Far East Journal of Mathematical Sciences (FJMS)

© 2017 Pushpa Publishing House, Allahabad, India http://www.pphmj.com http://dx.doi.org/10.17654/MS101122653

Volume 101, Number 12, 2017, Pages 2653-2661

ISSN: 0972-0871

SEMIDETACHED B-ALGEBRAS BASED ON FUZZY POINTS

Kyoung Ja Lee

Department of Mathematics Education Hannam University Daejeon 306-791, Korea

Abstract

The concepts of $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy subalgebra, $(\overline{q}, \overline{\in} \vee \overline{q})$ -fuzzy subalgebra and $(\overline{\in} \vee \overline{q}, \overline{\in} \vee \overline{q})$ -fuzzy subalgebra are introduced, and relative relations and properties are discussed. Several conditions for a semidetached structure in *B*-algebras to be a semidetached *B*-algebra are provided.

1. Introduction and Preliminaries

The idea of quasi-coincidence of a fuzzy point with a fuzzy set, which is mentioned in [11], played a vital role to generate some different types of fuzzy subgroups, called (α, β) -fuzzy subgroups, introduced by Bhakat and Das [1]. In particular, $(\in, \in \lor q)$ -fuzzy subgroup is an important and useful generalization of Rosenfeld's fuzzy subgroup. In BCK/BCI-algebras and

Received: January 20, 2017; Accepted: February 27, 2017

2010 Mathematics Subject Classification: 06F35, 03G25, 08A72.

Keywords and phrases: $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy subalgebra, $(\overline{\in} \vee \overline{q}, \overline{\in} \vee \overline{q})$ -fuzzy subalgebra,

 $(\overline{q}, \overline{\in} \vee \overline{q})$ -fuzzy subalgebra, semidetached structure, semidetached *B*-algebra.

Communicated by Young Bae Jun

B-algebras, the concept of (α, β) -fuzzy B-algebras, which is studied in the papers [2-6, 12] and [13], is also important and useful generalization of the well-known concepts, called *fuzzy subalgebras*. In [10], Jun and Song introduced the notion of semidetached B-algebras, and investigated their properties. We provided several conditions for a semidetached structure to be a semidetached B-algebra. We considered characterization of a semidetached B-algebra.

In this paper, we introduce the concepts of $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy *B*-algebra, $(\overline{q}, \overline{\in} \vee \overline{q})$ -fuzzy *B*-algebra and $(\overline{\in} \vee \overline{q}, \overline{\in} \vee \overline{q})$ -fuzzy *B*-algebra, and investigate relative relations and properties. We provide several conditions for a semidetached structure in *B*-algebras to be a semidetached *B*-algebra.

2. Preliminaries

A *B*-algebra is a set *X* with a constant 0 and a binary operation '*' satisfying the axioms:

(a1)
$$x * x = 0$$
,

(a2)
$$x * 0 = x$$
,

(a3)
$$(x * y) * z = x * (z * (0 * y))$$

for all $x, y, z \in X$.

A nonempty subset A of a B-algebra X is called a *subalgebra* of X if $x * y \in A$ for all $x, y \in A$.

A fuzzy set λ in a *B*-algebra *X* is called a *fuzzy B-algebra* of *X* (see [9]) if it satisfies:

$$(\forall x, y \in X)(\lambda(x * y) \ge \min\{\lambda(x), \lambda(y)\}). \tag{2.1}$$

For any fuzzy set λ in a set X and any $t \in [0, 1]$, the set

$$\lambda_t = \{ x \in X \, | \, \lambda(x) \ge t \}$$

is called a *level subset* of λ .

Note that a fuzzy set λ in X is a fuzzy B-algebra of X if and only if λ_t is a subalgebra of X for all $t \in (0, 1]$.

A fuzzy set λ in a set X of the form

$$\lambda(y) := \begin{cases} t \in (0, 1] & \text{if } y = x \\ 0 & \text{if } y \neq x \end{cases}$$
 (2.2)

is said to be a fuzzy point with support x and value t and is denoted by x_t .

For a fuzzy set λ in a set X, a fuzzy point x_t is said to be

- contained in λ , denoted by $x_t \in \lambda$ (see [11]), if $\lambda(x) \geq t$,
- *quasi-coincident* with λ , denoted by $x_t q \lambda$ (see [11]), if $\lambda(x) + t > 1$,
- $x_t \in \vee q\lambda$ if $x_t \in \lambda$ or $x_t q\lambda$.

3. Semidetached B-algebras

In what follows, let *X* denote a *B*-algebra unless otherwise specified.

Definition 3.1 [7]. A fuzzy set λ in X is called an $(\in, \in \vee q)$ -fuzzy B-algebra of X if it satisfies:

$$x_t \in \lambda, \ y_r \in \lambda \Rightarrow (x * y)_{\min\{t, r\}} \in \forall q\lambda$$
 (3.1)

for all $x, y \in X$ and $t, r \in (0, 1]$.

Given a set X and a subinterval Ω of [0, 1], a *semidetached structure* over Ω is defined to be a pair (X, f), where $f : \Omega \to \mathcal{P}(X)$ is a mapping (see [10]).

Definition 3.2 [8]. A semidetached structure (X, f) is called a *semidetached B-algebra* over Ω with respect to $t \in \Omega$ (briefly, t-semidetached B-algebra over Ω) if f(t) is a B-subalgebra of X where $\mathcal{P}(X)$ is the power set of X.

We say that (X, f) is a *semidetached B-algebra* over Ω if it is a t-semidetached B-algebra over Ω with respect to all $t \in \Omega$.

Given a fuzzy set λ in X, consider the following mappings:

$$\mathcal{A}_U^{\lambda}: \Omega \to \mathcal{P}(X), t \mapsto \lambda_t,$$
 (3.2)

$$\mathcal{A}_{O}^{\lambda}: \Omega \to \mathcal{P}(X), t \mapsto \mathcal{Q}(\lambda; t),$$
 (3.3)

$$\mathcal{A}_{\mathcal{E}}^{\lambda}: \Omega \to \mathcal{P}(X), t \mapsto \mathcal{E}(\lambda; t),$$
 (3.4)

where

$$Q(\lambda; t) := \{x \in X \mid x_t q \lambda\} \text{ and } \mathcal{E}(\lambda; t) := \{x \in X \mid x_t \in \forall q \lambda\}$$

which are called the *q-set* and $\in \vee q$ -set with respect to *t* (briefly, *t-q*-set and $t-\in \vee q$ -set), respectively, of λ .

Note that, for any $t, r \in (0, 1]$, if $t \ge r$, then every r-q-set is contained in the t-q-set, that is, $Q(\lambda; r) \subseteq Q(\lambda; t)$. Obviously, $\mathcal{E}(\lambda; t) = \lambda_t \cup Q(\lambda; t)$.

For $\alpha \in \{\in, q\}$ and $t \in (0, 1]$, we say that $x_t \overline{\alpha} \lambda$ if $x_t \alpha \lambda$ does not hold.

Definition 3.3. A fuzzy set λ in X is called an $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra of X if it satisfies:

$$(\forall x, \ y \in X)(\forall t, \ r \in (0, 1])((x * y)_{\min\{t, \ r\}} \ \overline{\in} \ \lambda \Rightarrow x_t \ \overline{\in} \lor \overline{q} \ \lambda$$
or $y_r \ \overline{\in} \lor \overline{q} \ \lambda$). (3.5)

We provide a characterization of an $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy *B*-algebra.

Theorem 3.4. A fuzzy set λ in X is an $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra of X if and only if the following inequality is valid:

$$(\forall x, y \in X)(\max\{\lambda(x * y), 0.5\} \ge \min\{\lambda(x), \lambda(y)\}). \tag{3.6}$$

Proof. Let λ be an $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy *B*-algebra of *X*. Assume that (3.6) is not valid. Then there exist $a, b \in X$ such that

$$\max\{\lambda(a*b), 0.5\} < \min\{\lambda(a), \lambda(b)\} \stackrel{\Delta}{=} t.$$

Then $0.5 < t \le 1$, $a_t \in \lambda$, $b_t \in \lambda$ and $(a * b)_t \in \lambda$. It follows from (3.5) that $a_t \overline{q} \lambda$ or $b_t \overline{q} \lambda$. Hence

$$\lambda(a) \ge t$$
 and $\lambda(a) + t \le 1$

or

$$\lambda(b) \ge t$$
 and $\lambda(b) + t \le 1$.

In either case, we have $t \le 0.5$ which is a contradiction. Therefore

$$\max\{\lambda(x * y), 0.5\} \ge \min\{\lambda(x), \lambda(y)\}$$

for all $x, y \in X$.

Conversely, suppose that (3.6) is valid. Let $(x*y)_{\min\{t,r\}} \equiv \lambda$ for $x, y \in X$ and $t, r \in (0,1]$. Then $\lambda(x*y) < \min\{t,r\}$. If $\max\{\lambda(x*y), 0.5\} = \lambda(x*y)$, then $\min\{t,r\} > \lambda(x*y) \ge \min\{\lambda(x), \lambda(y)\}$ and so $\lambda(x) < t$ or $\lambda(y) < r$. Thus, $x_t \equiv \lambda$ or $y_r \equiv \lambda$, which implies that $x_t \equiv \sqrt{q} \lambda$ or $y_r \equiv \sqrt{q} \lambda$. If $\max\{\lambda(x*y), 0.5\} = 0.5$, then $\min\{\lambda(x), \lambda(y)\} \le 0.5$. Suppose $x_t \in \lambda$ or $y_r \in \lambda$. Then $t \le \lambda(x) \le 0.5$ or $r \le \lambda(y) \le 0.5$, and so

$$\lambda(x) + t \le 0.5 + 0.5 = 1$$

or

$$\lambda(y) + r \le 0.5 + 0.5 = 1.$$

Hence $x_t \overline{q} \lambda$ or $y_r \overline{q} \lambda$. Therefore, $x_t \overline{\epsilon} \vee \overline{q} \lambda$ or $y_r \overline{\epsilon} \vee \overline{q} \lambda$. This shows that λ is an $(\overline{\epsilon}, \overline{\epsilon} \vee \overline{q})$ -fuzzy *B*-algebra of *X*.

Theorem 3.5. A fuzzy set λ in X is an $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra of X if and only if $(X, \mathcal{A}_U^{\lambda})$ is a semidetached B-algebra over $\Omega = (0.5, 1]$.

Proof. Assume that λ is an $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra of X. Let $x, y \in \mathcal{A}_U^{\lambda}(t)$ for $t \in \Omega = (0.5, 1]$. Then $\lambda(x) \geq t$ and $\lambda(y) \geq t$. It follows from (3.6) that

$$\max\{\lambda(x * y), 0.5\} \ge \min\{\lambda(x), \lambda(y)\} \ge t.$$

Since t > 0.5, it follows that $\lambda(x * y) \ge t$ and so that $x * y \in \mathcal{A}_U^{\lambda}(t)$. Thus, $\mathcal{A}_U^{\lambda}(t)$ is a subalgebra of X, and $(X, \mathcal{A}_U^{\lambda})$ is a semidetached B-algebra over $\Omega = (0.5, 1]$.

Conversely, suppose that $(X, \mathcal{A}_U^{\lambda})$ is a semidetached *B*-algebra over $\Omega = (0.5, 1]$. If (3.6) is not valid, then there exist $a, b \in X$ such that

$$\max\{\lambda(a*b), 0.5\} < \min\{\lambda(a), \lambda(b)\} \stackrel{\Delta}{=} t.$$

Then $t \in (0.5, 1]$, $a, b \in \mathcal{A}_U^{\lambda}(t)$ and $ab \notin \mathcal{A}_U^{\lambda}(t)$. This is a contradiction, and so (3.6) is valid. Using Theorem 3.4, we know that λ is an $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra of X.

Theorem 3.6. A fuzzy set λ in X is an $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra of X if and only if $(X, \mathcal{A}_Q^{\lambda})$ is a semidetached B-algebra over $\Omega = (0, 0.5]$.

Proof. Assume that $(X, \mathcal{A}_Q^{\lambda})$ is a semidetached *B*-algebra over $\Omega = (0, 0.5]$. If (3.6) is not valid, then there exist $a, b \in X$, $t \in \Omega$ and $k \in [0, 1)$ such that

$$\max\{\lambda(a*b), 0.5\} + t \le 1 < \min\{\lambda(a), \lambda(b)\} + t.$$

It follows that $a_t q \lambda$ and $b_t q \lambda$, that is, $a, b \in \mathcal{A}_Q^{\lambda}(t)$, but $(a * b)_t \overline{q} \lambda$, i.e., $ab \notin \mathcal{A}_Q^{\lambda}(t)$. This is a contradiction, and so (3.6) is valid. Using Theorem 3.4, we know that λ is an $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra of X.

Conversely, suppose that λ is an $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra of X. Let $x, y \in \mathcal{A}_Q^{\lambda}(t)$ for $t \in \Omega = (0, 0.5]$. Then $x_t q \lambda$ and $y_t q \lambda$, that is, $\lambda(x) + t > 1$ and $\lambda(y) + t > 1$. It follows from (3.6) that

$$\max\{\lambda(x * y), 0.5\} \ge \min\{\lambda(x), \lambda(y)\} > 1 - t \ge 0.5$$

and so that $\lambda(x*y)+t>1$, that is, $x*y\in\mathcal{A}_Q^{\lambda}(t)$. Therefore, $\mathcal{A}_Q^{\lambda}(t)$ is a subalgebra of X, and $(X,\mathcal{A}_Q^{\lambda})$ is a semidetached B-algebra over $\Omega=(0,0.5]$.

Definition 3.7. A fuzzy set λ in X is called an $(\overline{\in} \vee \overline{q}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra of X if for all $x, y \in X$ and $t, r \in (0, 1]$,

$$(x * y)_{\min\{t, r\}} \ \overline{\in} \lor \overline{q} \ \lambda \Rightarrow x_t \ \overline{\in} \lor \overline{q} \ \lambda \ \text{or} \ y_r \ \overline{\in} \lor \overline{q} \ \lambda. \tag{3.7}$$

Theorem 3.8. Every $(\overline{\in} \vee \overline{q}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra is an $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra.

Proof. Let $x, y \in X$ and $t, r \in (0, 1]$ be such that $(x * y)_{\min\{t, r\}} \overline{\in} \lambda$. Then $(x * y)_{\min\{t, r\}} \overline{\in} \vee \overline{q} \lambda$, and so $x_t \overline{\in} \vee \overline{q} \lambda$ or $y_r \overline{\in} \vee \overline{q} \lambda$ by (3.7). Therefore, λ is an $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra of X.

Definition 3.9. A fuzzy set λ in X is called a $(\overline{q}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra of X if for all $x, y \in X$ and $t, r \in (0, 1]$,

$$(x * y)_{\min\{t, r\}} \overline{q} \lambda \Rightarrow x_t \in \sqrt{q} \lambda \text{ or } y_r \in \sqrt{q} \lambda.$$
 (3.8)

Theorem 3.10. Assume that $\min\{t, r\} \le 0.5$ for any $t, r \in (0, 1]$. Then every $(\overline{q}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra is an $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra.

Proof. Let λ be a $(\overline{q}, \overline{\in} \vee \overline{q})$ -fuzzy *B*-algebra of *X*. Assume that $(x * y)_{\min\{t, r\}} \overline{\in} \lambda$ for $x, y \in X$ and $t, r \in (0, 1]$ with $\min\{t, r\} \leq 0.5$. Then $\lambda(x * y) < \min\{t, r\} \leq 0.5$, and so

$$\lambda(x * y) + \min\{t, r\} < 0.5 + 0.5 = 1,$$

that is, $(x * y)_{\min\{t, r\}} \overline{q} \lambda$. It follows from (3.8) that $x_t \in \sqrt{q} \lambda$ or $y_r \in \overline{q} \lambda$. Therefore, λ is an $(\overline{\in}, \overline{\in} \sqrt{q})$ -fuzzy B-algebra of X.

Theorem 3.11. Assume that $\min\{t, r\} > 0.5$ for any $t, r \in (0, 1]$. Then every $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra is a $(\overline{q}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra.

Proof. Let λ be an $(\overline{\in}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra of X. Assume that $(x * y)_{\min\{t, r\}} \overline{q} \lambda$ for $x, y \in X$ and $t, r \in (0, 1]$ with $\min\{t, r\} > 0.5$. If $(x * y)_{\min\{t, r\}} \in \lambda$, then $\lambda(x * y) \geq \min\{t, r\}$ and so

$$\lambda(x * y) + \min\{t, r\} > 0.5 + 0.5 = 1.$$

Hence $(x * y)_{\min\{t, r\}} q\lambda$, a contradiction. Thus $(x * y)_{\min\{t, r\}} \overline{\in} \lambda$, which implies from (3.5) that $x_t \overline{\in} \vee \overline{q} \lambda$ or $y_r \overline{\in} \vee \overline{q} \lambda$. Therefore, λ is a $(\overline{q}, \overline{\in} \vee \overline{q})$ -fuzzy B-algebra of X.

Acknowledgement

This paper has been supported by the 2017 Hannam University Research Fund.

References

- [1] S. K. Bhakat and P. Das, $(\in, \in \lor q)$ -fuzzy subgroup, Fuzzy Sets and Systems 80 (1996), 359-368.
- [2] Z. Guangji, Z. Cheng, L. Zixin and G. Jiatai, New kinds of fuzzy ideals in BCI-algebras, Fuzzy Optim. Decis. Mak. 5 (2006), 177-186.
- [3] Y. B. Jun, On (α, β) -fuzzy subalgebras of BCK/BCI-algebras, Bull. Korean Math. Soc. 42(4) (2005), 703-711.
- [4] Y. B. Jun, Fuzzy subalgebras of type (α, β) in BCK/BCI-algebras, Kyungpook Math. J. 47 (2007), 403-410.

- [5] Y. B. Jun, On (α, β) -fuzzy ideals of BCK/BCI-algebras, Sci. Math. Jpn. 60(3) (2004), 613-617.
- [6] Y. B. Jun, Generalizations of $(\in, \in \lor q)$ -fuzzy subalgebras in BCK/BCI-algebras Comput. Math. Appl. 58 (2009), 1383-1390.
- [7] Y. B. Jun, H. S. Kim and E. H. Roh, Redefined fuzzy *B*-algebras, International Review of Fuzzy Mathematics 1(2) (2006), 161-177.
- [8] Y. B. Jun and K. J. Lee, Semidetached *B*-algebras, Appl. Math. Sci. (submitted).
- [9] Y. B. Jun, E. H. Roh and H. S. Kim, On fuzzy *B*-algebras, Czechoslovak Math. J. 52 (2002), 375-384.
- [10] Y. B. Jun and S. Z. Song, Semidetached subalgebras in BCK/BCI-algebras, Bull. Korean Math. Soc. (submitted).
- [11] P. M. Pu and Y. M. Liu, Fuzzy topology I, Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599.
- [12] J. Zhan and Y. B. Jun, Generalized fuzzy ideals of BCI-algebras, Bull. Malays. Math. Sci. Soc. 32 (2009), 119-130.
- [13] J. Zhan, Y. B. Jun and B. Davvaz, On $(\in, \in \lor q)$ -fuzzy ideals of BCI-algebras, Iran. J. Fuzzy Syst. 6 (2009), 81-94.