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Abstract 

We discuss the derivation of the fundamental solutions to two types      
of 2D boundary value problems of anisotropic materials. Once the 
fundamental solutions have been obtained, we derive the boundary 
integral equations associated with the boundary value problems.      
Then we implement the boundary element method by discretizing the 
boundary of the domain. Some examples of boundary value problems 
are solved using the boundary element method to see the validity of 
the mathematical analysis in deriving the fundamental solutions. 

1. Introduction 

In a discussion of boundary integral equation method or sometimes 
called as boundary element method for finding solutions to boundary      
value problems governed by partial differential equations, the fundamental 
solutions to that problems play an important role. The fundamental solutions 
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are always involved as the integrand function in the integral equations 
derived from the governing differential equations. Therefore, availability of 
the fundamental solution is very important for the implementation of the 
boundary integral equation method. 

Anisotropic materials are materials having specific characteristics of 
which their values are varying with geometrical directions in the materials. 
Wood, for example, may have elastic characteristics that differ between in 
horizontal and vertical directions due to its grain. That is why wood can be 
treated as an anisotropic material. Isotropic materials, on the other hand, have 
properties of which their values are equal in all directions. Most of metals 
can be treated as isotropic materials. 

In general, fundamental solutions for isotropic materials are now 
available widely for most of the prototype governing equations such as 
Laplace, Helmholtz, diffusion-convection equations and others. However, 
this is not true for anisotropic materials. Recently, some works have        
been done on deriving the fundamental solutions for anisotropic materials. 
Manolis et al. [6] derived time-harmonic fundamental solutions for the 
general case of anisotropic, inhomogeneous continua under in-plane and  
anti-plane conditions using the Radon transform. Yaslan [8] studied the 
fundamental solution of the time-dependent differential equations of 
anisotropic elasticity in 3D quasicrystals using Fourier transform. Iovane et 
al. [5] obtained an explicit representation of the elastodynamic Green’s 
function for the antiplane problem of concentrated point force moving with 
constant velocity and oscillating with constant frequency in unbounded 
homogeneous anisotropic elastic medium using Fourier integral transform 
techniques. Daros [4] derived a fundamental solution for SH waves in a class 
of inhomogeneous anisotropic media as well as the fundamental solution for 
inhomogeneous media with linear velocity variation by employing what they 
as “transmutation” formula. Marczak and Denda [7] studied the fundamental 
solution for three-dimensional heat transfer problems in the general 
anisotropic media using algebraic manipulation as well as through Fourier 
and Radon transforms. 
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In this paper, a technique for deriving fundamental solutions for 
anisotropic media by using the associated ones for isotropic media is 
developed. The technique uses a transformation of the reference geometrical 
coordinate system to a new one such that the governing equation of                
the anisotropic media is transformed to a relevant governing equation for 
isotropic media. 

2. The Boundary Value Problems 

Referred to the Cartesian frame ,21xOx  we will consider the boundary 

value problems governed by the following two types of governing equations 
for anisotropic materials: 
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where ( ) ,,, 21 ijxx λ=x  k and iv  are constant coefficients, .2,1, =ji  The 

coefficient [ ]ijλ  is a real definite positive symmetrical matrix. Also, in (1) 

and (2), the summation convention for repeated indices apply, so that (1) and 
(2) can be written explicitly as 
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Equations (1) and (2) are relevant for anisotropic media, but also cover 
the case of isotropic media as a special case that occurs when 2211 λ=λ       

and .012 =λ  For the case of isotropic media, the corresponding governing 

equations are, respectively, 
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where 11λ=κ k  and .11λ=D  

Solutions φ  to (1) and (2) are sought which are valid in a region Ω           

in 2R  with boundary Γ  which consists of a finite number of piecewise 
smooth curves. On ,1Γ  the dependent variable ( )xφ  is specified, and =P  

( ) jiij nx∂φ∂λ  is specified on ,2Γ  where 21 ΓΓ=Γ U  and ( )21, nn=n  

denotes the outward pointing normal to .Γ  

3. The Boundary Integral Equation 

Multiplying both sides of (1) and (2) by function ∗φ  and then integrating 

it over the domain ,Ω  respectively, yields 
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Using Gauss divergence theorem in (5) and (6), we obtain 
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Use of Gauss divergence theorem once again for the integrand function 

ji
ij xx ∂

φ∂
∂
φ∂λ

∗
 in the domain integral in (7) and (8), respectively, yields 
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where 
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If the function ∗φ  for (1) and (2) is, respectively, taken such that 

( ),
2

ξx −δ=φ+
∂∂
φ∂λ ∗
∗

kxx ji
ij  (11) 

 ( ),
2

ξx −δ−=
∂
φ∂+

∂∂
φ∂λ

∗∗

i
i

ji
ij xvxx  (12) 

where δ  is the Dirac delta function and ( ),, 21 ξξ=ξ  then (9) and (10) may 

be written, respectively, as 

( ) ( ) [ ( ) ( ) ( ) ( )]∫ ∫Ω Γ
∗∗ φ−φ=−δφ ,,, xξxxxξxxξxx dPPd  (13) 
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( ) ( ) { ( ) ( )∫ ∫Ω Γ
∗φ=−δφ ξxxxξxx ,Pd  

[ ( ) ( ) ( )] ( )} .,, xxξxξxx dPPv φ+φ− ∗∗  (14) 

As one of the Dirac delta function’s properties, the following equation holds: 

 ( ) ( ) ( ) ( )∫Ω φη=−δφ ξξxξxx d  (15) 

with 2
1=η  if ξ  lies on the boundary 1, =ηΓ  if ξ  is inside of the domain 

0, =ηΩ  if ξ  is outside of the domain .Ω  By substituting (15) into (13) and 

(14), we obtain the boundary integral equations 
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4. Fundamental Solutions for Anisotropic Case 

The fundamental solutions ( )0, xxΦ  for the isotropic cases (3) and (4) 

are defined by 
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These fundamental solutions ( )ξx,Φ  are, respectively, 
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where vector ( ),, 21 vv=v  vector ,ξxR −=  v is the magnitude of the 

vector v that is ,2
2

2
1 vvv +=  R is the magnitude of the vector R, ,1−=ı  

( )2
0H  is the second kind Hankel function, and 0K  is the modified Bessel 

function. 

Similar to the fundamental solutions Φ  in (18) and (19) for the 
governing equations of isotropic cases (3) and (4), respectively, we define the 

fundamental solutions ∗φ  for the governing equations of anisotropic cases 

(1) and (2), respectively, as follows: 
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Also, from (24) and (28), it can be obtained 
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( ),1
2
2

2

2
1

2
ξx −δ=φ+

∂
φ∂+

∂
φ∂ ∗

∗∗

CC
k

xx &&
 (31) 

( ) ( ),
2

2
1

212
2

2

2
1

2
ξx −δ−=

∂
φ∂τ+

∂
φ∂τ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
φ∂+

∂
φ∂ ∗∗∗∗

xvxvv
xx

C
&

&&
&

&
&&

 (32) 

where 

( )[ ] .2221211 ττλ+τ+τλ+λ=C  

Now, the Dirac delta function ( )ξx −δ  on the right hand side of (31)  
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that is, 
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Equations (33) and (34) are relevant for isotropic case in the new coordinate 
system .21xxO &&  

Finally, by comparing (33) and (18), we obtain fundamental solution ∗φ  

for (1) from the fundamental solution Φ  in (20): 
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Similarly, with a comparison between (34) and (19), the fundamental 

solution ∗φ  for (2) can be obtained from fundamental solution Φ  in (21): 
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where ,CK τ= &&  ,Ck=ω  ,ξxR &&& −=  ( ),, 21 xx &&& =x  ( ),, ba &&& =ξ  =v&  

( ),, 21 vv &&  ,baa τ+= &&  ,bb τ= &&&  ( ),, ba=ξ  R&  is the magnitude of vector ,R&  

and v&  is the length of vector .v&  

The derived fundamental solutions for anisotropic cases (35) and (36) 
have been used extensively by Azis and Clements in [2, 3], and Azis et al. in 
[1]. 

5. Numerical Examples 

In this section, some particular boundary value problems governed by (1) 
and (2) are solved numerically by employing the boundary integral equations 
(16) and (17). Two problems with analytical solutions are considered to show 
the validity of the analysis used to derive the fundamental solutions (35)       
and (36). Standard boundary element procedures are employed to obtain the 
numerical results. 

5.1. Problem 1 

Consider the boundary value problem governed by (1) for three cases 
0,0 >< kk  and 0=k  and with coefficients 
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and the domain Ω  is chosen to be a unit square with corner points 
( ),0,0=A  ( ),0,1=B  ( )1,1=C  and ( ).1,0=D  The boundary conditions 

are that P is given on AB, BC, CD and φ  is given on AD. 
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Tables 1, 2 and 3 show a comparison between the boundary element 
method (BEM) solution and the analytical solution. The results show that the 
BEM solution converges to the analytical solution as the number of elements 
used increases from 80, 160 to 320. The results are as expected. 

Table 1. BEM and analytical solutions of Problem 1 for the case 5.0=k  

( )21, xx  φ  1x∂φ∂  2x∂φ∂  φ  1x∂φ∂  2x∂φ∂  

 BEM 80 elements Analytical 

(.1,.5) .4785 -.0001 .8795 .4794 .0000 .8776 

(.3,.5) .4787 .0013 .8769 .4794 .0000 .8776 

(.5,.5) .4790 .0017 .8760 .4794 .0000 .8776 

(.7,.5) .4793 .0016 .8754 .4794 .0000 .8776 

(.9,.5) .4796 .0006 .8766 .4794 .0000 .8776 

 BEM 160 elements Analytical 

(.1,.5) .4789 .0002 .8777 .4794 .0000 .8776 

(.3,.5) .4790 .0004 .8774 .4794 .0000 .8776 

(.5,.5) .4791 .0005 .8771 .4794 .0000 .8776 

(.7,.5) .4792 .0005 .8769 .4794 .0000 .8776 

(.9,.5) .4793 .0005 .8767 .4794 .0000 .8776 

 BEM 320 elements Analytical 

(.1,.5) .4792 .0000 .8777 .4794 .0000 .8776 

(.3,.5) .4792 .0001 .8776 .4794 .0000 .8776 

(.5,.5) .4792 .0002 .8774 .4794 .0000 .8776 

(.7,.5) .4793 .0002 .8773 .4794 .0000 .8776 

(.9,.5) .4793 .0002 .8773 .4794 .0000 .8776 
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Table 2. BEM and analytical solutions of Problem 1 for the case 5.0−=k  

( )21, xx  φ  1x∂φ∂  2x∂φ∂  φ  1x∂φ∂  2x∂φ∂  

 BEM 80 elements Analytical 

(.1,.5) 1.6468 -.0032 1.6496 1.6487 .0000 1.6487 

(.3,.5) 1.6465 -.0009 1.6454 1.6487 .0000 1.6487 

(.5,.5) 1.6465 .0004 1.6439 1.6487 .0000 1.6487 

(.7,.5) 1.6466 .0011 1.6436 1.6487 .0000 1.6487 

(.9,.5) 1.6469 -.0002 1.6471 1.6487 .0000 1.6487 

 BEM 160 elements Analytical 

(.1,.5) 1.6478 -.0007 1.6477 1.6487 .0000 1.6487 

(.3,.5) 1.6476 -.0005 1.6473 1.6487 .0000 1.6487 

(.5,.5) 1.6476 -.0001 1.6468 1.6487 .0000 1.6487 

(.7,.5) 1.6476 .0003 1.6466 1.6487 .0000 1.6487 

(.9,.5) 1.6477 .0004 1.6467 1.6487 .0000 1.6487 

 BEM 320 elements Analytical 

(.1,.5) 1.6482 -.0003 1.6482 1.6487 .0000 1.6487 

(.3,.5) 1.6482 -.0002 1.6481 1.6487 .0000 1.6487 

(.5,.5) 1.6481 -.0001 1.6479 1.6487 .0000 1.6487 

(.7,.5) 1.6481 .0000 1.6478 1.6487 .0000 1.6487 

(.9,.5) 1.6482 .0001 1.6478 1.6487 .0000 1.6487 
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Table 3. BEM and analytical solutions of Problem 1 for the case 0=k  

( )21, xx  φ  1x∂φ∂  2x∂φ∂  φ  1x∂φ∂  2x∂φ∂  

 BEM 80 elements Analytical 

(.1,.5) .3470 .9973 .5011 .3500 1.0000 .5000 

(.3,.5) .5465 .9975 .5003 .5500 1.0000 .5000 

(.5,.5) .7460 .9976 .5004 .7500 1.0000 .5000 

(.7,.5) .9456 .9978 .5007 .9500 1.0000 .5000 

(.9,.5) 1.1452 .9974 .5023 1.1500 1.0000 .5000 

 BEM 160 elements Analytical 

(.1,.5) .3485 .9989 .5001 .3500 1.0000 .5000 

(.3,.5) .5483 .9988 .5002 .5500 1.0000 .5000 

(.5,.5) .7480 .9988 .5014 .7500 1.0000 .5000 

(.7,.5) .9478 .9989 .5005 .9500 1.0000 .5000 

(.9,.5) 1.1476 .9989 .5007 1.1500 1.0000 .5000 

 BEM 320 elements Analytical 

(.1,.5) .3493 .9995 .5000 .3500 1.0000 .5000 

(.3,.5) .5491 .9994 .5001 .5500 1.0000 .5000 

(.5,.5) .7490 .9994 .5002 .7500 1.0000 .5000 

(.7,.5) .9489 .9994 .5003 .9500 1.0000 .5000 

(.9,.5) 1.1488 .9994 .5004 1.1500 1.0000 .5000 

5.2. Problem 2 

The analytical solutions to (2) are taken to be 

( ),exp 2211 xx α+α=φ  

where 1α  and 2α  satisfy 

 ( ) ( ) .02 11
2
11122112

2
222 =α−αλ+α−αλ+αλ vv  (37) 

The domain Ω  is also chosen to be a unit square with corner points =A  
( ),0,0  ( ),0,1=B  ( )1,1=C  and ( ),1,0=D  and the boundary conditions 

are again that P is given on AB, BC, CD and φ  is given on AD. The 

coefficients ijλ  and iv  are 
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,2,1,1 221211 =λ=λ=λ  

.1,1 21 == vv  

Also, we take 11 =α  and 2α  is evaluated using (37). Table 4 shows the 

results. Again, the results indicate a convergence of the BEM solution to the 
analytical solution as the number of elements used increases from 80, 160 to 
320. 

Table 4. BEM and analytical solutions of Problem 2 
( )21, xx  φ  1x∂φ∂  2x∂φ∂  φ  1x∂φ∂  2x∂φ∂  

 BEM 80 elements Analytical 

(.1,.5) 0.8605 0.8580 -0.4298 0.8607 0.8607 -0.4304 

(.3,.5) 1.0503 1.0463 -0.5230 1.0513 1.0513 -0.5256 

(.5,.5) 1.2820 1.2788 -0.6385 1.2840 1.2840 -0.6420 

(.7,.5) 1.5652 1.5622 -0.7801 1.5683 1.5683 -0.7842 

(.9,.5) 1.9112 1.9095 -0.9524 1.9155 1.9155 -0.9578 

 BEM 160 elements Analytical 

(.1,.5) 0.8606 0.8596 -0.4301 0.8607 0.8607 -0.4304 

(.3,.5) 1.0508 1.0492 -0.5245 1.0513 1.0513 -0.5256 

(.5,.5) 1.2832 1.2818 -0.6405 1.2840 1.2840 -0.6420 

(.7,.5) 1.5670 1.5658 -0.7824 1.5683 1.5683 -0.7842 

(.9,.5) 1.9137 1.9129 -0.9554 1.9155 1.9155 -0.9578 

 BEM 320 elements Analytical 

(.1,.5) 0.8607 0.8602 -0.4302 0.8607 0.8607 -0.4304 

(.3,.5) 1.0511 1.0503 -0.5251 1.0513 1.0513 -0.5256 

(.5,.5) 1.2836 1.2830 -0.6413 1.2840 1.2840 -0.6420 

(.7,.5) 1.5677 1.5672 -0.7834 1.5683 1.5683 -0.7842 

(.9,.5) 1.9147 1.9144 -0.9567 1.9155 1.9155 -0.9578 
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