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Abstract 

Let ( )kn aaaGG ...,,, 21=  be a circulant digraph of order either 

21ppn =  or qpn =  for some positive integer q, primes p, ,1p  ,2p  

and jumps ....,,, 21 kaaa  We give new necessary and sufficient 

conditions for G to be Hamiltonian if either qpn =  or .2=k  

Furthermore, we give new necessary and sufficient conditions for 
( )21, aaG qp

 to be decomposable into Hamilton cycles, and to be 

decomposable into cycles of equal lengths. Finally, we prove the 
necessary and sufficient conditions for any circulant digraph of even 
order to be decomposable into Hamilton paths, which also provide 
Hamilton path decompositions for two special cases of G. 

1. Introduction 

A circulant digraph ( )kn aaaG ...,,, 21  on n vertices with k distinct 
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jumps kaaa ...,,, 21  has vertices ( )naiaiai k mod...,,, 21 +++  adjacent to 

each vertex i, where for ,1≥≥ jk  each .na j <  On one hand, it is well-

known that all connected undirected circulants are Hamiltonian [1, 8]. On the 
other hand, not all connected circulant digraphs G are Hamiltonian [3, 12], 
and determining the necessary and sufficient conditions for G to be 
Hamiltonian remains an open hard problem. Furthermore, it is even less 
known about the decomposition of G into Hamilton cycles or cycles of equal 
lengths [4, 5]. These problems, however, are of great interest to some 
communities for potential applicability and relevance to cryptology, 
cryptography, etc. Hence, there has been extensive research done and 
published in the number of papers (e.g., [3-5, 11, 12]) focused on the 
Hamiltonicity and decomposition of subsets of circulant digraphs. 

In this paper, we consider circulant digraphs G of order either qpn 1=  or 

21ppn =  for some primes 1p  and 2p  and positive integer q. For the reason 

described above, we study the Hamiltonicity and decomposition of G. That 
is, we focus on the existence of Hamilton cycle in G and decomposition of G 
into: (1) Hamilton cycles, (2) cycles of equal lengths, and (3) Hamilton paths. 
The paper is organized as follows: After preliminary known results briefly 

recapped in Section 2, in Section 3, we prove that if qpn 1=  and =G  

( )kn aaaG ...,,, 21  is connected, then G is Hamiltonian. Otherwise, if =n  

,21pp  then for ,2=k  we prove that ( )21, aaGG n=  is Hamiltonian if and 

only if either ( ) 1,gcd 1 =an  or ( ) .1,gcd 2 =an  In Section 4, we give new 

simple necessary and sufficient conditions for decomposition into Hamilton 
cycles of ( )21,

1
aaG qp

 that cannot be extended to generic ( )21, aaGn  (that 

is known [4]), and in particular cannot be extended to ( )., 2121 aaG pp  In 

Section 5, we prove that ( )21,
1

aaG qp
 can be decomposed into directed 

cycles of equal lengths if and only if ( ) ( ).,gcd,gcd 21 anan =  Finally, in 

Section 6, we prove that ( )km aaaG ...,,, 212  can be decomposed into 

Hamilton paths if and only if .12 −= mk  
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2. Preliminary Results 

There are two facts concerning circulants that will be useful in proving 
the results in the next sections. First, according to Boesch and Tindell [2]: 

Theorem 2.1 [2]. Circulant digraph ( )kn aaaG ...,,, 21  is connected if 

and only if ( ) .1...,,,,gcd 21 =kaaan  

Boesch and Tindell [2] stated the above Theorem 2.1 for undirected 
circulants, but the extension of their result to directed circulants is trivial. 

Second, we prove the following: 

Theorem 2.2 [3]. Connected circulant digraph ( )21, aaGn  has Hamilton 

cycle formed by both jumps if and only if ( ) 212211,gcd ssasasn +=⋅+⋅  

and ( )2121 mod ssaa +≡  for some positive integers 1s  and .2s  

In particular, Theorem 2.2 will be useful in the next section in proving 
the necessary and sufficient conditions for the existence of Hamilton cycle in 
the circulant of semiprime order. Both Theorems 2.1 and 2.2 will be used in 
proofs concerning decomposition of qp

G  and 21ppG  in Sections 4 and 5. 

3. Existence of Hamilton Cycle in Circulant Digraphs qp
G  and 21ppG  

First, consider a circulant digraph ( ),...,,, 21 kp
aaaG q  where p is a 

prime and q is some positive integer. 

Theorem 3.1. Let qpn =  for some prime p and positive integer q. 

Circulant digraph ( )kn aaaGG ...,,, 21=  is Hamiltonian if and only if 

( ) .1...,,,,gcd 21 =kaaan  Furthermore, if G is Hamiltonian, then it has a 

Hamilton cycle formed by a single jump ia  for some i, where .1≥≥ ik  

Proof. If ( ) ,1...,,,,gcd 21 ≠kaaan  then by Theorem 2.1, G is not 

Hamiltonian, which proves the necessary condition. Consider now the 
sufficient condition for G being Hamiltonian. Suppose ( )kaaan ...,,,,gcd 21  
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.1=  Since n is a prime power, there is an i such that ( ) 1,gcd =ian  and 

now, since ia  is a generator of the additive group of the integers module n, 

the digraph ( )in aG  is Hamiltonian, and hence also ( )kn aaaG ...,,, 21  is 

Hamiltonian. ~ 

Note that not every Hamilton cycle has to be formed by a single jump in 
( )....,,, 21 kp

aaaG q  For example, it is easy to check that ( )5,18G  contains 

a Hamilton cycle formed by both jumps with a sequence ( )5,1,5,1,5,1,5,1  

and ( )3,2,19G  contains a Hamilton cycle formed by all 3 jumps with a jump 

sequence ( ).2,2,1,2,3,2,3,2,1  

We now focus on circulant digraphs of semiprime order with two jumps 
only, i.e., results for a circulant digraph ( ),, 2121 aaG pp  where 1p  and 2p  are 

primes. Note that the special case when 21 pp =  is a special case of Theorem 

3.1 when .2=q  

Theorem 3.2. Let 21ppn =  for some primes 1p  and .2p  Circulant 

digraph ( )21, aaGG n=  is Hamiltonian if and only if ( ) 1,gcd =ian  for 

either 1=i  or .2=i  Furthermore, if such ia  exists, then G has a Hamilton 

cycle formed by .ia  

Proof. If ,21 pp =  then by Theorem 3.1, G is Hamiltonian if and only if 

it contains ia  such that ( ) .12,1,gcd ≥≥= ian i  So, the case when 21 pp =  

is covered in Theorem 3.1. Hence, assume that .21 pp ≠  Clearly, if there 

exists ia  such that ( ) ,1,gcd =ian  then ia  is a generator of the additive 

group of integers module n, and ( )in aG  has a Hamilton cycle formed by 

jump .ia  This implies that ( )21, aaGn  has a Hamilton cycle formed by ia  

for either 1=i  or ,2=i  which proves the sufficient condition. Consider 
now the necessary condition. Suppose that in this case, G is Hamiltonian and 
there is no ia  such that ( ) .1,gcd =ian  If ( ) 2,gcd 1 ≥iap  and ( )iap ,gcd 2  

,2≥  then 21ppai ≥  - a contradiction. Then, for some positive integers 1k  
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and ,2k  there must exist ( )2211 ,21 pkpkG pp  that has a Hamilton cycle 

formed by both jumps 11pk  and .22 pk  By Theorem 2.2, ( )2211 ,21 pkpkG pp  

has a Hamilton cycle formed by both jumps if and only if 
( ) 2122211121 ,gcd sspkspkspp +=+  and ( )212211 mod sspkpk +≡  for 

some positive integers 1s  and .2s  We know that ( ) 1,gcd 21 =pk  and 

( ) ,1,gcd 12 =pk  because otherwise ( ) 1,,gcd 221121 >pkpkpp  - a 

contradiction. Also, ( ) 2122211121 ,gcd sspkspkspp +=+  implies either 

121 pss =+  or 221 pss =+  or .2121 ppss =+  On one hand, if for either 

1=i  or ,2=i  ,21 sspi +=  then ( )21mod0 sspk ii +≡  and >−− ii pk 33  

( ),mod0 21 ss +  which imply ( )212211 mod sspkpk +≠  - a contradiction. 

On the other hand, by definition of ia  in G, ,2111 pppk <  2122 pppk <  and 

2211 pkpk ≠  imply that if ,2121 ppss =+  then ( )212211 mod sspkpk +≠  

- a contradiction, which proves that G is Hamiltonian only if ( ) 1,gcd =ian  

for either 1=i  or .2=i  ~ 

Again, as was the case with qp
G  a Hamilton cycle in ( )21,21 aaGG pp=  

does not have to be formed by a single jump, e.g., it is easy to check that 
( )3,110G  contains a Hamilton cycle formed by both jumps with a jump 

sequence ( ).3,1,3,1,3,1,3,1,3,1  Furthermore, for ,3≥k  there are the 

cases that any Hamilton cycle in ( )kpp aaaG ...,,, 2121  must be formed by 

multiple jumps. For example, it is easy to verify that ( )5,4,252⋅G  does not 

have a Hamilton cycle formed by a single jump, and yet it has a Hamilton 
cycle formed by the following jump sequence: ( ).2,5,4,2,2,4,5,2,2,2  

Similarly, ( )6,5,353⋅G  does not have a Hamilton cycle formed by a single 

jump but has the following Hamilton cycle formed by a jump sequence: 
( ).5,3,5,5.3,5,3,3,5,3,6,3,5,3,3  

4. Decomposition of Circulant Digraph qp
G  into Hamilton Cycles 

For any connected circulant digraph with two jumps, the following is 
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known: 

Theorem 4.1 [4]. Connected circulant digraph ( )21, aaGn  has two arc-

disjoint Hamilton cycles if and only if any of the following holds: 

(1) ( ) ( ) ,1,gcd,gcd 21 == anan  

(2) ( ) ( ) 2112212211 ,gcd,gcd ssasasnasasn +=⋅+⋅=⋅+⋅  and ≡1a  

( )212 mod ssa +  for some positive integers 1s  and .2s  

Furthermore, if (2) is satisfied, then these Hamilton cycles are formed by 
both jumps each. 

In this section, we simplify the necessary and sufficient conditions of 
Theorem 4.1 for circulant digraphs of order equal power of prime. In 
addition, we will show that for the circulant digraph of order equal 
semiprime, such a simplification is not possible. 

Theorem 4.2. Let qpn =  for some prime p and positive integer q. 

Circulant digraph ( )21, aaGG n=  can be decomposed into Hamilton cycles 

if and only if ( ) ( ) .1,gcd,gcd 21 == anan  Furthermore, if G can be 

decomposed into Hamilton cycles, then every Hamilton cycle in 
decomposition can be formed by a single jump ,ia  where .12 ≥≥ i  

Proof. If ( )21, aaGG qp
=  can be decomposed into Hamilton cycles, 

then either ( ) 1,gcd 1 =apq  or ( ) ,1,gcd 2 =apq  otherwise ( )21,,gcd aapq  

1>  implying by Theorem 2.1 a disconnected G - a contradiction. Without 

loss of generality, assume ( ) .1,gcd 1 =apq  If ( ) 1,gcd 1 =apq  and 

( ) ,1,gcd 2 >apq  then ( )xpssaa =+≡ 2121 mod  cannot be satisfied for 

any positive integers ,1s  ,2s  x and by Theorem 4.1, G cannot be decomposed 

into Hamilton cycles, which proves the necessary conditions. On the other 

hand, if ( ) 1,gcd 1 =apq  and ( ) ,1,gcd 2 =apq  then by Theorem 2.1, both 

Hamilton cycles can be formed by single jumps, which proves the sufficient 
conditions. ~ 
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Even though ( ) ( ) 1,gcd,gcd 21 == anan  must be satisfied based on 

Theorem 4.2 for decomposition of ( ),, 21 aaGG qp
=  it does not mean that 

both Hamilton cycles must be formed by single jumps. For example, for 
( ),13,433

G  we have ( ) ( ) ,113,27gcd4,27gcd ==  and we also have (2) 

satisfied in Theorem 4.1 for 11 =s  and .22 =s  So, by Theorem 4.1, 

( )13,427G  can easily be decomposed into Hamilton cycles formed by both 

jumps. 

Based on Theorem 4.2, we conjecture the following: 

Conjecture 4.3. Let qpn =  for some prime p and positive integer q. 

Circulant digraph ( )kn aaaGG ...,,, 21=  can be decomposed into Hamilton 

cycles if and only if ( ) 1,gcd =ian  for every .1, ≥≥ ikai  Furthermore, if 

G can be decomposed into Hamilton cycles, then every Hamilton cycle can 
be formed by a single jump ,ia  where .1≥≥ ik  

There is no similar simplification for .21ppG  Consider ( )5,253⋅G  that 

does not satisfy ( ) .1,gcd 2 =an  So, 

( ) ( ) 32152,15gcd5122,15gcd =⋅+⋅=⋅+⋅  

and ( ),12mod52 +≡  implying by Theorem 4.1 a decomposition of 

( )5,253⋅G  into Hamilton cycles. Another counterexample is ( )5,3,110G  

that does not satisfy ( ) ( )( )55,10gcd.,e.i1,gcd 3 ==an  and yet it can be 

decomposed into three Hamilton cycles with the following jump sequences: 
( ),5,1,5,1,5,1,5,1,5,1  ( )5,1,5,1,5,1,5,1,5,1  and ( ).3,3,3,3,3,3,3,3,3,3  

5. Decomposition of Circulant Digraph qp
G  into Cycles 

of Equal Lengths 

Decomposition of circulant digraphs into cycles of equal lengths 
generalizes the Hamiltonian cycle decomposition in these graphs but in 
general, it is more difficult problem. For example, for ( ),, 21 aaGn  we know 
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the necessary and sufficient conditions for decomposition into Hamilton 
cycles, recall Theorem 4.1, but only sufficient conditions have been 
determined for decomposition of ( )21, aaGn  into cycles of equal lengths [5]. 

In this section, we allow circulant digraphs to be disconnected as opposed to 
the previous two sections. The following lemma derived from Theorem 2.1 
will be useful in the proof of decompositions of qp

G  into directed cycles of 

equal lengths. 

Lemma 5.1. Circulant ( )kn aaaG ...,,, 21  consists of r connected 

components if and only if ( ) ....,,,,gcd 21 raaan k =  

Proof. If ,1=r  then by Theorem 2.1, ( )kn aaaGG ...,,, 21=  consists 

of a single connected component if and only if ( ) raaan k =...,,,,gcd 21  

,1=  and we are done. Otherwise, G is a disconnected circulant. Let in this 

case, iG  be an ith connected component in G. Let q be the smallest number 

such that a connected component iG  contains vertices 1 and q+1  of G. By 

isomorphism 1+→ ii  of G, each iG  is a connected circulant of form 

( )....,,, 21 qaqaqaGG k
i

qn
i =  So, .rq =  Therefore, by Theorem 2.1, 

,1...,,,,gcd 21 =⎟
⎠
⎞

⎜
⎝
⎛

r
a

r
a

r
a

r
n k  

which means that 

 ( )....,,,,gcd...,,,,gcd 21
21

k
k aaanrr

a
r

a
r
a

r
nr =⎟

⎠
⎞

⎜
⎝
⎛=  ~ 

As in previous section, let us consider the circulant digraph of order 
equal power of prime. 

Theorem 5.2. Let qpn =  for some prime p and positive integer q. 

Circulant digraph ( )21, aaGG n=  can be decomposed into directed cycles 

of equal lengths if and only if ( ) ( ).,gcd,gcd 21 anan =  
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Proof. Consider first a decomposition of G into the cycles formed by 
single jumps. By Lemma 5.1, the size of a cycle formed by a single jump ia  

in G is ( ) .,gcd ian
n  Therefore, in this case, G can be decomposed into the 

cycles of equal lengths and each formed by a single jump if and only if 
( ) ( ).,gcd,gcd 21 anan =  

Consider now a case when any decomposition of G into the cycles of 
equal lengths must contain a cycle formed by both jumps, i.e., a cycle with 1r  

arcs induced by 1a  and with 2r  arcs induced by ,2a  for some positive 

integers 1r  and .2r  Let ( ) ,1,,gcd 21 =aan  i.e., G is connected. Then, for 

some positive integer ,qt <  either ( ) 1,gcd 1 =an  and ( ) tpan =2,gcd  or 

( ) tpan =1,gcd  and ( ) .1,gcd 2 =an  Without loss of generality, assume 

( ) 1,gcd 1 =an  and ( ) ,,gcd 2
tpan =  implying rpa =2  for some positive 

integer .1−< qpr  Since there are qp2  arcs in G, either 121
qprr =+  or 

1221
qprr =+  for some nonnegative .1 qq <  So, for such a cycle, one of 

the following relations must be satisfied: 

( ) ( ),mod02111 1 qq parpar ≡−+  (1) 

( ) ( ).mod02 2111 1 qq parpar ≡−+  (2) 

First, suppose (1) is satisfied. Then 

( ) ,2111 1 qq kparpar =−+  

for some positive integer k. By substituting 21 aa −  with ,3a  we obtain 

qq kpapar =+ 231 1  

,233 13 qqq kpapapr =+⇒  

where 331
qprr =  for some positive integers ,3a  3q  and 3r  satisfying 

( ) ( ) .1,gcd,gcd 33 == rnan  
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Since ,11 rpp qq >>  we obtain the following: 

331 233
qqqq kpapar −− =+  

31131 233
qqqqqq pkpapar −−− =+⇒  

3131 1233
qqqq pkapar −− =+⇒  

( ) ,312133
qqpakar −−=⇒  

for some positive integer 1k  - a contradiction, because ( ) .1,gcd 33 =par  On 

the other hand, based on the above substitutions, we can evaluate (2) as 
follows: 

qqq kpapapr =+ 233 13 2  

331 233 2 qqqq kpapar −− =+⇒  

31131 233 2 qqqqqq pkpapar −−− =+⇒  

3131 1233 2 qqqq pkapar −− =+⇒  

( ) ,2 312133
qqpakar −−=⇒  

which again results in a contradiction because ( ) .1,gcd 33 =par  This proves 

Theorem 5.2. ~ 

Note that the result for ( )21, aaGG qp
=  cannot be extended to 

( )kp
aaaG q ...,,, 21  for 3≥k  (as opposed to extension to Hamilton 

decomposition by Conjecture 4.3 in previous section). For example, 
( )3,2,18G  does not satisfy ( ) ( )( )22,8gcd.,e.i1,gcd 2 ==an  and yet it 

can be decomposed into squares of the following two jump sequence forms: 
( )3,1,3,1  and ( ).2,2,2,2  

Finally, we note that the necessary and sufficient conditions cannot be 
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carried over from ( )21, aaG qp
 to ( )21,21 aaGG pp=  because of the 

counterexamples ( ) ( )( )5,3,1and5,2.,e.i 1053 GG ⋅  from the previous section 

for the decomposition of G into Hamilton cycles, which was a special case of 
decomposition into cycles of equal lengths. 

6. Decomposition of Circulant Digraph mG2  into Hamilton Paths 

In this section, we consider a circulant digraph ( )km aaaG ...,,, 212  for 

any positive integers k and m. By a Hamilton path in G, we mean in this 
section a simple directed path that visits each vertex in G exactly once and 
that is not a Hamilton cycle in G - a standard definition. 

A row complete Latin square is a Latin square that has every distinct pair 
of treatments in adjacent cells in a row exactly once. Row complete nn ×  
squares are known to exist for all even n [6]. In particular, the following is 
known: 

Theorem 6.1 [7]. If there exists a permutation of integers 1...,,2,1,0 −n  

with the property that the differences ( )nmod  between pairs of adjacent 

integers are all distinct, then there exists a row complete Latin square of 
order n. 

The complete digraph ∗
nK  on n vertices has decomposition into Hamilton 

paths if a row complete Latin square of order n exists [10]. For example, for 

( ),5,4,3,2,166 GK =∗  a jump sequence ( )5,2,3,4,1  can generate the first 

row ( )3,4,2,5,1,0  in a row complete Latin square. Furthermore, for every 

last generated row, the next row can be generated by adding one ( )6mod  to 

each element of the last generated row, until completing 66 ×  Latin square. 
Consequently, we have 

Lemma 6.2. ∗
nK  can be decomposed into Hamilton paths if n is even. 

Proof. It is a direct consequence of conclusions of [6] and [10] above. ~ 
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We first give the necessary conditions for arbitrary circulant diagraph G 
to have Hamilton path decomposition as follows: 

Theorem 6.3. Circulant digraph ( )kn aaaG ...,,, 21  has decomposition 

into Hamilton paths only if .1−= nk  

Proof. Suppose 1−< nk  and ( )kn aaaGG ...,,, 21=  can be decomposed 

into Hamilton paths. Then G has knm ⋅=  arcs and by the Hamilton 
decomposition of G, we have knn ⋅|− 1  - a contradiction. ~ 

Consider now the circulant digraphs of even order. 

Theorem 6.4. Circulant digraph ( )km aaaG ...,,, 212  has decomposition 

into Hamilton paths if and only if .12 −= mk  Furthermore, if ja j =  for 

every ,12 −≤ mj  then each Hamilton path in decomposition of 

( )12212 ...,,, −mm aaaG  can be formed by jump sequence 

( ) ( ) ( ) ( )( ).,,,,...,,,,, 12232452423221 −−−−− mmmmm aaaaaaaaa  

Proof. The necessity follows from Theorem 6.3, so we consider the 
sufficiency. If ,12 −= mk  then ( )12212 ...,,, −= mm aaaGG  represents a 

complete digraph of order 2m, which means that .2
∗
mKG   Hence, by 

Lemma 6.2, G can be decomposed into Hamilton paths. Furthermore, if =k  
12 −m  and ja j =  for every ,12 −≤ mj  then jump sequence 

( ) ( ) ( ) ( )( )12232452423221 ,,,,...,,,,, −−−−− mmmmm aaaaaaaaa  

represents a sequence of pairwise distinct integers exhausting all jumps in G 
that induces a sequence of vertices 

( )( ( ) ( ) )mimimimiimiii +++−+−++−++ ,1,1...,,22,2,12,1,  

( )m2mod  

that are also pairwise distinct, and by Theorem 6.1 represent the ith Hamilton 
path in decomposition of G, where .12 ≥≥ im  ~ 
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Clearly, qp
G  and 21ppG  for 21 == pp  represent special cases of .2mG  

Hence, we can state the following two results: 

Corollary 6.5. Circulant digraph ( )kaaaG q ...,,, 212
 with positive 

integer q has decomposition into Hamilton paths if and only if .12 −= qk  

Corollary 6.6. Circulant digraph ( )kp aaaG ...,,, 212 2  with some prime 

2p  has decomposition into Hamilton paths if and only if .12 2 −= pk  

Finally, we note that the generalization of Hamilton path decomposition 
to all circulant digraphs is directly related to the Hamilton path 
decomposition of directed complete graphs, which is an open hard problem 
since long time [9]. Hence, the generalization of Hamilton path 
decomposition to ( )kp

aaaG q ...,,, 21  and ( )kpp aaaG ...,,, 2121  for p, ,1p  

2p  odd, even though they represent the small subset of circulant digraphs, 

might turn out to be a hard problem as well. 
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