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Abstract 

Although in classical theory of time series analysis, it is customary         
to consider white noise processes as the error term, in functional       
time series analysis, this assumption can be put in abeyance. An 
approach to weaken this assumption is to consider the notion of 
weakly dependent functional processes. In this paper, we study the 

periodograms and their asymptotic properties in mL -2 -approximable 

processes that constitute a special class of weakly dependent 
functional processes. 

1. Introduction 

Functional time series (FTS) is an important branch in functional            
data analysis. Bosq [2] formed the basic theoretical foundation for FTS. 
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Afterwards, many researchers worked on FTS such as Antoniadis and 
Sapatinas [1], Ferraty et al. [5, 6], Hyndman and Shang [11], Panaretos and 
Tavakoli [12], Horváth et al. [9, 10], Hormänn et al. [8] and so on. In 
classical time series analysis, it is customary to consider Gaussian white 
noise processes as the error term. In recent years, by increasing interest            
in functional data analysis, some researchers tried to extend the classical 
contexts into this field of study. In functional time series analysis, the error 
terms can be considered to be Gaussian functional white noise processes or 
follow some kind of weak dependence. The notion of weak dependence can 
be formalized in various ways, such as mixing conditions. In 2010, Hörmann 

and Kokoszka [7] introduced mL -2 -dependent processes as a class of weakly 

dependent functional processes. They showed that this kind of dependence is 
applicable to linear as well as nonlinear FTS. They studied the estimation of 
the functional principal component, the long-run covariance matrix, change 
point detection and the functional linear model. Recently, Cerovecki and 
Hörmann [4] in their working paper presented the central limit theorem          

for the discrete Fourier transform (DFT) of functional mL -2 -dependent time 

series. 

In this paper, we study the asymptotic properties of the periodograms       

of mL -2 -dependent time series in detail. Consequently, this paper is 

organized as follows. The next section gives background materials based on     
Hörmann and Kokoszka [7]. Section 3 addresses the asymptotic behavior of 
periodograms such as unbiasedness, asymptotic distribution and consistency. 

2. Preliminary Notations and Definitions 

Let [ ]( )1,0: 2LH =  be the Hilbert space of square integrable functions 

defined on [ ],1,0  which is endowed by the inner product =qf ,  

( ) ( )∫ τττ
1
0

dgf  and the norm ., fff =  Moreover, let us denote the 

space of bounded linear operators on H by ( ).HL  Nuclear operators set up 
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for an important subspace of ( ),HL  which will be demonstrated by ( ).HN  

This space will be equipped with the norm ∑∞
= φφ= 1 ,,k kkAA N  

where { }kφ  is any orthonormal basis on H. Another subspace of ( )HL  is  

the class of Hilbert-Schmidt operators, ( ),HHS  which form a Banach space 

endowed with the norm .
21

1
2

⎭
⎬
⎫

⎩
⎨
⎧= ∑∞

=k HiAeA HS  For x and y in           

H, the tensorial product of x and y, ( ),Hyx N∈⊗  is introduced as 

( ) .,,: Hyyzxzyx H ∈=⊗  

Furthermore, let ( )PHL ,,: 2 Ω=H  stand for the Hilbert space of all H-

valued random variables X with finite second moment. We use ( )Σμ,HN  to 

denote a Gaussian element in H with mean μ and covariance operator ∑. In 
fact, ( )Σμ,~ HNX  if and only if, for any ,Hu ∈  the projection uX ,  is 

normally distributed with mean u,μ  and variance ( ) ., uuΣ  Although in 

the sequel, all observations are assumed to be real, in some situations, we 
will face some complex setting. In case of complex setting, we will assume 
that the Hilbert space 00 iHHH +=  is complex. Let .ImRe ic μ+μ=μ=  

For ,Hu ∈  define 

( ) ( )[ ]μ−μ−=Γ XuXu ,E    and   ( ) ( )[ ]., uXXuC μ−μ−= E  

We say that X is complex Gaussian with mean μ, covariance Γ and relation 
operator C if 

( )
( )

( ) ( )
( ) ( )

.2
1,~ 00 ⎟

⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

−Γ+Γ
−Γ−+Γ

⎟
⎠

⎞
⎜
⎝

⎛
μ
μ

⎟
⎠
⎞

⎜
⎝
⎛

× CReCIm
CImCRe

N
XIm
XRe

Im

Re
HH  (2.1) 

Henceforth, we will only need the circularly-symmetric case, i.e., when 
0=μ  and .0=C  Then we write ( ).,0~ ΓCNX  

Definition 2.1. The H-valued random variable X is called complex 
Gaussian, ( ),,0~ ΓHCNX  if and only if, for any ,Hu ∈  
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2 ⎟
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Γ
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⎠
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⎠

⎞
⎜
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⎛
uu
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uXIm
uXRe

 (2.2) 

Let X be a noncentral Gaussian random variable with mean μ and 
covariance operator Γ, ( ),,~ ΓμHNX  the distribution of XX ⊗  will be 

called the Wishart distribution with one degree of freedom with parameters  
μ and Γ, denoted by ( ).,,1 ΓμHW  If X follows ( ),,~ ΓμHCNX  then          

the distribution of XX ⊗  will be called complex Wishart distribution, 
( ).,,1 ΓμHCW  

A sequence of H-valued random variables, namely { } ,Z∈ttX  is called 

functional time series. The mean function of tX  is defined in terms of 

Bochner integral and will be denoted by ( ) .: HXtt ∈=μ E  For ,H∈tX  the 

autocovariance operator at lag s is defined by 

( )[ ( )].: ttststs XX μ−⊗μ−=Γ ++E  

Despite the importance of white noise processes in the analysis of time 
series, an approach to weaken the assumption of independence is to consider 

the notion of weak dependence and, as a special case, mL -2 -approximable 

processes, which are introduced by Hörmann and Kokoszka [7]. 

Definition 2.2. A sequence { } Ht ∈ε  is called mL -2 -approximable if 

each tε  admits the representation 

 ( ),...,, 1−εε=ε ttt f  (2.3) 

where iε  are i.i.d. elements taking values in a measurable space S, and f is a 

measurable function, .: HSf →∞  Moreover, it is assumed that if { }iε′  is an 

independent copy of { }iε  defined on the same probability space, then letting 

 ( ) ( ),...,,,...,,, 111 −−−+−− εεεεε=ε mtmtmttt
m

t f  (2.4) 
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we have 

 ( ( ) )∑
∞

=

∞<ε−ε
1

212 .
t

m
ttE  (2.5) 

Let us denote the discrete Fourier transform of nXXX ...,,, 21  by 

 ( ) [ ]∑
=

θ− ππ−∈θ=θ
n

t

it
tn eXS

1
.,,:  (2.6) 

It is well known that if the autocovariance operators satisfy ∑ ∈ ΓZh h N  

,∞<  then the spectral density operator, ,θF  is defined as 

 ∑
∈

θ−
θ Γ

π
=

Zh

ih
he .2

1:F  (2.7) 

The following theorem, which is proved by Cerovecki and Hörmann [4] 

demonstrates the asymptotic distribution of DFT of mL -2 -approximable time 

series. 

Theorem 2.1 (Cerovecki and Hörmann [4]). Suppose that ( )tX  is 

mL -2 -approximable. Then, for all [ ],, ππ−∈θ  

 ( ) ( ).,01
θπ→θ FHn CNS

n
 (2.8) 

Moreover, ∑ ∈ ∞<ΓZh h HS  and therefore ∑ ∈
θ−

θ Γ
π

= Zh
hi

he .2
1F  

Additionally, we have 

• ( ) ( )[ ] ,21
θ

− π→θ⊗θ Fnn SSEn  

• ( ) ( ) ( )[ ] ,2121 ∞<π→θ⊗θ=θ θ
−−

NN FnnHn SSEnSEn  

• ∫
π

π−
θ

θ θ=Γ ,deih
h F  

• the components of ( ) ( )( )θ′θ−
nn SSn ,1  are asymptotically independent 

if .θ′≠θ  
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The following section is devoted to the asymptotic distribution of the 
periodograms and some asymptotic properties. 

3. Asymptotic Distribution of Periodograms and their Properties 

Periodograms play an important role in the analysis of time series           
data. These operators, which are defined based on DFT of time series,             
are considered as spectral density operator estimators. In case of H-valued 
random processes, periodograms are nuclear operators and, for Fourier 
frequencies ,2 nkk π=θ  ,...,,1,0 nk =  are defined as 

( ) ( )( ).1: knkn SSnk θ⊗θ=θI  

Following Fuller [13], for any arbitrary [ ],, ππ−∈θ  the periodogram is 

defined as a piecewise constant function, which coincides with kθI  at the 

Fourier frequencies: 

⎪⎩

⎪
⎨
⎧

<θ≤π−

π≤θ≤π+θ≤θ<π−θ
=

− ,0if,

,0andif,

θ

θ
θ

k

k nn kk

I

I
I  (3.1) 

Brockwell and Davis [3]. Based on Theorem 2.1, it can be easily seen that 

( ) θ
−π I12  is an asymptotically unbiased estimator of .θF  The following 

theorem establishes the asymptotic distribution of the periodogram of       

mL -2 -approximable time series. 

Theorem 3.1. Let nXX ...,,1  be a sequence of mL -2 -approximable time 

series. Then 

 (i) ( ),,0,1~ FI πθ HCW  

(ii) for θθ′≠θ I,  and θ′I  are asymptotically independent. 

Proof. The proof of parts (i) and (ii) are easy consequences of       
Theorem 2.1 and definition of complex Wishart distribution. 
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In functional time series analysis, norm of operators can be applied in 
various situations. The next theorem demonstrates the asymptotic distribution 
of ,NI θ  which is a multiple of chi-square distribution. 

Theorem 3.2. Let nXX ...,,1  be a sequence of mL -2 -approximable time 

series. Then 

 ( ) ,
2

fcχ→θ NI  (3.2) 

where ( )NHS FF θθπ= 2221c  and ( ).2 2212
HSN FF θθ=f  

Proof. It is well known that 

( ) ( ) NNI θ⊗θ= −
θ nn SSn 1  

( ) 21 θ= −
nSn  

( )∑
∞

=

− θ=
1

21 ,
j

jn eSn  

( ) ( ) .,,
1

221

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

θ+θ= ∑
∞

=

−

j
jnjn eSImeSRen  

Based on Definition 2.1 and Theorem 2.1, ( ) jn eSRen ,21 θ−               

and ( ) jn eSImn ,21 θ−  are asymptotically independent Gaussian random 

variables with mean 0 and variance ( ) .,2 jj eeFπ  Consequently, 

 ( ) ( ).,2
1

2
2∑

∞

=
θθ χπ→

j
jj eeFI N  (3.3) 

Moreover, Satterthwaite’s approximation [14] states that if ∑∞
= ∞<1 ,k kr  

then ( )
2

fcχ  can be used to approximate ( )
( )∑∞

= χ1
2 ,k mkr  where c and                 
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f are determined, respectively, by ∑∑ ∞
=

∞
= ⎟

⎠
⎞

⎜
⎝
⎛= 11

2
k kk k rrc  and =f  

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∑∑ ∞

=
∞
= 1

2
1 k kk k rrm  and [ ]x  denotes the closest integer to x. Based          

on this approximation, the distribution of NI θ  can be approximated         

by ( ) ,
2

fcχ→θ NI  where ( )NHS FF θθπ= 2221c  and =f  

( ).2 2212
HSN FF θθ  

Various testing procedures are defined in multivariate time series 
analysis for detecting hidden periodicities based on norm of periodograms. 
Theorem 3.2 can be applied to extend these theorems to functional time 
series analysis. 
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