  where ( ) 0→ζ hx  as .0→h  

Furthermore, we assume that the ratio ( )
( )h
h

x

x
2φ

ζ
 is bounded. 

(iii) ( ) 1, ≥iii YX  is a stationary α-mixing sequence of random variables, 

with coefficient ( ) ( )ν−=α nOn  for some .4>ν  
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A2. The function ( ).,xΓ  is of class 1C  and satisfies 

( ) ( ) ( ) ( ).,,,:0,,, 212121 xxCdtxtxbNNxxDt b
xx ≤Γ−Γ>∃×∈∀∈∀  

A3. The function ρ is a continuous differentiable function, strictly 

monotone bounded w.r.t. the second component and its derivative ( )
t

ty
∂

ρ∂ ,
 

is bounded and continuous at xθ  uniformly in y, and for each fixed ,Dt ∈  

[ ( ) ] ., 2 ∞<<|ρ CXtYE  

A4. K is a function with support ( )1,0  such that ( ) .0 ∞<′<<< CtKC  

A5. The bandwidth h satisfies: 

  (i) ( )( );loglog ho
n

n
xφ=  

 (ii) ( )( )( ) ( )

( ) ( )
∞→

φ

−ν−ν
+ν

−ν+ν

4
6

4
1

44

logloglog
lim

nn

hn x  as ;∞→n  

(iii) ( ) ( ) 0loglim →φ nhx  as ;∞→n  

(iv) ( ) 0lim →φ hnh x
b  as ;∞→n  

 (v) [ ] ( )
( ) ( ).lim,1,0 0 th
tht x

x
x

h β=
φ
φ

∈∀ →  

To establish the asymptotic normality results, the following assumptions 
are needed: 

B1. The function ( )..,γλ  satisfied the Hölder condition with respect to 

the first variable, that is: there exists a positive constant γb  such that 

( ) ( ) ( ) ( ).,,,,,,,0 21121211 uudCtutuDtNNuuC b
xx

γ≤λ−λ∈∀×∈∀>∃ γγ  

B2. The function ( )..,γϒ  satisfied the Hölder condition with respect to 

the first variable, that is: there exists a positive constant γd  such that 
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( ) ,,,,0 212 DtNNuuC xx ∈∀×∈∀>∃  

( ) ( ) ( ).,,, 21221 uudCtutu dγ≤− γγ ϒϒ  

B3. The derivative of the real function, ( ) [ ( )( ) |θρ=ϕ xYEsx ,  

( ) ],, sxXd =  at 0 exists. 

B4. Let ( )nN  be a sequence of positive integers tending to infinity such 

that 

( ( )( ) )21hnoN xn φ=  and ( )( ) ( ) ,021 →αφ nx Nhn  as .∞→n  

Remark 3.1. Assumption A1 is a standard condition in nonparametric 
modeling of functional variables under mixing condition, this can be found in 
Attouch et al. [3]. Assumption A2 is a regularity condition with characterizes 
the functional nature of the covariate X (see Azzedine et al. [4]). Assumption 
A3 keeps the same condition on ρ as that given by Collomb and Härdle [12] 
in the multivariate case. Assumption A4 is common in nonparametric 
estimation for functional dependent or independent cases, it is stated for 
simplicity of proofs. Assumptions A5((i), (ii)) gives a condition on the 
bandwidth which allows to control the covariance term of the estimate. 
Assumptions A5((iii), (iv), (v)), B1, B2 and B3 are needed in the study of the 
bias term. Finally, assumption B4 is needed to establish the asymptotic 
normality (see Masry [29]). 

Our first result, stated in Proposition 3.1, will be needed to prove the 
main result in Theorem 3.1, it concerns the almost uniform complete 
convergence of the estimator defined in (4). 

Proposition 3.1. Under assumptions A1-A4 and A5((i),(ii)), we have 

( ) ( ) ( ) ( ) 








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
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21log,,ˆsup hn
nOhOtxtx

x
b

n
Dt

 a.co. as .∞→n  

In the following theorem, we prove the consistency of our estimator and 
give a rate of convergence. 
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Theorem 3.1. Assume that A1-A4 and A5((i),(ii)) are satisfied. Then 

( )xnθ̂  exists and is unique a.s. for all sufficiently large n. Also, 

( ) ( ) ( ) ( ) 


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b
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Let us now focus on the asymptotic normality result of our estimate. 

Notice that a Taylor series expansion of ( ).,ˆ xN
nΓ  in the neighborhood of 

( ),xθ  gives 
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N
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where nξ  is between ( )xnθ̂  and ( ).xθ  We have 
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if the denominator does not vanish. To establish the asymptotic normality, 
we show that the numerator in (5) suitably normalized, is asymptotically 
normally distributed and that the denominator converges to ( )( ).,1 xx θϒ  The 

result is given in the following theorem. 

Theorem 3.2. Assume that assumptions A1, A3-A5 and B1-B4 hold. 
Then we have 
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Conclusion 

In this paper, we have proposed a robust nonparametric estimator of a 
regression function when the response variable is subject to random right 
censorship, the covariate is of functional nature, and the observations are 
strictly dependent (strong mixing). Then the almost complete convergence 
with rates and asymptotic normality results has been proved. The presented 
methodology can be generalized to other types of processes such as locally 
time or spatial dependent or ergodic processes. 

Auxiliary Results and Proofs 

The proof of Proposition 3.1 is based on the following decomposition: 

( ) ( )txtxn ,,ˆ Γ−Γ  
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Some auxiliary results and notations will be needed to prove Proposition 3.1. 

The first lemma deals with the behavior of the difference between ( )xDΓ̂  

and [ ( )].ˆ xE DΓ  

Lemma 4.1. Under assumptions A1 and A4-A5((i),(ii)), we have 

( ) [ ( )] ( ) 
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Proof. It is similar to that of Lemma 1 of Attouch et al. [3], and then is 
omitted. ~ 

Lemma 4.2. Under assumptions A1, A3-A4 and A5((i),(ii)), we have 

( ) ( ) ( ) 
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Proof. Under A3, we have the following decomposition: 
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Since ( ) ,0>τG  in conjunction with the Law of Iterated Logarithm (LIL) on 

the censoring law (see formula 4.28 in Deheuvels and Einmahl [14]), we 
have 
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G
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∈
 

Lemma 4.1 and A5(i) conclude the proof. ~ 

Lemma 4.3. Under assumptions A1(i), A2 and A4, we have 
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hOtxtxE =Γ−Γ
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Proof. Using the conditional expectation properties, we get 
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Under A2, for all ,Dt ∈  we get 

( ){ }( ) ( )( ) ( ) ( ) ,,,111,
b

hxB ChtxtXxKXI ≤Γ−Γ  

which completes the proof. ~ 

The following lemma deals with the variance term. 

Lemma 4.4. Under assumptions A1-A4 and A5((i),(ii)), we have 

( ) [ ( )] ( ) 


















φ

=Γ−Γ
∈

21log,~,~sup hn
nOtxEtx

x
N
n

N
n

Dt
 a.co. 

Proof. We use covering set techniques. Indeed, since D is a compact 
subset, so it can be covered by a finite number nd  of intervals centered at jt  
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Notice that 1I  and 3I  can be treated in the same manner. From Lemma 4.1 

and A3, we have 
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Now, we deal with ,2I  for all ,0>ε  we have 
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The use of the well-known Fuk-Nagaev’s inequality (see Rio [31], p. 87, 
6.19b), allows us to get, for all 0>ε  and ,1>r  

( ) ( ( ) ) ( )[ ]










ε>∆≤ε> ∑

=

xKnEtxPdIP
n

i
tJin 1

1
2 ,  

( )[ ]
( )[ ]
























 ε
++








ε

λ≤
−+ν

−
2

2
1

2221

1

1 12
r

n
n

rS
xKEn

xKnE
r

r
nA  

,21 nn QQ +=  

where 

( ( ( ) ) ( ( ) ))∑∑
= =

∆∆=
n

i

n

j
tJjtJin txtxS

1 1

2 .,,,cov  (7) 

We have to calculate the asymptotic behavior of .2
nS  By using A3 and A4, 
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s

IEsKC <
∈

≤ ,
2

1,0
sup  

( )( ).hO xφ=  (8) 
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On the other hand, under A1(ii), we have 

( ( ( ) ) ( ( ) ))tJjtJi txtx ,,,cov ∆∆  

[ ( ( ) ) ( ( ) )]tJjtJi txtxE ,, ∆∆=  

[ ( ) ( )] ( )[ ] [ ( )]xKExKExKxKEC jiji +≤  

( ( )).2 hO xφ=  (9) 

Now, following Masry [28], we define the sets: 

( ){ jiE ,1 =  such that }nji ϕ≤−≤1  

and  

( ){ jiE ,2 =  such that },11 −≤−≤+ϕ njin  

where ∞→ϕn  as ,∞→n  we can write 

( ( ( ) ) ( ( ) ))∑
≠

+=∆∆
ji

nntJjtJi txtx ,,,,cov ,2,1 EE  

where n,1E  and n,2E  are the sums of covariances over 1E  and ,2E  

respectively. First, by applying the last upper bound in (9), we get 

( ( ) ).2
,1 nxn hnO ϕφ=E  

For the second term, we use the modified Davydov covariance inequality for 
mixing processes (see Rio [31], formula 1.12a, p. 10), we have 

( ( ( ) ) ( ( ) )) ( ).,,,cov, jictxtxji tJjtJi −α≤∆∆≠∀  

Then, we get, by A1(iii), 

( ).1
,2

ν−ϕ= nn nOE  

Choosing ( )( ) ν−φ=ϕ 2hxn  permits us to get 

( ( ( ) ) ( ( ) )) ( )( )∑
≠

φ=∆∆
ji

xtJjtJi hnOtxtx .,,,cov  (10) 
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Finally, combining the previous results yields 

( )( ).2 hnOS xn φ=  (11) 

Therefore, by putting 

( ) ( ( ) ( )( ) ),logloglog,log 1
0 ν=

φ
ε=ε nnOrhn

n
x

 (12) 

we get 

( ( ) ( ) ( )( ) ( ) ( ) ).logloglog 1
0

2121211
1

+ν−−ν+ν−ν−− ελ= nnhnOQ nnn  

Under A5(ii), ( ( )),logloglog 211
1 nnnOQ n

−−−=  this last is the general 

term of a convergent Bertrand’s series. Using a Taylor expansion of 
( )1log +x  and (12), we have 

( )( ) 
















 ε
+−φ≤ −

r
nrhAnQ xn

log1log2exp
2
02321

2  

( )( ) .2
1

23
2
0ε−

−φ≤ nhC x  (13) 

In the same way, we can choose 0ε  such that nQ2  is the general term of a 

convergent series. Thus, ( )∑
≥

∞<+
1

21 ,
n

nn QQ  and the result is then a direct 

application of Borel-Cantelli’s Lemma. ~ 

Proof of Proposition 3.1. It is a consequence of Lemmas 4.1-4.4. ~ 

Proof of Theorem 3.1. We give the proof for the case of an increasing 
( ),.,Yρ  decreasing case being obtained by considering ( )..,Yρ−  Therefore, 

we can write, under this consideration, for all ,0>ε  

( ( ) ( ) )ε≥θ−θ xxP n
ˆ  

( ( )( ) ( )( ) ( )( ))ε+θΓ≥ε+θΓ−ε+θΓ≤ xxxxxxP n ,,,ˆ  

( ( )( ) ( )( ) ( )( )).,,,ˆ ε−θΓ≥ε−θΓ−ε−θΓ+ xxxxxxP n  
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Moreover, under A2, we get that 

( ) ( ) ( ( )) ( ( ))

( )
,

,

ˆ,ˆˆ,ˆ

n

nnn
n

x
t

xxxxxx
�Γ

∂
∂

θΓ−θΓ
=θ−θ  

where n�  is between ( )xnθ̂  and ( ).xθ  By the regularity assumption A2 on 

( ),.,xΓ  we have 

( )∑
∞

=

∞<



 <Γ
∂
∂

>∃
1

.,,0
n

n vx
t

Pv �  

The result is then a direct consequence of Proposition 3.1. ~ 

Proof of Theorem 3.2. From (5), we have the following decomposition: 

( )( ( ) ( )) ( ) ( ( )) ( )( )
( ) ( )n

N
n

N
n

N
n

xnx
x

xxxxhnxxhn
ξ′Γ

θΓ−θΓ
φ=θ−θφ

,ˆ
,~,ˆˆ  

( ) ( ( )) [ ( )( )]
( ) ( )n

N
n

N
n

N
n

x
x

xxExxhn
ξ′Γ

θΓ−θΓ
φ+

,ˆ
,~,ˆ

 

( ) [ ( )( )]
( ) ( )n

N
n

N
n

x
x

xxEhn
ξ′Γ

θΓ
φ+

,ˆ
,~

 

( ) ( )
.

,ˆ
321

n
N
n x

SSS

ξ′Γ

++
=  

Then, to state the result, we show that 1S  and 3S  are asymptotically 

negligible, and that 2S  suitably normalized is asymptotically normally 

distributed and the denominator converges in probability to ( )( ).,1 xx θϒ  

On one hand, we have 

{ ( )( ) }21
1 log nhOS xφ=  a.co. 

which goes to zero under A5(iii). 
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On the other hand, as in Lemma 4.3, we have that 

( ( ) )b
x hhnOS φ=3  

which goes to zero under A5(iv). 
 

Lemma 4.5. Under assumptions A1, A3-A5 and B1-B4, we have 

( ( )( )).,,0 2
12 xxNS

D
θσ→  (14) 

Proof. In order to establish the asymptotic normality for sums of 
dependent random variables, we use Doob’s small-block and large-block 
technique (see Doob [16], pp. 228-232). Partition the set { }n...,,2,1  into 

12 +nr  subsets with large blocks of size nM  and small blocks of size ,nN  

with .





+
=

nn
n NM

nr  Condition B4 implies that there exists a sequence of 

positive integers ( )nq  tending to infinity such that 

( ( )) ( ) ( ) 0, →αφφ= nxnxnn NhnqhnoNq  as .∞→n  (15) 

Now define the large block size as ( ) .






 φ
=

n
x

n q
hnM  Then using (15) and 

simple algebra shows that as :∞→n  

( )
( ) .0,0,0,0 →α→

φ
→→ n

nx

nn

n

n N
M
n

hn
M

n
M

M
N

 (16) 

Put 

( )( )xxi θΨ ,  

( )
( )[ ] ( )

( ) ( )( )
( )

( ) ( )( ) ,,,
1 
















θρ

δ
−θρ

δφ
= xYxK

YG
ExYxK

YGxKE
h

ii
i

i
ii

i

ix  

then we have 
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( )( ) ( )( )∑
=

θΨ=θ
n

i
i xx

n
xxS

1
2 ,1,  

[ ( )( ) ( )( ) ( )( )],,,,1
,3,2,1 xxTxxTxxT

n nnn θ+θ+θ=  

where 

( )( ) ( )( ) ( )( ) ( )( )∑ ∑
−

=

−

=

θ′=θθ=θ
1

0

1

0
,2,1 ,,,,,

n nr

m

r

m
mnmn xxLxxTxxLxxT  

and 

( )( ) ( )( )
( )
∑

++=

θΨ=θ
n

rNMi
in

nnn

xxxxT
1

,3 .,,  

Also, let 

( )( ) ( )( )
( )

( )

∑
++

++=

θΨ=θ
nnn

nn

MNMm

NMmi
im xxxxL

1
,,  

and 

( )( ) ( )( )
( )

( ) ( )

∑
++

+++=

θΨ=θ′
nn

nnn

NMm

MNMmi
im xxxxL

1

1
.,,  

Let us show that as :∞→n  

[ ( )( )] [ ( )( )] ,0,and0,1 2
,3

2
,2 →θ→θ xxTExxTEn nn  (17) 

( ) [ ( )] ,0expexp
1

0

2
11

0

2
1

→−











∏∏
−

=

−
−

=

− nn r

m
m

r

m
m LitnELitnE  (18) 

( ( )( )) ( )( ),,,1
1,1 xxxxTVarn n θσ→θ  (19) 
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[ { ( )( ) }]∑
−

=

→θεσ>
1

0
1

2 .0,1 nr

m
mm nxxLILEn  (20) 

For every ,0>ε  relation (17) implies that 2
,2 nT  and 2

,3 nT  are asymptotically 

negligible, while (18) shows that the summands mL  in nT ,1  are 

asymptotically independent, and (19) and (20) are standard Lindeberg-Feller 
conditions for asymptotic normality of nT ,1  under independence. We first 

establish (17): 

[ ( )( )]xxTE
n n θ,1 2

,2  

[ ( )( )]
( )

( ) ( )

∑ ∑
−

=

++

+++=

θΨ=
1

0

1

1

2 ,1 n nn

nnn

r

m

NMm

MNMmi
i xxE

n
 

( )
( ) ( ) ( )

∑ ∑
−

= ++≤<≤+++

ΨΨ+
1

0 11
,cov2 n

nnnnn

r

m NMmjiMNMm
jin

 

( )∑
−≤<≤

′′+
10

,cov2

nrji
ji LL

n
 

.321 nnn Λ+Λ+Λ=  

First, we have 

[ ( )( )] ( ) [ ( )]
( )[ ]

( )
( ) ( )( )

[ ( )]
















 θρ
δ

φ
=θΨ

xKE

xYxK
YGE

xKE
xKEhxxE

ii
i

i

x
i 2

1

22
2

1
2

2
12

,
,  

( ) ( )
( ) ( )( )

[ ( )] .
,

2

1


































 θρ
δ

φ− xKE

xYxK
YGEh

ii
i

i

x  
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We show by using analogous arguments as those considered in Lemma 4.3 
that 

( )
( ) ( )( )

[ ( )]
( )( ),,

,

22
1

22
2

xx
xKE

xYxK
YGE

ii
i

i

θλ→

















 θρ
δ

 

( )
( ) ( )( )

[ ( )]
( )( ).,

,

1
1

xx
xKE

xYxK
YGE

ii
i

i

θλ→

















 θρ
δ

 

It is shown in Attouch et al. [1] that 

( ) [ ( )]
( )[ ]

.2
1

2

1
2

2
1

η

η
→

φ

xKE
xKEhx  

Finally, we have 

[ ( )( )] ( )( )xxxxE i θλ
η

η
→θΨ ,, 22

1

22  (21) 

which yields that 

( ) ( )11 o
n
NrOx nn

n =





=Λ  from (16). 

Since, for ,3,2=k  we have 

( )∑
≤<≤

ΨΨ≤Λ
nji

jikn n
1

.,cov2  (22) 

Let us prove that the right term in (22) tends to 0 as n tends infinity. In the 
sequel, we use technique developed by Masry [28]. Let the sets: 

( ){ ji,1 =Ξ  such that }nmji ≤−≤1  

and 

( ){ ji,2 =Ξ  such that },11 −≤−≤+ njimn  
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where nm  is a sequence of integers such that ( )nomn =  as ∞→n  and for 

some ( ).1,0∈δ  We have 

( )( ) ( )( )∑
∞

=

δδ− ∞<αφ
nml

x lh .  (23) 

We can write 

( ) ( ),1,cov1

1
,2,1∑

≤<≤

+=ΨΨ
nji

nnji AA
nn

 (24) 

where nA ,1  and nA ,2  are the sums of covariances over 1Ξ  and ,2Ξ  

respectively. 

Furthermore, for ,ji <  we observe that 

( )ji ΨΨ ,cov  

( )
( )[ ] ( ) ( )

( ) ( ) ( )( ) ( ( ))







θρθρ

δδφ
≤ xYxYxKxK

YGYG
E

xKE
hC jiji

ji

iix ,,
1

2  

( )
( )[ ]

( ) ( )


φ
= xKxKE

xKE
hC ji

x

1
2  

( ) ( )
( )( ) ( ( )) .,,, 












|θρθρ

δδ
⋅ jiji

ji

ii XXxYxY
YGYG

E  

By the assumptions made on ρ, it follows that 

( ) ( )
( )[ ]

[( ) ( ) ( )].,,,,cov
1

2 hxBhxBXXP
xKE

hC ji
x

ji ×∈
φ

≤ΨΨ  

Using assumption A1(ii), it follows that 

( ) ( )( ).,cov hO xji φ=ΨΨ  
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Therefore, 

( )( ).1
,1 nxn mhOAn φ=  (25) 

Now, choosing nm  such that ( )hm xnφ  goes to zero as n goes to infinity, we 

get ( ).11
,1 oA

n n =  For the second term in (24), let us use a version of the 

moment inequality due to Rio [30]. Letting p, q, γ be integer numbers such 

that ,1111 =
γ

++ qp  it follows that 

( )( ) ( ) ( )
( )
∑

Ξ∈

γγ
+

ΨΨ−α≤
2,

11111
,2 .21

ji
qq

ipp
in EEjin

cAn  

Moreover, we get for n large enough, 

( )( )
( )[ ] ( )

( ) ( ( )) .,2

1

21












θρ

δφ
≤Ψ

− P

ii
i

i
p

p
x

p
P
i xYxK

YG
E

xKE
hE  (26) 

Conditioning on ,iX  we get 

( )
( ) ( )( ) ( )( )., hCxYxK

YG
E xii

i

i φ≤



 θρ

δ
 

Therefore, 

( ( )( ) ).2
1 p

x
P
i hOE −φ=Ψ  

Hence, using (26), we have 

( )( ) (( ( )) ) (( ( )) )
( )
∑

Ξ∈

−−
γγ

+
φφ−α≤

2,

1
211

21111
,2 21

ji
q

q
xp

p
xn hhjin

cAn  

( )( ) ( )( )∑
∞

=

γγ
− αφ≤

nml
x lhc .

11
 (27) 
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Therefore, by (23), we get 

01
,2 →nAn  as .∞→n  (28) 

Thus, from (25) and (28), we obtain 

( )∑
≤<≤

→ΨΨ
nji

jin
1

0,cov1  as .∞→n  (29) 

This completes the proof of the first part in (17). For the second part, write 

[ ( )( )]xxTEn n θ− ,2
,3

1  

( )( )
( ) 





























θΨ= ∑

++=

−

2

1

1 ,
n

rNMi
i

nnn

xxEn  

[ ( )( )] ( )
( )

∑
≤<≤++

−− ΨΨ+θΨ=
njirNM

jii
nnn

nxxEn
1

121 ,cov2,  

( ) ( )∑
≤<≤

− ΨΨ+
+−

≤
nji

ji
nnn nn

rNMnc
1

1 .,cov2  

Therefore, (16) and (29) give the result. 

In order to establish (18), we make use of the fact that the process 
{ }ii XY ,  is strongly mixing and Volonskii and Rosanov’s Lemma (see 

Masry [29]). Note that mL  is m
m
j
i�  measurable with ( ) 1++= nnm NMmi  

and ( ) .nnnm MNMmj ++=  Then we have 

( ) [ ( )]∏∏
−

=

−
−

=

−
−











 1

0

2
11

0

2
1

expexp
nn r

m
m

r

m
m LitnELitnE  

( ) ( )116116 +α≈+α≤ n
n

nn NM
nNr  

which tends to zero by (16). 
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Next, let us establish (19). Since 

( ( )( ))xxTVar
n n θ,1

,1  

( )( )[ ] ( )∑∑
−≤<≤

−

=

+












θ=

10

1

0
,cov2,1

n

n

rji
ji

r

m
m LLnxxLVarn  

[ ( )( )] ( )
( )

( )

∑ ∑ ∑
−

=

++

++= −≤<≤

ΨΨ+θΨ≤
1

0 1 10

2 .,cov4,1 n nnn

nn n

r

m

MNMm

NMmi rji
jii nxxEn  

Since ,1→n
Mr nn  the result follows from (21) and (29). 

It remains to establish (20). Now we have to show that the standard 
Lindeberg-Feller conditions (see Loève [27], p. 280) for asymptotic 

normality of nT
n ,1

1  under independence condition are satisfied. So we 

have to establish 

[ { ( )( ) }]∑
−

=

→θεσ>
1

0
1

2 .0,1 nr

m
mm nxxLILEn  

It suffices to show that, for every ,0>ε  the set { ( )( ) }nxxLm θεσ> ,1  is 

empty for n large enough. Since 

( )
,1

hn
cML

n x

n
m φ

≤  

the set { ( ) }nxLm εσ>  is an empty set by (16). Then this completes the 

proof of Lemma 4.5. 
 

Lemma 4.6. Under assumptions A1, A2, A5 and B1, we have 

( ) ( ) ( )( ).,,ˆ 1 xxx
P

n
N
n θ→ξ′Γ ϒ  
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Proof. We have 

( ) ( ) ( )txtxN
n

Dt
,,ˆsup 1ϒ−′Γ

∈
 

( ) ( ) ( ) ( ) ( ) ( ) ( )txtxtxtx N
n

Dt

N
n

N
n

Dt
,,~sup,ˆ,ˆsup 1ϒ−′Γ+′Γ−′Γ≤

∈∈
 

( ) ( ),,, ,2,1 txtx nn γ+γ=  

where 

( ) ( )
( )[ ] ( )

( ) ( )∑ ρ′
δ

=′Γ .,1,ˆ
1

tYxK
YGxKE

tx ii
in

iN
n  

Using the same steps as in the proof of Lemma 4.2, we get 

( ) ( ) .log,
21

,1 
















φ

=γ hn
nOtx

x
n  

On the other hand, we consider the following decomposition: 

( ) ( ) ( ) [( ) ( )]txEtxtx N
n

N
n

Dt
n ,~,~sup,,2

′Γ−′Γ≤γ
∈

 

[( ) ( )] ( ) .,,~sup 1 txtxE N
n

Dt
ϒ−′Γ+

∈
 (30) 

By the continuity of ( )
t

ty
∂

ρ∂ ,
 at ( )xθ  and the convergence results given in 

Lemma 4.4, we have that the first term of (30) converges in probability to 0. 
On the other hand, similar arguments to those used in the proof of Lemma 
4.3, can be used to obtain 

[( ) ( )] ( ) ( ).,,~ 21
b
n

N
n hOtxtxE +=′Γ ϒ  

The proof of the lemma is then complete. 
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