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Abstract 

According to Mordell-Weil theorem, the group ( )QE  of an elliptic 
curve E over Q  is a finitely generated abelian group which is 

isomorphic to a group of the form ( ) ,r
torsE ZQ ×  where r is a 

nonnegative integer. We study the torsion groups ( )QtorsE  for  

special elliptic curves and the torsion groups of BAxxyE ++= 32:  

for some cases of Z∈A  and ∏ == n
i

e
i
ipB 1 ,  where s’ip  are            

all primes such that ( ),8mod3≡ip  ( ( ) ( ),8mod5,8mod1 =≡ ii pp  

( )),8mod7≡ip  respectively. 

1. Introduction 

By Mordell-Weil theorem, we know well that the group ( )QE  of an 

elliptic curve E defined over Q  is finitely generated [4, 11, 13, 14], i.e., 
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( ) ( ) .r
torsEE ZQQ ×=  

Then in this paper, we study the torsion groups ( )QtorsE  for some elliptic 

curves .: 32 BAxxyE ++=  The major steps of this study are as follows: 

In Section 2, we discuss some definitions and properties of elliptic 
curves. 

In Section 3, we investigate that if p does not divide the discriminant Δ  
of an elliptic curve E, then the reduction modulo p map is an isomorphism of 

( )QtorsE  onto a subgroup of ( ).~
pE F  

In Section 4, we investigate the torsion groups ( )QtorsE  for special 

elliptic curves. 

In Section 5, we study torsion groups of some elliptic curves =2: yE  

BAxx ++3  with Z∈A  and ∏ == n
i

e
i

ipB 1 ,  where ip ’s are all primes 

such that ( ),8mod3≡ip  ( ) ( ) ( )( ),8mod7,8mod5,8mod1 ≡=≡ iii ppp  

respectively. 

If ip ’s are all primes such that ( )8mod3≡ip  and ,3≠ip  then we can 

obtain the following results: 

(1) If all ie ’s are even, ii me 3=  for all i and 

∏ ∏ ∏
= = =

− −=−−=
n

i

n

i

n

i

m
i

me
i

m
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iiii pppA
1 1 1

2 ,2  
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(2) For ( ),3mod0≡/A  if 
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1 1
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then 

( ) ,20,,
1

ZZQ =
⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧

⎟
⎟
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= ∏
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n

i
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itors

ipOE ∓  

where ie  is odd or ii me 3≠  for some i if ∏ ∏= =
−−−= n

i
n
i

me
i

m
i

iii ppA 1 1
2 .  

(3) For ( ),3mod1≡A  if 

∏ ∏
= =

−±−≠
n

i

n

i

me
i

m
i

iii ppA
1 1

2 ,  

then 

( ) { }.OEtors =Q  

By using the similar method, we will study torsion groups of an elliptic 

curve ∏ =++= n
i

e
i

ipAxxyE 1
32 ,:  where ip ’s are all primes such that 

( ) ( ) ( )( )8mod7,8mod58mod1 ≡≡≡ iii ppp  in Theorem 5.3 (Theorem 

5.4, Theorem 5.5), respectively. 

2. Elliptic Curves 

If K is a number field, let K  denote its algebraic closure. The projective 

n-space over K, denoted nP  or ( ),KnP  is the set of all ( )1+n -tuples 

( ) ( ),...,,, 1
10 Kxxx n

n
+∈ A  

where ( )Kn 1+A  is an affine (or Euclidean) space, such that at least one ix  is 

non-zero, modulo the equivalence relation given by 

( ) ( )nn yyyxxx ...,,,~...,,, 1010  

if there exists { }OKK −=∈λ ∗  with ii yx λ=  for all i. An equivalence class 

{( ) }∗∈λλλ Kxx n |...,,0  is denoted [ ],...,,0 nxx  and nxx ...,,0  are called 
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homogeneous coordinates for the corresponding point in .nP  A Weierstrass 
equation is a homogeneous equation of degree 3 of the form 

,3
6

2
4

2
2

32
31

2 ZaXZaZXaXYZaXYZaZY +++=++  

where ....,,, 621 Kaaa ∈  The Weierstrass equation is said to be non-

singular if for all projective points [ ] ( )KZYXP nP∈= ,,  satisfying 

( )ZYXF ,,  

,03
6

2
4

2
2

32
31

2 =−−−−++= ZaXZaZXaXYZaXYZaZY  

at least one of the three partial derivatives Z
F

Y
F

X
F

∂
∂

∂
∂

∂
∂ ,,  is non-zero at P. 

An elliptic curve E (or an algebraic curve of genus 1) is the set of all 

solutions in ( )K2P  of a non-singular Weierstrass equation. There is exactly 

one point in E with Z-coordinate equal to 0, namely [0, 1, 0]. We call this 
point the point at infinity and denote it by O. 

For convenience, we will write the Weierstrass equation for an elliptic 

curve using non-homogeneous (affine) coordinates ,Z
Xx =  Z

Yy =  if 

,0≠Z  

,: 64
2

2
3

31
2 axaxaxyaxyayE +++=++  

where s’ia  are in .K  Then an elliptic curve E is the set of solutions to the 

equation in the affine plane ( ) ,2 KKK ×=A  together with the extra point 

at infinity O. If ,....,,, 621 Kaaa ∈  then E is said to be defined over K, and 

denoted this by .KE  If E is defined over K, then the set of K-rational points 

of E, denoted ( ),KE  is the set of points both of whose coordinates lie in K, 

together with the point O. 

Then for ( ) ,2≠Kchar  we can simplify the equation by completing the 

square. That is, replacing y by ( )312
1 axay −−  gives an equation of the 
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form 

,24: 64
2

2
32 bxbxbxyE +++=  

where .4,2,4 6
2
3631442

2
12 aabaaabaab +=+=+=  

If further ( ) ,3,2≠Kchar  then replacing ( )yx,  by ( )( )108,363 2 ybx −  

eliminates the 2x  term, yielding the simpler equation 

,5426: 64
32 cxcxyE −−=  

where .21636,24 642
3
264

2
24 bbbbcbbc −+=−=  

Also, we define the discriminant 

,9278 642
2
6

3
48

2
2 bbbbbbb +−−−=Δ  

where 2
4

2
32431626

2
18 4 aaaaaaaaaab −+−+=  and also the j-invariant on E, 

as 

( ) .12
2
6

3
4

3
4

33
4

cc
ccjEj
−

=
Δ

==  

Hence, if the characteristic of K is not 2 or 3, then we may assume that 
our elliptic curves have Weierstrass equations of the form 

.: 32 BAxxyE ++=  

This equation has associated quantities 

( ),27416 23 BA +−=Δ  

( ) .41728 3 Δ−= Aj  

The only change of variables preserving this form of equation is 

yuyxux ′=′= 32 ,  for some ;∗∈ Ku  
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and then 

.2,, 164 Δ=Δ′=′=′ uBBuAAu  

If ,0≠Δ  then this is an elliptic curve. 

Let E be an elliptic curve given by a Weierstrass equation. 2P⊂E  
consists of the points ( )yxP ,=  satisfying the equation together with the 

points [ ]0,1,0=O  at infinity. Let 2P⊂L  be a line. Then since the 

equation has the degree three, L intersects E at exactly 3 points, say P, Q, R. 

Composition Law 2.1 [4, 13]. Let LEQP ,, ∈  be the line connecting P 

and Q (tangent line to E if ,)QP =  and R be the third point of intersection 

of L with E. Let L′  be the line connecting R and O. Then QP ⊕  is the point 

such that L′  intersects E at R, O and .QP ⊕  

Then the composition law makes E into an abelian group with identity 
element O. We further have: 

Proposition 2.2 [13]. Suppose E is an elliptic curve defined over K. Then 

( ) {( ) } { }OaxaxaxyaxyayKyxKE ∪64
2

2
3

31
22 :, +++=++∈=  

is a subgroup of E. 

Notation. For Z∈m  and ,EP ∈  we let 

[ ] PPPm ++=  (m terms) for .0>m  

[ ] ,0 OP =    and   [ ] [ ]( )PmPm −−=  for .0<m  

Proposition 2.3 [4, 11, 13]. Let E be an elliptic curve given by a 
Weierstrass equation 

.64
2

2
3

31
2 axaxaxyaxyay +++=++  

Here we will use + and – instead of the special symbols ⊕  and  for the 

group operations on E. 
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(1) Let ( ) ., 000 EyxP ∈=  Then ( )., 301000 axayxP −−−=−  

Now let 

321 PPP =+  with ( ) ., EyxP iii ∈=  

(2) If 21 xx =  and ,032121 =+++ axayy  then .21 OPP =+  

Otherwise, let 

⎪
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(Then μ+λ= xy  is the line through 1P  and ,2P  or tangent to E if 

.)21 PP =  

(3) 213 PPP +=  is given by 

,2121
2

3 xxaax −−−λ+λ=  

( ) .3313 axay −μ−+λ−=  

(4) As special cases of (3), for ,21 PP ±≠  we have: 

( ) .212
12
12

1
2

12
12

21 xxaxx
yyaxx

yyPPx −−−⎟
⎠
⎞

⎜
⎝
⎛

−
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⎠
⎞

⎜
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−
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For ( ) ,, EyxP ∈=  the duplication formula has 

[ ]( ) ,
24
22

64
2

2
3

86
2

4
4

bxbxbx
bxbxbxPx

+++
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=  
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where ,4 2
2
12 aab +=  ,2 3144 aaab +=  6

2
36 4aab +=  and += 6

2
18 aab  

.4 2
4

2
3243162 aaaaaaaa −+−  

From now on, we quote some known theorems: 

Theorem 2.4 (Mordell-Weil) [4, 11, 13]. Let K be a number field and 
KE  be an elliptic curve. Then the group ( )KE  is finitely generated. 

From the Mordell-Weil theorem, we see that Mordell-Weil group ( )KE  

has the form 

( ) ( ) ,r
tors KEKE Z×≅  

where the torsion subgroup ( )KEtors  is finite and the rank r of ( )KE  is a 

non-negative integer. 

Theorem 2.5 (Mazur) [4, 11, [13]. Let QE  be an elliptic curve. Then 

the torsion subgroup ( )QtorsE  is one of the following fifteen groups: 

101, ≤≤ NNZZ    or   ,12=N  

.41,22 ≤≤⊕ NNZZZZ  

Further, each of these groups occurs as an ( ).QtorsE  

Theorem 2.6 (Lutz-Nagell) [4, 11, 13]. Let QE  be an elliptic curve 

with a Weierstrass equation 

.,,32 Z∈++= BABAxxy  

Suppose ( )QEP ∈  is a non-zero torsion point. Then 

(a) ( ) ( ) ., Z∈PyPx  

(b) Either [ ] ,2 OP =  or else ( )2Py  divides .274 23 BA +  
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3. Reduction Modulo p 

Let E be an elliptic curve, given as usual by a Weierstrass equation 

BAxxyE ++= 32:  

with integer coefficients A, B. We showed that this group is finitely 
generated (Mordell’s theorem) and that the points of finite order have integer 
coordinates (Lutz-Nagell theorem). 

In this section, we have been looking at curves with coefficients in          
a finite field .pF  Suppose that we write zz ~  for the map “reduction 

modulo p”, 

.~, zzp pFZZZ =→  

Then we can take the equation for E, which has integer coefficients, and we 
can reduce those coefficients modulo p to get a new curve with coefficients 
in :pF  

.~~: 32 BxAxyE ++=  

When will the curve E~  be non-singular? It will be non-singular provided 
3≥p  and provided the discriminant 

( )23 ~27~416~ BA −−=Δ  

is non-zero. But reduction modulo p from Z  to pF  is a homomorphism, so 

Δ
~  is just the reduction modulo p of the discriminant D of the cubic 

.3 BAxx ++  In other words, the reduced curve ( )pE mod~  will be non-

singular provided 3≥p  and p does not divide the discriminant .Δ  

Having reduced the curve E, it is natural to try taking points on E and 

reducing them modulo p to get points on .~E  We can do this provided that the 
coordinates of the point have no p in their denominator. In particular, if a 
point has integer coordinates, then we can reduce that point modulo p for any 
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prime p. That is, if ( )yxP ,=  is a point in ( )QE  with integer coordinates, 

then x and y satisfy the equation 

.32 BAxxy ++=  

This equation gives a relation among integers, so we can reduce it modulo p 
to get the equation 

.~~32 BxAxy ++=  

This last equation says that ( )yxP ~,~~
=  is a point in ( ).~

pE F  So we get a map 

from the points in ( )QE  with integer coordinates to ( ).~
pE F  

We know that points of finite order in ( )QE  always have integer 

coordinates. This is the hard part of the Lutz-Nagell theorem. We are going 
to study the collection of points of finite order, so let us give it a name: 

( ) ( ) ( ){ }.orderfinitehas:, PEyxPEtors QQ ∈==  

Clearly, ( )QtorsE  is a subgroup of ( )QE  because if 21, PP  are points of 

finite order, say OPm =11  and ,22 OPm =  then ( ) ( ) .2121 OPPmm =±  So 

both 21 PP +  and 21 PP −  are in ( ).QtorsE  

Since ( )QtorsE  consists of points with integer coordinates, together with 

O, we can define a reduction modulo p map 

( ) ( )
( ) ( )
⎩
⎨
⎧

=
=

=→
.if~

,,if~,~~,~
OPO

yxPyx
PPEE ptors FQ  

Now ( )QtorsE  is a subgroup of ( ),QE  so it is a group; and provided p does 

not divide ,Δ  we know that ( )pE F~  is a group. So we have a map from the 

group ( )QtorsE  to the group ( ),~
pE F  and we now want to check that this 

map is a homomorphism. 

First we note that negatives go to negative: 

( ) ( ), , .P x y x y P− = − = = −  
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So it suffices to show that if ,321 OPPP =++  then .~~~~
321 OPPP =++  As 

usual, there are some special cases to check. 

If any of 21, PP  or 3P  equals O, then the result we want follows from the 

fact that negatives go to negatives, So we may assume that 21, PP  and 3P  are 

not equal to O. We write their coordinates as 

( ) ( ) ( ).,,,,, 333222111 yxPyxPyxP ===  

From the definition of the group law on E, the condition 321 PPP ++  

O=  is equivalent to saying that ,1P  2P  and 3P  lie on a line. Let 

ν+λ= xy  

be the line through .,, 321 PPP  (If two or three of the points coincide, then 

the line has to satisfy certain tangency conditions.) 

Our explicit formula for adding points says that 

., 3321
2

3 ν+λ=−−λ= xyxxx  

Since ,1x  ,2x  ,3x  3y  and a are all integers, we see that λ  and ν  are also 

integers. This fact is what we needed because now we can reduce λ  and ν  
modulo p. 

Substituting the equation of the line into the equation of the cubic, we 
know that the equation 

( ) 023 =ν+λ−++ xBAxx  

has 321 ,, xxx  as its three roots. In other words, we have the factorization 

( ) ( ) ( ) ( ).321
2

3 xxxxxxxBAxx −−−=ν+λ−++  

This is the relation that ensures that ,321 OPPP =++  regardless of whether 

or not the points are distinct. 
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Reducing this last equation modulo p, we obtain 

( ) ( ) ( ) ( ).~~~~~~~
321

23 xxxxxxxBxAx −−−=ν+λ−++  

Of course, we can also reduce the equations ν+λ= ii xy  to get 

ν+λ= ~~~~
ii xy  for .3,2,1=i  

This means that the line ν+λ= ~~xy  intersects the curve E~  at the three 

points ,~
1P  2

~P  and .~
3P  Further, if two of the points ,~

1P  2
~P  and 3

~P  are the 

same, say ,~~
21 PP =  then the line is tangent to E~  at ;~

1P  and similarly, if all 

three coincide, then the line has a triple order contact with .~E  Therefore, 

,~~~~
321 OPPP =++  

which completes the proof that the reduction modulo p map is a 

homomorphism from ( )QtorsE  to ( ).~
pE F  

Now we observe that this homomorphism is one-to-one. A non-zero 

point ( ) ( )QtorsEyx ∈,  is sent to the reduced point ( ) ( ),~~,~
pEyx F∈  and 

that reduced point is clearly not .~O  So the kernel of the reduction map 
consists only of O, and hence the map is one-to-one. This means that 

( )QtorsE  looks like a subgroup of ( )pE F~  for every prime p such that p is 

relatively prime to .Δ  Hence we have completed the proof of the following 
proposition: 

Proposition 3.1 (Reduction modulo p theorem). Let E be a non-singular 
elliptic curve 

BAxxyE ++= 32:  

with integer coefficients A, B and let Δ  be the discriminant 

( ).27416 23 BA +−=Δ  
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Let ( ) ( )QQ EEtors ⊆  be the subgroup consisting of all points of finite 

order. For any prime p, let PP ~
→  be the reduction modulo p map 

( ) ( )
( ) ( )

⎩
⎨
⎧

=

=
=→

.~
,,~,~

~,~
OPO

yxPyx
PPEE ptors FQ  

If p does not divide ,Δ  then the reduction modulo p map is an isomorphism 

of ( )QtorsE  onto a subgroup of ( ).~
pE F  

4. Torsion Groups for Special Curves 

In this section, we will show that the torsion groups for special elliptic 
curves using a lemma about ( )ppE Z  for certain primes p. Also, we shall use 

the form of the duplication formula in Proposition 2.3(4) when specialized to 

a curve :32 BAxxy ++=  

 ( )
( )

.
4

822 3

224

BAxx
ABxAxxPx

++
+−−=  (4.1) 

Lemma 4.1 (Dirichlet’s theorem, [11]). There are infinitely many 
(positive) primes ban +  if ( ) .1, =baGCD  

Lemma 4.2. Let pE  be the curve Axxy += 32  over ,pZ  and assume 

that ,Δp  ,7≥p  and ( ).4mod3≡p  Then ( )ppE Z  has exactly 1+p  

points. 

Proof. We start from the known result that ( )4mod3≡p  implies that –

1 is not a square modulo p. For ,0≠x  consider the pair { }., xx −  When 

these elements are substituted into E, we obtain Axx +3  and ( ).3 Axx +−  If 

the answers are 0, each one has a square root, and we get one solution from 
each. If they are non-zero, exactly one is a square (since –1 is not a square), 
and it has two square roots. So in either case, the pair { }xx −,  gives us two 

solutions. Thus the non-zero x’s give us 1−p  solutions in all. For ,0=x  
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we get one more solution (0, 0), and O gives us one additional solution. Thus 
( )ZZ pEp  has 1+p  points.  

Proposition 4.3. Let E be the elliptic curve Axxy += 32  with A in Z  

and with A assumed fourth-power free. Then 

( )
⎪⎩

⎪
⎨
⎧

=
−⊕

=
.2

44
22

otherwise
Aif

insquareaisAif
Etors

ZZ
ZZ

ZZZZZ
Q  

Proof. The main step is to show that ( )QtorsE  divides 4. By 

Proposition 3.1, for all sufficiently large primes p, ( )QtorsE  divides 

( ) .ZZ pEp  By Lemma 4.2, ( )QtorsE  divides 1+p  for all sufficiently 

large primes p with ( ).4mod3≡p  

Let us see that 8 does not divide ( ) .QtorsE  By Lemma 4.1 (Dirichlet’s 

theorem), we can choose a prime p as in the previous sentence with 
( ).8mod3≡p  If 8 divides ( ) ,QtorsE  then ( ).18 +| p  But ( )8mod3≡p  

means that ( );8mod41 ≡+p  so ( ),18 +p  a contradiction. 

Now let us see that 3 does not divide ( ) .QtorsE  By Lemma 4.1, we can 

choose p large with ( ).12mod7≡p  Then ( ).4mod3≡p  Thus ( )QtorsE|3  

implies ( ).13 +| p  But ( )12mod81 ≡+p  implies ( );3mod81 ≡+p  so 

( ),13 +p  a contradiction. 

Finally, let us see that no odd prime 3>q  divides ( ) .QtorsE  By 

Lemma 4.1, we can choose p large with ( ).4mod3 qp ≡  Then ≡p  

( ).4mod3  Thus ( )QtorsEq |  implies ( ).1+| pq  But ( )qp 4mod41 ≡+  

implies ( );mod41 qp ≡+  so ( ),1+pq  a contradiction. 

This completes the proof that ( )QtorsE  divides 4. The torsion group 

will then contain ( ){ }O,0,02 =Z  as a subgroup, and it will be 22 ZZ ⊕  if 

and only if Axx +3  splits over ,Q  i.e., if and only if A−  is a square. Thus 
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the only question is when (0, 0) is the double of something (so that the 
torsion group is 4Z  rather than .)2Z  So we can check directly for 4=A  

that (2, 4) doubles to (0, 0). 

Consider the equation ( ) ( )0,0,2 =yx  for other A. By (4.1), we have 

( ) .20 22224 AxaAxx −=+−=  

Thus .2 Ax =  Since A is fourth-power free, x is squarefree. But =2y  

( ) ( ) 3222 2xxxxAxx =+=+  then shows that no odd prime can divide       

x. So 1±=x  or .2±  Checking the possibilities, we see that 2=x  and 

.4=A   

Lemma 4.4. Let pE  be the curve Bxy += 32  over ,ZZ p  and assume 

that ,Δp  ,5≥p  and ( ).3mod2≡p  Then ( )ZZ pEp  has exactly 1+p  

points. 

Proof. Let .23 += np  The multiplicative group ( )∗ZZ p  has         

order .1−p  Since ( ),13 −p  no element has order 3. Therefore, the 

homomorphism 3aa  on ( )∗ZZ p  is one-to-one, hence onto. Thus each 

element of ZZ p  has a unique cube root. For each y in ,ZZ p  the element 

By −2  has a unique cube root, which we can take as x. In this way, we 

obtain p solutions. Adjoining O, we see that ( )ZZ pEp  has 1+p  points.  

Proposition 4.5. Let E be the elliptic curve Bxy += 32  with B in Z  

and with B assumed sixth-power free. Then 

( )

{ }⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≠
≠

−=−=
=

=

.
12

1
,324323

16
34

otherwiseO
BandcubeaisBif

BandsquareaisBifor
Bif
Bif

Etors

ZZ

ZZ
ZZ

Q  
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Proof. The main step is to show that ( )QtorsE  divides 6. By 

Proposition 3.1, for all sufficiently large primes p, ( )QtorsE  divides 1+p  

for all sufficiently large primes p with ( ).3mod2≡p  

Let us see that 4 does not divide ( ) .QtorsE  By Lemma 4.1 (Dirichlet’s 

theorem), we can choose a prime p as in the previous sentence with 
( ).12mod5≡p  If 4 divides ( ) ,QtorsE  then ( ).14 +| p  But ( )4mod1≡p  

means that ( );4mod21 ≡+p  so ( ),14 +p  a contradiction. 

Now let us see that 9 does not divide ( ) .QtorsE  By Lemma 4.1,         

we can choose p large with ( ).9mod2≡p  Then ( ).3mod2≡p  Thus 

( )QtorsE|9  implies ( ).19 +| p  But ( )9mod31 ≡+p  implies ( ),19 +p  

a contradiction. 

Finally, let us see that no odd prime 3>q  divides ( ) .QtorsE  By 

Lemma 4.1, we can choose p large with ( ).3mod2 qp ≡  Then ≡p  

( ).3mod2  Thus ( )QtorsEq |  implies ( ).1+| pq  But ( )qp 3mod31 ≡+  

implies ( );mod31 qp =+  so ( ),1+pq  a contradiction. 

This completes the proof that ( )QtorsE  divides 6. The torsion group 

has an element of order 2 if and only if Bx +3  has a first-degree factor over 
,Z  i.e., if and only if B is a cube. Thus the only question is when the torsion 

group has elements of order 3. Such a point ( )yxP ,=  is characterized by 

.2 PP −=  Moreover, the x coordinate determines everything, since PP =2  
is impossible for .OP ≠  By (4.1), 

( )
x

Bx
Bxx =

+
−
3

4

4
8  

for any rational solutions x. Clearing fractions, we have 

,844 44 BxxBxx −=+  

.44 Bxx −=  
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One solution is ,0=x  which gives ;2 By =  so ZZ 3  occurs if B                

is a square. The only other possibility is .43 Bx −=  Then .32 By −=  

Consequently, .0<B  Since B is sixth-power free, the only possible prime 

divisors of B are 2 and 3. We readily find .32 34−=B  So ZZ 3  occurs if 

and only if either B is a square or .32 34−=B   

5. Main Results 

In this section, we shall study torsion groups of some elliptic curves. 
Before studying the torsion group of an elliptic curve, we investigate the 
group of reduction of an elliptic curve modulo 3. 

Lemma 5.1. Let BAxxyE ++= 32:Q  be an elliptic curve with 

., Z∈BA  Then the order ( )ZZ 3~E  of groups of reduction of E modulo 3 

is the following: 

( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≡≡
≡≡
≡≡
≡≡
≡≡
≡≡

=

.3mod2,3mod21
3mod2,3mod14
3mod1,3mod27
3mod1,3mod14
3mod0,3mod24
3mod0,3mod14

3~

BAif
BAif
BAif
BAif
BAif
BAif

E ZZ  

Proof. The proof of this is clear.  

From now on, we determine torsion groups of some elliptic curves. 

Theorem 5.2. Let E be the elliptic curve ∏ =++= n
i

e
i

ipAxxy 1
32  with 

,Z∈A  where spi’  are all primes such that ( )8mod3≡ip  and .3≠ip  

Then the torsion groups ( )QtorsE  of elliptic curve E are the following: 
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(1) If iii mme ,3= ’s are even for all i and 

,2
1 1 1

2∏ ∏ ∏
= = =

− −=−−=
n

i

n

i

n

i

m
i

me
i

m
i

iiii pppA  

then 

( ) .4,0,0,,
1

2

1
ZZQ =

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
±

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∏∏

==

n

i

e
i

n

i

m
itors

ii ppOE  

(2) For ( ),3mod0≡/A  if 

∏ ∏
= =

−±−=
n

i

n

i

me
i

m
i

iii ppA
1 1

2 ,  

then 

( ) ,20,,
1

ZZQ =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∏

=

n

i

m
itors

ipOE ∓  

where ie ′  is odd or ii me ′′ ≠ 3  for some i′  if 

∏∏ =
−

=
−−=

n
i

me
i

n
i

m
i

iii ppA
11

2 .  

(3) For ( ),3mod1≡A  if 

∏ ∏
= =

−±−≠
n

i

n

i

me
i

m
i

iii ppA
1 1

2 ,  

then 

( ) { }.OEtors =Q  

Proof. Let ∏ =++= n
i

e
i

ipAxxyE 1
32:  be the elliptic curve with 

,Z∈A  where ip ’s are all primes such that ( )8mod3≡ip  and .3≠ip  
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Then, by Theorem 2.6(a) (Lutz-Nagell theorem), for ( ) ( ),, QtorsEyxP ∈  

( ) ( ) ., Z∈PyPx  

Thus, if there exists a point OP ≠  such that ,2 OP =  then ( ) ,1∏ =| n
i

e
i

ipPx  

i.e., 

( ) ∏
=

=
n

i

m
i

ipPx
1

∓  

for .0 ii em ≤≤  Then ( )Px  satisfies the equation 

( ){ } ( ){ } ∏
=

=++
n

i

e
i

ipPxAPx
1

3 0  

and so we are also able to express A as 

∏ ∏
= =

−±−=
n

i

n

i

me
i

m
i

iii ppA
1 1

2 .  

Hence, if ,1 1
2∏ ∏= =

−±−= n
i

n
i

me
i

m
i

iii ppA  then we have 

∏ ∏ ∏∏
= = =

−

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
±

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
±=++=

n

i

n

i

n

i

me
i

m
i

n

i

m
i

e
i

iiiii pxpxpxpAxxy
1 1 1

2

1

32 .∓  

But 

∏ ∏
= =

− =±
n

i

n

i

me
i

m
i

iii pxpx
1 1

2 0∓  

do not have an integer solution. The discriminant of the equation is equal to 

( )∏ ∏
= =

− ≡
n

i

n

i

me
i

m
i

iii pp
1 1

2 8mod54∓  
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and so the discriminant is not a square. Hence the point of order 2 in 

( )QtorsE  is only .0,1 ⎟
⎠
⎞

⎜
⎝
⎛ ∏ =

n
i

m
i

ipP ∓  Therefore, there is no N∈l  such that 

( ).22 QZZZZ torsE<⊕  

Next, we will consider whether ( )QtorsE  has a subgroup ZZ l2  for 

some .1>l  If ( )QtorsE  has a subgroup ZZ l2  for some ,1>l  then there 

exists a point ( ) ( )QtorsEyxQ ∈,  such that 

.2 PQ =  

Then, by (4.1), we have 

 ( ) ( ).
4

82
2 2

1
224

Px
y

AxpAxx
Qx

n
i

e
i

i

=
+−−

=
∏ =  (5.1) 

Thus, replacing A by ∏ ∏= =
−±− n

i
n
i

me
i

m
i

iii pp1 1
2  in (5.1) gives an equation 

of the form 

∏ ∏ ∏
= = =

−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
±−−±

n

i

n

i

n

i

me
i

m
i

m
i xppxpx iiii

1

2

1 1

234 24  

044
2

1 1

2

1 1

3 =
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
±+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+ ∏ ∏∏ ∏

= =

−

= =

n

i

n

i

me
i

m
i

n

i

n

i

e
i

m
i

iiiii ppxpp∓  

or 

 .02
2

1 1 1

22 =
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−± ∏ ∏ ∏

= = =

−
n

i

n

i

n

i

me
i

m
i

m
i

iiii ppxpx ∓  (5.2) 



Torsion Groups of Some Elliptic Curves 203 

Now, we check the following two cases: 

Case I. ∏ ∏= =
−+−= n

i
n
i

me
i

m
i

iii ppA 1 1
2 .  

In equation (5.2), the discriminant of the equation 

 ∏ ∏ ∏
= = =

− =−−+
n

i

n

i

n

i

me
i

m
i

m
i

iiii ppxpx
1 1 1

22 02  (5.3) 

is 

∏ ∏
= =

− ≡+
n

i

n

i

me
i

m
i

iii pxp
1 1

2 32  or ( )8mod5  

and so it is not a square. Thus equation (5.3) does not have an integer 
solution. 

Case II. ∏ ∏= =
−−−= n

i
n
i

me
i

m
i

iii ppA 1 1
2 .  

In equation (5.2), the discriminant of the equation 

 ∏ ∏ ∏
= = =

− =+−−
n

i

n

i

n

i

me
i

m
i

m
i

iiii ppxpx
1 1 1

22 02  (5.4) 

is 

∏ ∏
= =

−−
n

i

n

i

me
i

m
i

iii pp
1 1

2 ,2  

say D. Then we will investigate the discriminant D of (5.4) for the following 
four cases: 

  (i) If ii me ′′ −  is odd and iii mem ′′′ −>2  for some ,i′  then we have 

.2
1 1

23

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−= ∏ ∏
′≠ ′≠

′′′′

= =

−−
′

−
′

n

i

n

i

me
i

m
i

em
i

me
i

ii ii

iiiiiii ppppD  
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Since the integer D needs to be a square, 

.2
1 1

23

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−∏ ∏
′≠ ′≠

′′

= =

−−
′′

n

i

n

i

me
i

m
i

em
ii

ii ii

iiiii pppp  

But this is a contradiction. 

 (ii) If ii me − ’s are even for all i and iii mem ′′′ −>2  for some ,i′  then 

.2
1 1

23

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−= ∏ ∏
′≠ ′≠

′′′′

= =

−−
′

−
′

n

i

n

i

me
i

m
i

em
i

me
i

ii ii

iiiiiii ppppD  

Since D has to be a square, 

 ∏ ∏
′≠ ′≠

′′

= =

−−
′ −

n

i

n

i

me
i

m
i

em
i

ii ii

iiiii ppp
1 1

232  (5.5) 

must be a square. But the integer (5.5) is not a square because 

 ( ) .111
2

1
−=−=⎟

⎠
⎞

⎜
⎝
⎛ −=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −

′′

−
′ ′′′ iii p

ii

me
i

pp
pD

 (5.6) 

(iii) If iii mem ′′′ −<2  for some ,i′  then 

.2
1 1

322

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−= ∏ ∏
′≠ ′≠

′′′

= =

−−
′′

n

i

n

i

me
i

me
i

m
i

m
i

ii ii

iiiiii ppppD  

But 

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

−= ∏ ∏
′≠ ′≠

′′
′

= =

−−
′

′

n

i

n

i

me
i

me
i

m
im

i
ii ii

iiiii
i

ppp
p

D

1 1

32
2 2  
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is not a square because 

 ( ) .112
8

12 2

−=−=⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −

′′

′ ′′ ii p

ii

m
i

pp
pD

 (5.7) 

(iv) If iii mem −=2  for all i, then ∏ == n
i

m
i

ipD 1
2  is a square and so 

∏
=

=
n

i

m
i

ipx
1

2    and   0 

are integer solutions of equation (5.4). 

Next, we will consider whether the two integer solutions of (5.4) satisfy 

the elliptic curve E. If ∏ == n
i

m
i

ipx 1 ,2  then 

∏
=

++=
n

i

e
i

ipAxxy
1

32  

∏ ∏
= =

+−=
n

i

n

i

e
i

m
i

ii pxpx
1 1

23 2  

5≡  or ( ),8mod7  

a contradiction. However, if ,0=x  then ∏ = =++= n
i

e
i

ipAxxy 1
32  

∏ =
n
i

e
i

ip1  and so if ie  is even, then 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
±∏

=

n

i

e
i

ipQ
1

2,0  

are points of ( )QtorsE  and satisfy .2 PQ =  

From these results and Lemma 5.1, the theorem is proved.  
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Example. (1) Let QE  be the elliptic curve 

024183344647993816059522: 32 +−= xxyE  

.191119112 66443 +⋅⋅−= xx  

Then in Theorem 5.2(1), since 21 2 mm ==  and ,336 2211 emme ====  

the torsion subgroup ( )QtorsE  of E is 

( ) { ( ) ( )} .41911,0,0,1911, 3322 ZZQ =±= OEtors  

(2) Let QE  be the elliptic curve 

16261806761299564298: 32 ++= xxyE  

( ) .191119111911 6352223 ++−+= xx  

In Theorem 5.2(2), since ,31 =e  62 =e  and ,121 == mm  the torsion 

subgroup ( )QtorsE  of E is 

( ) ( ){ } .20,1911, ZZQ =⋅−= OEtors  

In the next results, we show that the structures of torsion groups of          

an elliptic curve ∏ =++= n
i

e
i

ipAxxyE 1
32 ,:  where ip ’s are all primes  

such that ( ) ( ) ( )( )8mod7,8mod58mod1 ≡≡≡ iii ppp  in Theorem 5.3 

(Theorem 5.4, Theorem 5.5), respectively. 

Theorem 5.3. Let ∏ =++= n
i

e
i

ipAxxyE 1
32:Q  be an elliptic curve 

with ,Z∈A  where ip ’s are all primes such that ( ).8mod1≡ip  Then the 

torsion groups ( )QtorsE  of the elliptic curve E are the following: 

(1) If iii mme ,3= ’s are even for all i and 

∏ ∏ ∏
= = =

− −=−−=
n

i

n

i

n

i

m
i

me
i

m
i

iiii pppA
1 1 1

2 ,2  
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then the torsion group of elliptic curve E is 

( ) .4,0,0,,
1

2

1
ZZQ =

⎪⎭

⎪
⎬
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⎪
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⎜
⎜
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⎜
⎜

⎝

⎛
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==

n

i

e
i

n

i

m
itors

ii ppOE  

(2) For ( ),3mod0≢A  if 

∏ ∏
= =

−+−=
n

i

n

i

me
i

m
i

iii ppA
1 1

2 ,  

then the torsion group of the elliptic curve E is 

( ) .20,,
1

ZZQ =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∏

=
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i

m
itors

ipOE ∓  

(3) Let A be equal to ∏ ∏= =
−−− n

i
n
i

me
i

m
i

iii pp1 1
2  such that ≢A  

( ).3mod0  

Then 

ZZ 20,,
1

=
⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
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⎛
∏
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i

m
i

ipO ∓  

is the torsion group ( )QtorsE  of ( )QE  each in the following cases: 

(a) ii me −  is odd and iii mem −>2  for some i. 

(b) sei’  are equal to im3  for all i and im ′  is odd for some .i′  

(4) For ( ),3mod1≡A  if 

∏ ∏
= =

−±−≠
n

i

n

i

me
i

m
i

iii ppA
1 1

2 ,  

then the torsion group is 

( ) { }.OEtors =Q  
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Proof. In the same way as Theorem 5.2, we can know that there is no 
N∈l  such that 

( ).22 QZZZZ torsEl <⊕  

Next, we will consider whether ( )QtorsE  has a subgroup ZZ l2  for 

some .1>l  Also, by using the content of the proof of Theorem 5.2, we can 
easily check the following results: 

Case I. ∏ ∏= =
−+−= n

i
n
i

me
i

m
i

iii ppA 1 1
2 .  

In (5.1), since A is even, x is even and so 2y  is odd. Then A4  because 

( ) ∏ == n
i

m
i

ipPx 1∓  is odd. But in this case, A satisfies ( )8mod0≡A  and so 

,4 A|  a contradiction. 

Case II. ∏ ∏= =
−−−= n

i
n
i

me
i

m
i

iii ppA 1 1
2 .  

Now we investigate the discriminant ∏ ∏= =
−−= n

i
n
i

me
i

m
i

iii ppD 1 1
22  of 

equation (5.4) for the following two cases: 

 (i) If ii me ′′ −  is odd for some i′  and ,2 iii mem ′′′ −>  then we can 

know that D is not a square in the same method as the proof of Theorem 5.2. 

(ii) If iii mem −=2  for all i, then D is equal to ∏ =
n
i

m
i

ip1
2  and it is a 

square and so ∏ == n
i

m
i

ipx 12  and 0 are integer solutions of (5.4). Then as 

the proof of Theorem 5.2, if ∏ == n
i

m
i

ipx 1 ,2  then it does not satisfy the  

given elliptic curve E and if x is equal to 0 and ie  is even, then E has   

torsion  points ⎟
⎠
⎞

⎜
⎝
⎛ ±∏ =

n
i

e
i

ipQ 1
2,0  satisfying .2 PQ =  Thus ( )QtorsE  has a 

subgroup .4ZZ  By using the above statements and Lemma 5.1, the theorem 

is proved.  
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Theorem 5.4. Let ∏ =++= n
i

e
i

ipAxxyE 1
32:Q  be an elliptic curve 

with ,Z∈A  where ip ’s are all primes such that ( ).8mod5≡ip  Then the 

torsion groups ( )QtorsE  of elliptic curve E are the following: 

(1) If iii mme ,3= ’s are even for all i and 
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then the torsion group of E is 

( ) .4,0,0,,
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(2) For ( ),3mod0≢A  if 
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−+−=
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iii ppA
1 1

2 ,  

then the torsion group of E is 

( ) .20,,
1
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(3) Let A be equal to ∏ ∏= =
−−− n

i
n
i

me
i

m
i

iii pp1 1
2  such that ≢A  

( ).3mod0  Then 

ZZ 20,,
1

=
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⎫
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is the torsion group ( )QtorsE  of ( )QE  each in the following cases: 

(a) ii me −  is odd for some i and .2 iii mem −>  

(b) iii mem −<2  for some i. 
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(c) ie ’s are equal to im3  for all i and im ′  is odd for some .i′  

(4) For ( ),3mod1≡A  if 

∏ ∏
= =

−±−≠
n

i

n

i

me
i

m
i

iii ppA
1 1

2 ,  

then the torsion group is 

( ) { }.OEtors =Q  

Proof. In the same discussion as Theorem 5.2, we can show that there is 
no N∈l  such that 

( ).22 QZZZZ torsEl <⊕  

Next, we will consider whether ( )QtorsE  has a subgroup ZZ l2  for 

some .1>l  Also, if we use the content in the proof of Theorem 5.2, then we 
can just see the following results: 

Case I. ∏ ∏= =
−+−= n

i
n
i

me
i

m
i

iii ppA 1 1
2 .  

This case A satisfies 0≡A  or ( )8mod4  and so ,4 A|  a contradiction. 

Case II. ∏ ∏= =
−−−= n

i
n
i

me
i

m
i

iii ppA 1 1
2 .  

Now we check the discriminant D of equation (5.4) for the following 
three cases: 

  (i) If ii me −  is odd for some i and ,2 iii mem −>  then we can know 

that D is not a square in the same method as the proof of Theorem 5.2. 

 (ii) If iii mem −<2  for some i, then by using (5.7), we can easily know 

that D is not a square. 

(iii) If iii mem −=2  for all i, then D is equal to ∏ =
n
i

m
i

ip1
2  and it is a 

square and so ∏ == n
i

m
i

ipx 1
22  and 0 are integer solutions of (5.4). Then as 
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the proof of Theorem 5.2, if ∏ == n
i

m
i

ipx 1 ,2  then it does not satisfy the 

given elliptic curve E and if x is equal to 0 and ie  is even, then E has torsion 

points ⎟
⎠
⎞

⎜
⎝
⎛ ±∏ =

n
i

e
i

ipQ 1
2,0  satisfying .2 PQ =  Thus ( )QtorsE  has a subgroup 

.4ZZ  The theorem is proved by the above statement and Lemma 5.1.  

Theorem 5.5. Let ∏ =++= n
i

e
i

ipAxxyE 1
32:Q  be an elliptic curve 

with ,Z∈A  where ip ’s are all primes such that ( ).8mod7≡ip  Then the 

torsion groups ( )QtorsE  of elliptic curve E are the following: 

(1) If iii mme ,3= ’s are even for all i and 

∏ ∏ ∏
= = =

− −=−−=
n

i

n

i

n

i

m
i

me
i

m
i

iiii pppA
1 1 1

2 ,2  

then 

( ) .4,0,0,,
1

2

1
ZZQ =

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
±

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∏∏

==

n

i

e
i

n

i

m
itors

ii ppOE  

(2) Let A be equal to ∏ ∏= =
−+−= n

i
n
i

me
i

m
i

iii ppA 1 1
2  such that 

( ).3mod0≡/A  Then 

ZZ 20,,
1

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∏
=

n

i

m
i

ipO ∓  

is the torsion group ( )QtorsE  of ( )QE  each in the following cases: 

(a) The number of elements of { }oddismei ii −|  is even. 

(b) The number of elements of { }oddismei ii −|  is odd and ii me −  is 

odd and iii mem −>2  for some i. 
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(3) Let A be equal to ∏ ∏= =
−−− n

i
n
i

me
i

m
i

iii pp1 1
2  with ( ).3mod0≡/A  

Then 

ZZ 20,,
1

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∏
=

n

i

m
i

ipO ∓  

is the torsion group ( )QtorsE  of ( )QE  each in the following cases: 

(a) ii me −  is odd and iii mem −>2  for some i. 

(b) ii me − ’s are even for all i and iii mem ′′′ −>2  for some .i′  

(c) ie ’s are equal to im3  for all i and im ′  is odd for some .i′  

(4) For ( ),3mod1≡A  if 

∏ ∏
= =

−±−≠
n

i

n

i

me
i

m
i

iii ppA
1 1

2 ,  

then 

( ) { }.OEtors =Q  

Proof. Using the same method as Theorem 5.2, we can obtain that there 
is no N∈l  such that 

( ).22 QZZZZ torsEl <⊕  

Next, we will consider whether ( )QtorsE  has a subgroup ZZ l2  for 

some .1>l  Let N be the number of elements of { }.oddisii mei −|  Since 

,4 A  if N is odd, then ∏ ∏= =
−+−= n

i
n
i

me
i

m
i

iii ppA 1 1
2  and ( )Qx  need to 

satisfy (5.3) and if N is even, then ∏ ∏= =
−−−= n

i
n
i

me
i

m
i

iii ppA 1 1
2  and ( )Qx  

have to satisfy (5.4). 
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Case I. N is odd and ∏ ∏= =
−+−= n

i
n
i

me
i

m
i

iii ppA 1 1
2 .  

The discriminant D of (5.3) satisfies 3≡D  or ( )8mod5  and it is not a 

square. Thus the equation does not have an integer solution. 

Case II. N is even and ∏ ∏= =
−−−= n

i
n
i

me
i

m
i

iii ppA 1 1
2 .  

We check the discriminant D of equation (5.4) for the following three 
cases: 

  (i) If ii me ′′ −  is odd and iii mem ′′′ −>2  for some ,i′  then we can 

know that D is not a square by the same method as the proof of Theorem 5.2. 

 (ii) If ii me −  is even for all i and iii mem ′′′ −>2  for some ,i′  then by 

using (5.6), we can easily know that D is not a square. 

(iii) If iii mem −=2  for all i, then D is equal to ∏ =
n
i

m
i

ip1
2  and it is a 

square and so ∏ == n
i

m
i

ipx 12  and 0 are integer solutions of (5.4). Then in 

the same way as Theorem 5.2, if ∏ == n
i

m
i

ipx 1 ,2  then it does not satisfy      

the given elliptic curve E and if x is equal to 0 and ie  is even, then E has 

torsion points ⎟
⎠
⎞

⎜
⎝
⎛ ±∏ =

n
i

e
i

ipQ 1
2,0  satisfying .2 PQ =  Thus ( )QtorsE  has a 

subgroup .4ZZ  By using the above statements and Lemma 5.1, the theorem 

is proved.  
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