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Abstract

According to Mordell-Weil theorem, the group E(Q) of an elliptic
curve E over Q is a finitely generated abelian group which is

isomorphic to a group of the form Es(Q)xZ", where r is a

nonnegative integer. We study the torsion groups Eio(Q) for
special elliptic curves and the torsion groups of E : y? = x® + Ax + B
for some cases of AeZ and B =Hin:1 piei, where p;’s are

all primes such that p; = 3 (mod8), (p; =1(mod8), p; =5 (mod8),
p; = 7 (mod8)), respectively.

1. Introduction

By Mordell-Weil theorem, we know well that the group E(Q) of an
elliptic curve E defined over Q is finitely generated [4, 11, 13, 14], i.e.,
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E(Q) = Etors(Q) x AR
Then in this paper, we study the torsion groups E;ys(Q) for some elliptic

curves E : y2 = x% + AX+B. The major steps of this study are as follows:

In Section 2, we discuss some definitions and properties of elliptic
curves.

In Section 3, we investigate that if p does not divide the discriminant A
of an elliptic curve E, then the reduction modulo p map is an isomorphism of

Eiors(Q) onto a subgroup of E(Fp).

In Section 4, we investigate the torsion groups E;ors(Q) for special
elliptic curves.

In Section 5, we study torsion groups of some elliptic curves E : y2 =
x>+ Ax+ B with AcZ and B:H;Ll piei, where p;’s are all primes

such that p; = 3 (mod8), (p; =1(mod8), p; =5 (mod8), p; =7 (mod8)),
respectively.

If p;’sare all primes such that p; = 3 (mod8) and p; # 3, then we can
obtain the following results:

(1) If all ¢ ’s are even, ej = 3m; for all i and

A= —]1[ pi™ — f[ pfi M = —Zﬁ o™,
i=1 i=1 i=1

then
Etors(Q) = {O, (ﬁ pimi, 0} [0, x lﬂ[ piei/z} = Z/AZ.
i=1 i=1

(2) For A #0 (mod3), if

n n
A:—l | pl m| il I plel mI’
i=1 i=1
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then

Etors(Q) = {O, [i ﬁ pimi , 0}} = 7,/2Z,
i=1

where e; is odd or & = 3m; for someiif A=-]T", p?™ ~TT pf ™.

(3) For A=1(mod3), if

A # —f[ p2™ iﬁ pi ™,
i=1 i=1
then
Etors(Q) = {O}.
By using the similar method, we will study torsion groups of an elliptic

curve E: y2 =x3 + Ax+1_[in:1 piei, where p;’s are all primes such that

pi =1(mod8)(p; =5 (mod8), p; =7 (mod8)) in Theorem 5.3 (Theorem
5.4, Theorem 5.5), respectively.

2. Elliptic Curves

If K is a number field, let K denote its algebraic closure. The projective

n-space over K, denoted P" or P"(K), is the set of all (n + 1) -tuples
(Xo» Xq» oo Xg) € ATH(K),

where A”“Ll(K) is an affine (or Euclidean) space, such that at least one Xx; is
non-zero, modulo the equivalence relation given by

(X0, X, -+ Xn) ~ (You Y11 - Yn)
if there exists A € K* = K —{O} with x; = Ay; for all i. An equivalence class

{(AXg, ... AXy)| A € K™} is denoted [xg, ..., X5], and Xg, ..., X, are called
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homogeneous coordinates for the corresponding point in P". A Weierstrass
equation is a homogeneous equation of degree 3 of the form

Y2Z 4+ aXYZ + ag¥Z? = X3 + ayX 27 + a4 Xz? + agZ°,
where ay, ay, ..., 8g € K. The Weierstrass equation is said to be non-
singular if for all projective points P = [X, Y, Z] € P"(K) satisfying
F(X,Y, 2Z)
=Y2Z + aXYZ + ag¥Z? — X3 - ayX?Z — a,xz2 - agz% = 0,

oF oF oF

X' oY o7 1S non-zero at P.

at least one of the three partial derivatives

An elliptic curve E (or an algebraic curve of genus 1) is the set of all
solutions in IP’2(K) of a non-singular Weierstrass equation. There is exactly
one point in E with Z-coordinate equal to 0, namely [0, 1, 0]. We call this
point the point at infinity and denote it by O.

For convenience, we will write the Weierstrass equation for an elliptic

curve using non-homogeneous (affine) coordinates x=%, yz% if

Z #0,

E:y? +aXy +agy = X° + apx? + agX + ag,

where a;’s are in K. Then an elliptic curve E is the set of solutions to the

equation in the affine plane AZ(IZ) = K x K, together with the extra point
at infinity O. If ay, ap, ...., ag € K, then E is said to be defined over K, and
denoted this by E/K. If E is defined over K, then the set of K-rational points
of E, denoted E(K), is the set of points both of whose coordinates lie in K,
together with the point O.

Then for char(K) = 2, we can simplify the equation by completing the

square. That is, replacing y by %(y — X — az) gives an equation of the
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form
E:y?=4x3+ b2x2 + 2bgXx + by,
where b, = a12 +4ay, by = 2a, + ayag, bg = a32 + 4ag.

If further char(K) = 2, 3, then replacing (x, y) by ((x —3b,)/36, y/108)

eliminates the x? term, yielding the simpler equation
E: y2 =x3 - 26C4X — 54cg,
where ¢, = b5 — 24b,, cg = b3 + 36b,b, — 216h.
Also, we define the discriminant
A = —b3bg — 803 — 27bg + 9b,b,b,

where bg = a12a6 +4ajag —qagay + a2a§ - af and also the j-invariant on E,

as
i(E) = j = G - 12
A3 ocd

Hence, if the characteristic of K is not 2 or 3, then we may assume that
our elliptic curves have Weierstrass equations of the form

E:y2=x3+Ax+B.
This equation has associated quantities
A = -16(4A3 + 27B2),
j = —1728(4A)*/A.
The only change of variables preserving this form of equation is

x=u’x, y=udy forsomeueK*
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and then
utA =A ubB =B, ul2a'=A
If A = 0, then this is an elliptic curve.

Let E be an elliptic curve given by a Weierstrass equation. E P?
consists of the points P = (x, y) satisfying the equation together with the

points O =0, 1, 0] at infinity. Let L c P2 be a line. Then since the
equation has the degree three, L intersects E at exactly 3 points, say P, Q, R.

Composition Law 2.1 [4, 13]. Let P, Q € E, L be the line connecting P
and Q (tangent line to E if P = Q), and R be the third point of intersection
of L with E. Let L’ be the line connecting R and O. Then P @ Q is the point
such that L' intersectsEatR, Oand P @ Q.

Then the composition law makes E into an abelian group with identity
element O. We further have:

Proposition 2.2 [13]. Suppose E is an elliptic curve defined over K. Then
E(K)={(x, y) e K®:y?+ Xy + agy = xS + azx2 + ayx + ag} U {O}
is a subgroup of E.
Notation. For m € Z and P € E, we let
[mM]P =P +---+ P (mterms) for m > 0.
[0]P =0, and [m]P =[-m](-P) for m < 0.

Proposition 2.3 [4, 11, 13]. Let E be an elliptic curve given by a
Weierstrass equation

y2 + Xy + azy = X3 + 3.2X2 + ayX + ag.

Here we will use + and — instead of the special symbols @ and & for the

group operations on E.
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(1) Let Py = (Xg, Yg) € E. Then =Py = (Xg, —Yo — &1%g — &3).
Now let
R+ P, = Py with B = (X, yj) € E.
2)If gy =xpand y; +y, + ayXp +ag =0, then B + P, = 0.

Otherwise, let

7\'=y2_y1
Xp =%
Xo — YoXq .
M:)’12 YoX1 i X # %o,
Xy — X

and

- 3x12 + 28X + a4 — Yy
2y1 + X + ag

_ —Xf + agX + 2a6 — a3y
2y1 + aq1X + a3

if X = Xo.

(Then y =2Ax+p is the line through P, and P,, or tangent to E if
R=PR)
(3) P; = B + P, isgiven by
X3 =k2+a1x—a2—x1—x2,
y3 = (A +ay)xg —p - ag.

(4) As special cases of (3), for B, # £P,, we have:

2
X(Pl + P2) = (—i; — )3::_.) + al(—ii — ){]]:j - az — Xl - X2.

For P = (x, y) € E, the duplication formula has

4 2
X7 —byxc — 2bgx —
x(2]p) = X =0 26X =Dy
4x +b2X +2b4X+b6
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where b, = a12 +4ay, by =2a, +aag, bg = a% +4ag and bg = alzaﬁ +
4ajyag — agay + a2a§ - af.

From now on, we quote some known theorems:

Theorem 2.4 (Mordell-Weil) [4, 11, 13]. Let K be a number field and
E/K be an elliptic curve. Then the group E(K) is finitely generated.

From the Mordell-Weil theorem, we see that Mordell-Weil group E(K)

has the form
E(K) = Egors(K) x Z',

where the torsion subgroup E,(K) is finite and the rank r of E(K) is a

non-negative integer.

Theorem 2.5 (Mazur) [4, 11, [13]. Let E/Q be an elliptic curve. Then

the torsion subgroup Eiqs(Q) is one of the following fifteen groups:
Z/NZ, 1< N <10 or N =12,
7)27. ® ZJ2NZ, 1< N < 4,

Further, each of these groups occurs as an Egqs(Q).

Theorem 2.6 (Lutz-Nagell) [4, 11, 13]. Let E/Q be an elliptic curve

with a Weierstrass equation
v =x3+Ax+B, A BeZ
Suppose P e E(Q) is a non-zero torsion point. Then

(@) x(P), y(P) € Z.

(b) Either [2]P = O, orelse y(P)? divides 4A° + 27B2.
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3. Reduction Modulo p

Let E be an elliptic curve, given as usual by a Weierstrass equation
E:y2=x3+AX+B

with integer coefficients A, B. We showed that this group is finitely
generated (Mordell’s theorem) and that the points of finite order have integer
coordinates (Lutz-Nagell theorem).

In this section, we have been looking at curves with coefficients in
a finite field F,. Suppose that we write z Z for the map “reduction

modulo p”,
Z—>Z/pZ:IFp, A=

Then we can take the equation for E, which has integer coefficients, and we
can reduce those coefficients modulo p to get a new curve with coefficients
in Fy:

E:y2=x3+;&x+§.

When will the curve E be non-singular? It will be non-singular provided

p > 3 and provided the discriminant

A = —16(4A3 - 27B?)
is non-zero. But reduction modulo p from Z to F, is @ homomorphism, so

A s just the reduction modulo p of the discriminant D of the cubic

x> + AX + B. In other words, the reduced curve E (mod p) will be non-
singular provided p > 3 and p does not divide the discriminant A.

Having reduced the curve E, it is natural to try taking points on E and

reducing them modulo p to get points on E. We can do this provided that the
coordinates of the point have no p in their denominator. In particular, if a
point has integer coordinates, then we can reduce that point modulo p for any
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prime p. That is, if P = (x, y) is a point in E(Q) with integer coordinates,
then x and y satisfy the equation

y2=x3+Ax+B.

This equation gives a relation among integers, so we can reduce it modulo p
to get the equation

y? =x3+ Ax + B.
This last equation says that P = (X, y) is apointin E(Fp). So we get a map

from the points in E(Q) with integer coordinates to E(Fp).

We know that points of finite order in E(Q) always have integer

coordinates. This is the hard part of the Lutz-Nagell theorem. We are going
to study the collection of points of finite order, so let us give it a name:

Eiors(Q) = {P = (x, y) € E(Q) : P has finite order}.

Clearly, Eios(Q) is a subgroup of E(Q) because if P, P, are points of
finite order, say mP, = O and myP, = O, then (mm,)(R +P,) = 0. So
both B, + P, and B, — P, are in Ejy5(Q).

Since Eyos(Q) consists of points with integer coordinates, together with
O, we can define a reduction modulo p map

Etors(Q) — E(Fp), Prs P = {(g y) :]1: Eig( y),

Now E(Q) is a subgroup of E(Q), so it is a group; and provided p does
not divide A, we know that E(Fp) is a group. So we have a map from the
group Eiors(Q) to the group E(Fp), and we now want to check that this
map is a homomorphism.

First we note that negatives go to negative:

P = (x )= (% 9)=P.
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So it suffices to show that if B, + P, + P; = O, then |51 + |52 + 53 = 0. As
usual, there are some special cases to check.

If any of B, P, or P; equals O, then the result we want follows from the
fact that negatives go to negatives, So we may assume that B, P, and P are

not equal to O. We write their coordinates as
R=00Y) Pr=(x, Y2), P3=(xs, y3)

From the definition of the group law on E, the condition P + P, + P3

= O is equivalent to saying that P, P, and P; lie on a line. Let
y=AX+vV

be the line through R, P», Ps. (If two or three of the points coincide, then

the line has to satisfy certain tangency conditions.)
Our explicit formula for adding points says that
_ 92 —
X3 =A" =X — X2, Y3 =AX3+ V.

Since X, Xp, X3, Y3 and a are all integers, we see that . and v are also

integers. This fact is what we needed because now we can reduce A and v
modulo p.

Substituting the equation of the line into the equation of the cubic, we
know that the equation

x?’JrAXJrB—(kx+v)2 =0
has X, Xp, X3 as its three roots. In other words, we have the factorization
X3 + AX+ B — (Ax + v)2 = (X=X )(X=X2)(X = X3).

This is the relation that ensures that B, + P, + P; = O, regardless of whether

or not the points are distinct.
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Reducing this last equation modulo p, we obtain
3+ A+ B - (x + V)2 = (x = %) (X = %) (X — X3).
Of course, we can also reduce the equations y; = Ax; + v to get
Vi =X§i +v fori=1 2, 3.

This means that the line y = AX + v intersects the curve E at the three
points ﬁ 52 and I53. Further, if two of the points 51 52 and 53 are the
same, say |31 = 52, then the line is tangent to E at |31; and similarly, if all

three coincide, then the line has a triple order contact with E. Therefore,

§|. + 52 + 53 = O,

which completes the proof that the reduction modulo p map is a
homomorphism from E,s(Q) to E(Fp).

Now we observe that this homomorphism is one-to-one. A non-zero

point (X, y) € Eors(Q) is sent to the reduced point (X, y) € E(Fp), and

that reduced point is clearly not O. So the kernel of the reduction map
consists only of O, and hence the map is one-to-one. This means that

Eiors(Q) looks like a subgroup of E(Fp) for every prime p such that p is

relatively prime to A. Hence we have completed the proof of the following
proposition:

Proposition 3.1 (Reduction modulo p theorem). Let E be a non-singular
elliptic curve

E:y2=x3+Ax+B
with integer coefficients A, B and let A be the discriminant

A = —16(4A° + 27B?).



Torsion Groups of Some Elliptic Curves 195
Let Eiors(Q) < E(Q) be the subgroup consisting of all points of finite
order. For any prime p, let P — P be the reduction modulo p map

X, ¥) P=(xy),

Etors (Q) — E(Fp)v P IS:{O P_o.

If p does not divide A, then the reduction modulo p map is an isomorphism

of Eiors(Q) onto a subgroup of E(Fp).

4. Torsion Groups for Special Curves

In this section, we will show that the torsion groups for special elliptic
curves using a lemma about Ep(Zp) for certain primes p. Also, we shall use
the form of the duplication formula in Proposition 2.3(4) when specialized to

acurve y2 =x° + AX + B:

x* — 2Ax? — 8Bx + A?

M2P) = 4(x3 + Ax + B)

(4.1)

Lemma 4.1 (Dirichlet’s theorem, [11]). There are infinitely many
(positive) primes an + b if GCD(a, b) = 1.

Lemma 4.2. Let E, be the curve y2 = x3 + AX over Zy, and assume
that ptA, p>7, and p=3(mod4). Then Ey(Z,) has exactly p+1
points.

Proof. We start from the known result that p = 3 (mod 4) implies that —

1 is not a square modulo p. For x = 0, consider the pair {x, —x}. When

these elements are substituted into E, we obtain x> + Ax and —(x3 + Ax). If

the answers are 0, each one has a square root, and we get one solution from
each. If they are non-zero, exactly one is a square (since —1 is not a square),
and it has two square roots. So in either case, the pair {x, — x} gives us two

solutions. Thus the non-zero x’s give us p —1 solutions in all. For x = 0,
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we get one more solution (0, 0), and O gives us one additional solution. Thus
Ep(Z/pZ) has p +1 points. O

Proposition 4.3. Let E be the elliptic curve y2 = x>+ AX with Ain Z
and with A assumed fourth-power free. Then
Z/2Z ® Z,/2Z if —A'is a square in Z
Eiors(Q) = <Z/4Z if A=4
Z/27Z otherwise.

Proof. The main step is to show that |Ej,s(Q)| divides 4. By
Proposition 3.1, for all sufficiently large primes p, |Eys(Q)| divides
| Ep(Z/pZ) | By Lemma 4.2, | Eyys(Q)| divides p +1 for all sufficiently

large primes p with p = 3 (mod 4).

Let us see that 8 does not divide | Eyors(Q)|. By Lemma 4.1 (Dirichlet’s

theorem), we can choose a prime p as in the previous sentence with
p = 3 (mod8). If 8 divides | Eyors(Q)], then 8|(p +1). But p =3 (mod8)

means that p +1 =4 (mod8); so 81 (p +1), acontradiction.

Now let us see that 3 does not divide | Eyors(Q)|. By Lemma 4.1, we can
choose p large with p =7 (mod12). Then p =3 (mod4). Thus 3|| Es(Q) ]|
implies 3|(p+1). But p+1=8(mod12) implies p+1=8(mod3); so
3t (p +1), acontradiction.

Finally, let us see that no odd prime q > 3 divides | Eys(Q)[. By
Lemma 4.1, we can choose p large with p =3 (mod4q). Then p=
3 (mod4). Thus q|| Eys(Q)| implies q|(p +1). But p +1=4 (mod4q)
implies p+1=4 (modq); so qf(p +1), acontradiction.

This completes the proof that | Es(Q)| divides 4. The torsion group
will then contain Z, = {(0, 0), O} as a subgroup, and it will be Z, ® Z, if

and only if x5 + AX splits over Q, i.e., if and only if —A is a square. Thus
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the only question is when (0, 0) is the double of something (so that the
torsion group is Z, rather than Z,). So we can check directly for A = 4

that (2, 4) doubles to (0, 0).
Consider the equation 2(x, y) = (0, 0) for other A. By (4.1), we have

0=x*-2Ax% +a% = (x2 - A

Thus x% = A Since A is fourth-power free, x is squarefree. But y2 =

x(x? + A) = x(x* + x?) = 2x then shows that no odd prime can divide
X. So x =1 or +2. Checking the possibilities, we see that x =2 and

A=4 0

Lemma4.4. Let Ej, be the curve y2 = x> + B over 7/ pZ, and assume
that pfA, p>5 and p =2 (mod3). Then E(Z/pZ) has exactly p +1
points.

Proof. Let p=3n+2. The multiplicative group (Z/pZ)" has
order p—1. Since 31(p—-1), no element has order 3. Therefore, the

homomorphism a — a® on (Z/pZ)" is one-to-one, hence onto. Thus each

element of Z/pZ has a unique cube root. For each y in Z/pZ, the element

y2 — B has a unique cube root, which we can take as x. In this way, we

obtain p solutions. Adjoining O, we see that E,(Z/pZ) has p +1 points. [J

Proposition 4.5. Let E be the elliptic curve y2 =x3+B with Bin Z
and with B assumed sixth-power free. Then

7/6Z if B =1
7/37  if B = —432 = 2433,
Etors(Q) = or if Bis a square and B =1

7/27, if Bisacubeand B =1
{O} otherwise.
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Proof. The main step is to show that |Ejs(Q)| divides 6. By
Proposition 3.1, for all sufficiently large primes p, | Eors(Q)| divides p +1
for all sufficiently large primes p with p = 2 (mod 3).

Let us see that 4 does not divide | Eyos(Q)|. By Lemma 4.1 (Dirichlet’s

theorem), we can choose a prime p as in the previous sentence with
p=5(mod12). If 4 divides | Eyrs(Q)|, then 4|(p +1). But p =1 (mod4)

means that p +1= 2 (mod4); so 4{(p +1), acontradiction.

Now let us see that 9 does not divide | Eyys(Q)|. By Lemma 4.1,
we can choose p large with p =2 (mod9). Then p =2 (mod3). Thus
9|| Etors(Q) | implies 9|(p +1). But p+1=3(mod9) implies 91 (p +1),
a contradiction.

Finally, let us see that no odd prime q > 3 divides | Eys(Q)|. By
Lemma 4.1, we can choose p large with p =2 (mod3q). Then p=
2 (mod3). Thus q|| Eqors(Q)| implies q|(p +1). But p+1=3(mod3q)
implies p+1=3(modq); so q+(p +1), acontradiction.

This completes the proof that | E,s(Q)| divides 6. The torsion group

has an element of order 2 if and only if x>+ B hasa first-degree factor over
7Z, i.e., if and only if B is a cube. Thus the only question is when the torsion

group has elements of order 3. Such a point P = (x, y) is characterized by

2P = —P. Moreover, the x coordinate determines everything, since 2P = P
is impossible for P = O. By (4.1),

x4 — 8Bx _
4(x3 + B)

for any rational solutions x. Clearing fractions, we have
4x* + 4Bx = x* -8B,

x4 = —4BX.
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One solution is x =0, which gives y2 =B; so Z/3Z occurs if B

is a square. The only other possibility is x> = —4B. Then y2 = -3B.
Consequently, B < 0. Since B is sixth-power free, the only possible prime

divisors of B are 2 and 3. We readily find B = —2%3% So Z/3Z occurs if

and only if either B is a square or B = —2433, O

5. Main Results

In this section, we shall study torsion groups of some elliptic curves.
Before studying the torsion group of an elliptic curve, we investigate the
group of reduction of an elliptic curve modulo 3.

Lemma 5.1. Let E/Q: y2 = x>+ Ax+ B be an elliptic curve with

A, B e Z. Then the order | E(Z/3Z) | of groups of reduction of E modulo 3

is the following:

4 if A=1(mod3), B =0 (mod3)
4 if A=2(mod3), B =0 (mod3)
~ 4 if A=1(mod3), B =1(mod3)
| E(Z/3z) | = _— _
7 if A=2(mod3), B=1(mod3)
4 if A=1(mod3), B =2 (mod3)
1 if A=2(mod3), B =2 (mod3).
Proof. The proof of this is clear. O

From now on, we determine torsion groups of some elliptic curves.

Theorem 5.2. Let E be the elliptic curve y2 =x3+ Ax+l_[in:1 piei with

A € Z, where p;’s are all primes such that p; = 3(mod8) and p; # 3.

Then the torsion groups Eyors(Q) of elliptic curve E are the following:
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(1) If ¢ = 3m;, m;’s are even for all i and

A= Tem - Toe™ -2 [ o™
i=1 i=1 i=1

then

Etors(Q) = {O, (ﬁ pimi, OJ, {0, + ﬁ piei/zj} = Z/AZ.
i=1 i=1

(2) For A # 0 (mod3), if

n n
A=-T]ef™ ] p ™.
i=1 i1

then

Etors(Q) = {O, [1 ﬁ pimi, 0} = 7,/27,
i=1

where ejr is odd or ey = 3m; for some i’ if

N om n m
A= _Hizl P - Hi:l it

(3) For A =1(mod3), if

n n
Ax-T] pZ™Mi el ™,
i=1 i=1
then
Etors(@) = {O}

Proof. Let E:y? = x>+ Ax + Hin:1 pil be the elliptic curve with

A € Z, where p;’s are all primes such that p; = 3 (mod8) and p; # 3.
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Then, by Theorem 2.6(a) (Lutz-Nagell theorem), for P(x, y) € Eios(Q),

x(P), y(P) € Z.

Thus, if there exists a point P = O such that 2P = O, then x(P)|1_[in:1 piei,

i.e.,

x(P)=%] | o™
i=1

for 0 < m; < ¢. Then x(P) satisfies the equation

(P + APl + ] [ ot =0
i=1

and so we are also able to express A as
n n
S ICAR I G
i=1 i=1
. n 2m; n ej—m;
Hence, if A= —[]._ p" [[i_;pi' . thenwe have

n n n n
y2 =%+ AX+H i = [XiH pimiJ[Xz TrH pimixJ_rH pii=™ |,
=1 i=1 i=1 i=1

But

S
=}

i=1 i=1

do not have an integer solution. The discriminant of the equation is equal to

n n
H p?™ T 4H pii ™ =5 (mod8)
i=1 i=1
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and so the discriminant is not a square. Hence the point of order 2 in

Etors(Q) is only P(i Hin:1 P, O). Therefore, there isno | € N such that

7)27. ® 7,/27. < Eygrs(Q).

Next, we will consider whether E;ys(Q) has a subgroup Z/2IZ for
some | >1. If Eys(Q) has a subgroup Z/21Z for some | > 1, then there
exists a point Q(X, y) € Eiors(Q) such that

2Q = P.

Then, by (4.1), we have

X(2Q) =

4 2 n g 2

X7 —=2AxX° =81 | . p'x+A
1_2["1 ' -xP). 6D
4y

Thus, replacing A by _Hin:1 pZ™ J_rHinzl pi ™ in (5.1) gives an equation
of the form

n

n n
x* 4] T p"x® - 2{— 11 p2™ + [Te ™ sz
i-1 i-1

i=1

2
n n n n

+(Tr Al ] p3m -4 ] piein + (H p?™ 11 piei_mi} =0
i1 i1 i-1 i1

or

2
n n n
[Xz o[ [oMx-TTe™ #]] p?“mij = 0. (5.2)
i=1 i=1 i=1



Torsion Groups of Some Elliptic Curves 203

Now, we check the following two cases:

Casel. A= —Hi”:l pi2mi n Hin:l pti ™

In equation (5.2), the discriminant of the equation

n n
X2+ 2] [ ex-T o™ -T]pfi ™ =0 (5.3)
i=1 i

n
i=1 i=1

n n
2] | pZMix + []p™™ =3 or5(mods)

i=1 i=1

and so it is not a square. Thus equation (5.3) does not have an integer
solution.

Case Il. A= —Hi”:l pZ™ _Hinzl pi ™

In equation (5.2), the discriminant of the equation

n n n
x% - ZH piix — H p2™ H pii ™M =0 (5.4)
i1 i=1 i1

n n
21_[ piZmi _ H pfi~mi,
i=1 i=1

say D. Then we will investigate the discriminant D of (5.4) for the following
four cases:

(i) If g —my isodd and 2m;: > ey — m;- for some i’, then we have

n n
M 3mi —exs 2ms Com
D= pie'l mi Zpi’ml € | | piml _I | piel mi |
i=1 i=1

il il
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Since the integer D needs to be a square,

n n
3mir—e;r 2m; & —M;
Py’ 2pi/"||pi'—||pi' e
i=1 i=1
izl izl
But this is a contradiction.

(ii) If & — m; ’sare even for all i and 2m;» > ey — m;» for some i’, then

n n
M 3mi —exs 2m; Cm
D= pie'l m; Zpi’ml € | | piml _I | piel mi |
i=1 i=1

il il

Since D has to be a square,

n n
IR T 69
i=1 i=1

il il

must be a square. But the integer (5.5) is not a square because

[W} _ (ij (% - (5.6)

(iii) If 2m; < gy — my- for some i’, then

n n
D= pi%mi' 2H pi2mi _ piF;i'—3mi'H pfi~mi |
i=1 i=1

i=i il

But

n n
D 2m; i —3mjr i —m
o2 2 Te™ - M ™
i i=1 i-1

il il
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is not a square because

D/pE™ ) 2y At
[P () o - o)

(iv) If 2m; = ej —m; forall i, then D =Hin:1 pizmi is a square and so

n
x=2[]p" and 0
i-1

are integer solutions of equation (5.4).

Next, we will consider whether the two integer solutions of (5.4) satisfy

the elliptic curve E. If x= 2H?:1 pimi , then

n n
x3—2H pizmix+l_[piei
i=1 i=1

5 or 7 (mod8),

a contradiction. However, if x =0, then y2 = X3 + AX + Hinzl piei =

[Ti, o andsoif ¢ is even, then

n
Q[O, +T] p?i/zj
i=1
are points of E;ys(Q) and satisfy 2Q = P.

From these results and Lemma 5.1, the theorem is proved. O
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Example. (1) Let E/Q be the elliptic curve
E :y? = x> — 3816059522x + 83344647990241

=x3-2.11% .19%x + 115105

Then in Theorem 5.2(1), since m; =2 =m, and e; = 6 = 3m =3m, = ey,

the torsion subgroup Ey,s(Q) of E is
Erors (Q) = {0, (112192, 0), (0, +11%19%)} = 7/47Z.
(2) Let E/Q be the elliptic curve
E:y? = x3 + 299564298x + 62618067611
= x3 + (-11%192 +11%19%)x + 113196,
In Theorem 5.2(2), since e =3, e =6 and my =m, =1, the torsion
subgroup Eios(Q) of E is
Etors(Q) = {O, (-11-19, 0)} = Z/2Z.

In the next results, we show that the structures of torsion groups of

an elliptic curve E:y2=x3+Ax+]_[in:1 piei, where p;’s are all primes

such that p; =1 (mod8)(p; =5 (mod8), p; =7 (mod8)) in Theorem 5.3
(Theorem 5.4, Theorem 5.5), respectively.

Theorem 5.3. Let E/Q : y2 = %3 + AX + Hin:1 piei be an elliptic curve

with A e Z, where p;’s are all primes such that p; =1 (mod8). Then the

torsion groups E,,(Q) of the elliptic curve E are the following:

(1) If ¢ = 3m;, m;’s are even for all i and

A= —f[ pi™ - f[ ppt ™M = —Zﬁ p™,
i=1 i=1 i=1
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then the torsion group of elliptic curve E is

Etors(Q) = {o, (ﬁ i, 0], (o, + f[ p&i/ 2} = 7/ 4Z.
i=1 i=1

(2) For A = 0 (mod?3), if

n n
A=-T] p2™ e ™.
i=1 i=1

then the torsion group of the elliptic curve E is

Etors(Q) = {O, [? ﬁ i, OJ} = 7,/ 2.
i=1

(3) Let A be equal to —Hinzl p2™ —Hinzl pii~™ such that A=
0 (mod 3).

Then

{O, (1 ﬁ i, 0}} = 7)27.
i=1
is the torsion group Eg,,s(Q) of E(Q) each in the following cases:
(@) e —m; isodd and 2m; > ¢; — m; for some i.
(b) &’s are equal to 3m; for all i and m;- is odd for some 1i'.

(4) For A =1(mod?3), if

n n
S AR | Gl
i=1 i=1
then the torsion group is

Etors (Q) = {O}
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Proof. In the same way as Theorem 5.2, we can know that there is no
| € N such that

7)27.® 727 < Eqors(Q).

Next, we will consider whether E;ys(Q) has a subgroup Z/2IZ for

some | > 1. Also, by using the content of the proof of Theorem 5.2, we can
easily check the following results:

Casel. A= —Hi”:l pi2mi +Hi”:1 pei ™.

In (5.1), since A is even, X is even and so y2 is odd. Then 4+ A because
x(P)= ¢Hin:1 p™ is odd. But in this case, A satisfies A =0 (mod8) and so

4] A, acontradiction.
Case ll. A = _Hi”:l p2Mi _ Hi”:l p&i ™.

Now we investigate the discriminant D = ZHin:l pZ™ —Hinzl pi~M of
equation (5.4) for the following two cases:

(i) If ¢ —mj is odd for some i' and 2m; > ey — mj,, then we can
know that D is not a square in the same method as the proof of Theorem 5.2.

(ii) If 2m; = ¢; —m; for all i, then D is equal to Hin:1 pizmi and it is a
square and so x= ZHin:l pimi and 0 are integer solutions of (5.4). Then as

the proof of Theorem 5.2, if x=21—[in:1 pi", then it does not satisfy the
given elliptic curve E and if x is equal to 0 and e; is even, then E has
torsion points Q(O.il_[in:l pie‘/zj satisfying 2Q = P. Thus E(Q) hasa

subgroup Z/47Z. By using the above statements and Lemma 5.1, the theorem

is proved. O
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Theorem 5.4. Let E/Q : y2 =% + AX + Hin:1 piei be an elliptic curve

with A € Z, where p;’s are all primes such that p; =5 (mod8). Then the

torsion groups Eqs(Q) of elliptic curve E are the following:

(1) If & = 3m;, m;’s are even for all i and

n
A= _H p2™i —
i=1

then the torsion group of E is

Etors(Q) = {O. (ﬁ pimi, Oj, [0, + lﬂ[ piei/zj} = Z/4Z.
i=1 i=1

(2) For A = 0 (mod3), if

n n
A=-T o™+ ™,
i=1 i=1

then the torsion group of E is

Etors(Q) = {O, [? ﬁ i, OJ} = 7Z/27.
i=1

(3) Let A be equal to —Hrzl pZ™ —Hin:l pi ™ such that A=

n

n
S
=1 i=1

0 (mod 3). Then

n
{o, (1 [1e" 0}} = 72
i=1
is the torsion group E;o5(Q) of E(Q) each in the following cases:
(@) e — m; is odd for some i and 2m; > gj — mj.

(b) 2m; < ej — m; for some i.
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(c) g ’s are equal to 3m; for all i and my- is odd for some i".

(4) For A =1(mod?3), if

n n
we T s [T
i=1 i=1
then the torsion group is

Etors (Q) = {O}

Proof. In the same discussion as Theorem 5.2, we can show that there is
no | € N such that

7)27. ® 727 < Eyops(Q).

Next, we will consider whether E,(Q) has a subgroup Z/2IZ for

some | > 1. Also, if we use the content in the proof of Theorem 5.2, then we
can just see the following results:

Casel. A= _Hi”:l piZmi +Hin:1 piei —mj

This case A satisfies A =0 or 4 (mod8) and so 4| A, a contradiction.

Casell. A= _Hi”:l piZmi _Hin:l p&i i,

Now we check the discriminant D of equation (5.4) for the following
three cases:

(i) If &g —m; is odd for some i and 2m; > ¢; — m;, then we can know
that D is not a square in the same method as the proof of Theorem 5.2.

(ii) If 2m; < ej —m; for some i, then by using (5.7), we can easily know
that D is not a square.

(iii) If 2m; = ¢; —m; for all i, then D is equal to H?zl pizmi and it is a

square and so x = ZH?:l pizmi and 0 are integer solutions of (5.4). Then as
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the proof of Theorem 5.2, if x=21_[in:1 pi", then it does not satisfy the

given elliptic curve E and if x is equal to 0 and €; is even, then E has torsion
points Q(O, + Hin:l piei/ZJ satisfying 2Q = P. Thus Eyy5(Q) has a subgroup

Z/AZ. The theorem is proved by the above statement and Lemma 5.1. O

Theorem 5.5. Let E/Q:y? = x>+ Ax+1_[in:1 pi’ be an elliptic curve

with A e Z, where p;’s are all primes such that p; = 7 (mod8). Then the

torsion groups E,,s(Q) of elliptic curve E are the following:
(1) If & = 3m;, m;’s are even for all i and

n
A= _H p2™Mi —
i=1

n n
SR
=1 i=1

then
Etors (Q) = {o, (lﬂ[ oM, 0}, [o, & f[ osi/ 2}} = Z/4L.
i=1 i=1

(2) Let A be equal to A=—1_[in:1 pZ™ +1_[in:1 pi ™ such that
A # 0 (mod3). Then

n
{O, [: [1x" 0} = 7,27
i=1
is the torsion group E;o5(Q) of E(Q) each in the following cases:

(a) The number of elements of {i|e; — m; is odd} is even.

(b) The number of elements of {i|e; — m; is odd} is odd and ¢ — m; is

odd and 2m; > e — m; for some i.
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(3) Let A be equal to _Hin:1 p2™ —Hinzl pi~™ with A %0 (mod3).

Then

{O, (i ﬁ i, Oj} = 7/27
i=1
is the torsion group Eg,,s(Q) of E(Q) each in the following cases:
(@) e —m; isodd and 2m; > ¢; — m; for some i.
(b) & — m; ’sare even for all i and 2m;: > e — m;- for some i".
(c) g ’s are equal to 3m; for all i and my- is odd for some i".

(4) For A =1 (mod 3), if

n n
ae T =T Tom
i=1 i=1
then

Etors (Q) = {O}

Proof. Using the same method as Theorem 5.2, we can obtain that there
isno | e N such that

7)27 ® 7/ 27 < Eqors(Q).

Next, we will consider whether Eyys(Q) has a subgroup Z/2IZ for
some | >1. Let N be the number of elements of {i|e; —m; is odd}. Since
41 A if Nis odd, then A=-TT" p/™ +JT" p" ™ and x(Q) need to
satisfy (5.3) and if N is even, then A= —Hin:l p?™ _Hin=1 pii ™ and x(Q)
have to satisfy (5.4).
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Case I.Nisoddand A= [ p/™ + [T p{i ™.

The discriminant D of (5.3) satisfies D = 3 or 5 (mod8) and it is not a

square. Thus the equation does not have an integer solution.
. n 2m; n e —Mj
Case Il. Nisevenand A=-JT._ o [ o'
We check the discriminant D of equation (5.4) for the following three
cases:

(i) If ey —m; is odd and 2m; > ey —m;- for some i’, then we can

know that D is not a square by the same method as the proof of Theorem 5.2.

(ii) If &; —m; is even for all i and 2m;: > ej — m; for some i’, then by

using (5.6), we can easily know that D is not a square.
(iii) If 2m; = e —m; for all i, then D is equal to Hin:1 pizmi and itis a
square and so x= ZHin:l pimi and 0 are integer solutions of (5.4). Then in

the same way as Theorem 5.2, if x= ZHin:l pimi, then it does not satisfy

the given elliptic curve E and if x is equal to O and e; is even, then E has

torsion points Q(O,iHin:l pie‘/2j satisfying 2Q =P. Thus E;y5(Q) has a

subgroup Z/47Z. By using the above statements and Lemma 5.1, the theorem

is proved. O
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