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Abstract 

This article is devoted to the study of inequality form of segregation. 
First, we establish the isolate forms of the Brunn-Minkowski 
inequality for the dual p-quermassintegrals of the dual Firey linear 
combination. Then we give the isolate forms of the new dual          

pL -Brunn-Minkowski inequality for dual quermassintegrals of the 

pL -radial Minkowski linear combination. Finally, we improve the 

Minkowski inequality for the dual mixed p-quermassintegrals and the 
Minkowski inequality of pL -dual mixed quermassintegral. 
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1. Introduction 

Let nK  denote the set of convex bodies (compact, convex subsets with 

non-empty interiors) in the n-dimensional Euclidean space ,nR  n
oK  denote 

the set of convex bodies containing the origin in their interiors, nS  denote 

the set of star bodies in ,nR  and n
oS  denote the set of star bodies about the 

origin in .nR  

The kernel of Brunn-Minkowski theory has been extended in several 
important ways (see [6-9]). In [1, 2], Lutwak established the pL -Brunn-

Minkowski theory: The core of Brunn-Minkowski theory is various Brunn-
Minkowski inequalities and Minkowski inequalities (see [3-5]). Recently,      
Li and He [12] proved the extension of Brunn-Minkowski inequality for the 
dual p-quermassintegrals of the dual Firey linear combination as follows: 

Theorem 1.1. If ,1≥p  ,, n
oLK S∈  ,10 −≤≤ ni  then 

 ( ) ( ) ( ) in
p

iin
p

iin
p

pi LWKWLKW −−− +≤+
~~~  (1.1) 

with equality if and only if K and L are dilates. 

Wei and Wang [14] gave the new dual pL -Brunn-Minkowski inequality 

for dual quermassintegrals of the pL -radial Minkowski linear combination. 

Theorem 1.2. If ,, nLK S∈  ,0>p  ,pni −≤  then 

 ( ) ( ) ( ) in
p

iin
p

iin
p

pi LWKWLKW −−− +≤+
~~~~  (1.2) 

with equality if and only if K and L are dilates. 

Li and He [12] defined the dual mixed p-quermassintegrals. Then       
they proved the extension of Minkowski inequality for the dual mixed         
p-quermassintegrals. 

Theorem 1.3. If ,1≥p  ,, n
oLK S∈  ,10 −≤≤ ni  then 
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 ( ) ( ) ( )p
i

pin
i

in
ip LWKWLKW ~~,~

,
−−− ≤  (1.3) 

with equality if and only if K and L are dilates. 

Hu [11] gave a new definition of pL -dual mixed quermassintegral, and 

established the Minkowski inequality of pL -dual mixed quermassintegral. 

Theorem 1.4. If ,0>p  ,, n
oLK S∈  ,ni ≠  ,pni −<  then 

 ( ) ( ) ( )p
i

pin
i

in
ip LWKWLKW ~~,~

,
−−− ≤  (1.4) 

with equality if and only if K and L are dilates. For nipn <<−  or ,ni >  

(1.4) gets reversed. For ,pni −=  there is an equality in (1.4). 

2. Preliminaries 

If K is a compact star-shaped (about the origin) in ,nR  then its radial 

function, ( ) { } [ ),,00\:, ∞+→⋅ρ=ρ n
K K R  is defined by (see [10, 13]) 

( ) { } { }.0\,:0max, nxxxK R∈∈λ≥λ=ρ K  

If Kρ  is positive and continuous, then K will be called a star body (about 

the origin). Two star bodies K and L are said to be dilates (of one another) if 

( ) ( )uu LK ρρ  is independent of .1−∈ nu S  

For ,1≥p  n
oLK S∈,  and 0, ≥βα  (not both zero), the dual Firey 

linear combination n
op LK S∈β+α  is defined by (see [12]) 

 ( ) ( ) ( ) .,,, ppp
p LKLK ⋅βρ+⋅αρ=⋅β+αρ  (2.5) 

Note that ”“  rather than ”“ p  is written for dual Firey scalar 

multiplication, which should create no confusion. Obviously, dual Firey and 

Minkowski scalar multiplications are related by .
1

KK pα=α  
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For ,, nLK S∈  0≠p  and 0, ≥βα  (not both 0), the pL -radial 

Minkowski linear combination LK p ⋅β+⋅α ~  is a star body defined by       

(see [14]) 

 ( ) ( ) ( ) .,,,~ ppp
p uLuKuLK βρ+αρ=⋅β+⋅αρ  (2.6) 

For ,, n
oLK S∈  1≥p  and 0, ≥βα  (not both 0), Lutwak defined that 

the radial sum combination LK p β+α ~  is a star body defined by (see 

[2]) 

 ( ) ( ) ( ) .,,,~ ppp
p LKLK ⋅βρ+⋅αρ=⋅β+αρ  (2.7) 

For n
oK S∈  and any real i, the dual quermassintegrals, ( )KWi

~  of K are 

defined by (see [10, 13]) 

 ( ) ( ) ( )∫ −
−ρ= 1 .,1~

nS
in

i udSuKnKW  (2.8) 

For ,, nLK S∈  ,1≥p  ,10 −≤≤ ni  the dual mixed p-quermassintegrals 

( )LKW ip ,~
,  has the following integral representation (see [11, 12]): 

 ( ) ( ) ( ) ( )∫ − ρρ= −−
1 .,,1,~

, nS
pipn

ip udSuLuKnLKW  (2.9) 

Obviously, 

 ( ) ( ).~,~
, KWKKW iip =  (2.10) 

3. Main Results 

In this paper, we continuously study the pL -Brunn-Minkowski 

inequality. Here, we first give an isolate form of the Brunn-Minkowski 
inequality (1.1). 

Lemma 3.1. If ,1≥p  ,, n
oLK S∈  10 −≤≤ ni  and ,0, >μλ  then 
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 ( ) ( ) ( ) in
p

iin
p

iin
p

pi LWKWLKW −−− μ+λ≤μ+λ
~~~  (3.11) 

with equality if and only if K and L are dilates. 

Proof. According to (2.5), (2.9), for ,n
oQ S∈∀  we have 

( ) ( ) ( ) ( )∫ − μ+λρρ=μ+λ −−
1 ,,1,~

, nS
p

p
ipn

pip udSuLKuQnLKQW  

( ) ( ).,~,~
,, LQWKQW ipip μ+λ=  

Using (1.3), we get 

( ) ( ) ( ( ) ( ) ).~~~,~
, in

p
iin

p
iin

pin
ipip LWKWQWLKQW −−−

−−
μ+λ≤μ+λ  

Let ,LKQ p μ+λ=  together with (2.10). Then inequality (3.11) is 

proved. 

Theorem 3.1. If ,1≥p  ,, n
oLK S∈  10 −≤≤ ni  and [ ],1,0∈α  then 

( ) ( ( ) ) (( ) ) in
p

piin
p

piin
p

pi LKWLKWLKW −−− α+α−+α−+λ≤+ 1~1~~  

( ) ( ) in
p

iin
p

i LWKW −− +≤
~~  (3.12) 

with equality if and only if K and L are dilates. 

Proof. Let 

 ( ) ( ) LKNLKM pp α+α−=α−+α= 1,1  (3.13) 

for [ ].1,0∈α  Since ,, n
oLK S∈  ., n

oNM S∈  Using (2.9), (2.5) and (3.13), 

for any ,n
oQ S∈  we have 

( )LKQW pip +,~
,  

( ) ( ) ( )∫ − +ρρ= −−
1 ,,1

nS
p

p
ipn udSuLKuQn  
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( ) ( ( ) ( ) ) ( )∫ − ρ+ρρ= −−
1 ,,,1

nS
ppipn udSuLuKuQn  

( )∫ −
−−ρ= 1 ,1

nS
ipnuQn  

( ( ) ( ) ( ) ( ) ( ) ( ) ) ( )udSuLuKuLuK pppp ,,1,1, αρ+ρα−+ρα−+αρ⋅  

( ) ( ( ) ( ) ) ( )∫ − ρ+ρρ= −−
1 ,,,1

nS
ppipn udSuNuMuQn  

( ) ( ) ( )∫ − +ρρ= −−
1 ,,1

nS
p

p
ipn udSuNMuQn  

( ).,~
, NMQW pip +=  (3.14) 

Hence, let LKQ p+=  in (3.14) and using (2.10) and (1.3), we get 

 ( ) ( )NMWLKW pipi +≤+
~~  (3.15) 

with equality if and only if LK p+  and NM p+  are dilates. 

Using (1.1), we also have 

 ( ) ( ) ( ) in
p

iin
p

in
p

pi NWMWNMW −−− +≤+
~~~

1  (3.16) 

with equality if and only if M and N are dilates. 

From inequalities (3.15), (3.16) and (3.13), we obtain the first inequality 
of inequality (3.12) in Theorem 3.1. 

Because of n
oM S∈  and n

oN S∈  are dilates, we know n
op NM S∈+  

and M (or N) are dilates, since n
op LK S∈+  and NM p+  also are dilates, 

thus LK p+  and M (or N) are dilates. Associated with (3.13) and (2.5),       

we see n
oK S∈  and n

oL S∈  are dilates. In turn, if n
oK S∈  and n

oL S∈   

are dilates, then we easily know n
oM S∈  and n

oN S∈  are dilates and 
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n
op LK S∈+  and n

op NM S∈+  also are dilates. Hence, the equality holds 

in first inequality of inequality (3.12) if and only if K and L are dilates. 

Otherwise, using inequalities (3.13) and (3.11), we have 

( ) ( ( ) ) in
p

piin
p

i LKWMW −− α−+α= 1~~  

( ) ( ) ( ) .~1~
in

p
iin

p
i LWKW −− α−+α≤  (3.17) 

Similarly, 

( ) ( ) ( ) ( ) .~~1~
in

p
iin

p
iin

p
i LWKWNW −−− α+α−≤  

Therefore, the second inequality of inequality (3.12) in Theorem 3.1 is 
obtained. 

Lemma 3.2. If ,1≥p  ,, n
oLK S∈  10 −≤≤ ni  and ,0, >μλ  then 

 ( ) ( ) ( ) in
p

iin
p

iin
p

pi LWKWLKW −−− μ+λ≤⋅μ+⋅λ
~~~~  (3.18) 

with equality if and only if K and L are dilates. 

Proof. According to (2.6), (2.8), we have 

( )LKW pi ⋅μ+⋅λ ~~  

( ) ( ) ( )udSuLKuLKn
p

pS
ipn

pn ,~,~1
1 ⋅μ+⋅λρ⋅μ+⋅λρ= ∫ −

−−  

( ) ( ( ) ( ) ) ( )∫ − μρ+λρ⋅μ+⋅λρ= −−
1 ,,,~1

nS
ppipn

p udSuLuKuLKn  

( ) ( ).,~~,~~
,, LLKWKLKW pippip ⋅μ+⋅λμ+⋅μ+⋅λλ=  

Using (1.3), the inequality (3.18) is proved. 

Theorem 3.2. If ,, nLK S∈  ,0>p  ,pni −≤  [ ],1,0∈α  then 
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( ) ( ( ) ) (( ) ) in
p

piin
p

piin
p

pi LKWLKWLKW −−− ⋅α+⋅α−+⋅α−+⋅α≤+ ~1~1~~~~  

( ) ( ) in
p

iin
p

i LWKW −− +≤
~~  (3.19) 

with equality if and only if K and L are dilates. 

Proof. The Minkowski integral inequality, together with (2.6) and (2.8), 
gives 

( ) in
p

pi LKW −+~~  

( ) ( )
in

p

S

in
pn

udSuLKn
−− ⎟

⎠

⎞
⎜
⎝

⎛ +ρ= ∫ −1
,~1  

( ( ) ( ) ) ( )
in

p

S
p

inpp
n

udSuLuKn
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ+ρ= ∫ −1

,,1  

(( ( ) ( ) ( ) ) (( ) ( ) ( ) )) ( )
in

p

S
p

inpppp
n

udSuLuKuLuKn
−−

⎟
⎠

⎞
⎜
⎝

⎛
αρ+ρα−+ρα−+αρ= ∫ −1

,,1,1,1  

( ( ) ( ) ( ) ) ( )
in

p

S
p

inpp
n

udSuLuKn
−−

⎟
⎠

⎞
⎜
⎝

⎛
ρα−+αρ≤ ∫ −1

,1,1  

(( ) ( ) ( ) )) ( )
in

p

S
p

inpp
n

udSuLuKn
−−

⎟
⎠

⎞
⎜
⎝

⎛
αρ+ρα−+ ∫ −1

,,11  

( ( ( ) ) ) ( )
in

p

S
p

inp
pn

udSuLKn
−−

⎟
⎠

⎞
⎜
⎝

⎛
⋅α−+⋅αρ= ∫ −1

,1~1  

( (( ) ) ) ( )
in

p

S
p

inp
pn

udSuLKn
−−

⎟
⎠

⎞
⎜
⎝

⎛
⋅α+⋅α−ρ+ ∫ −1

,~11  

( ( ) ) (( ) ) ,~1~1~~
in

p
piin

p
pi LKWLKW −− ⋅α+⋅α−+⋅α−+⋅α=  

this is just first inequality of inequality (3.19) in Theorem 3.2. 
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Using Lemma 3.2, the second inequality of inequality (3.19) in       
Theorem 3.2 is obtained. 

We establish an isolate form of the Minkowski inequalities (1.3) and 
(1.4). 

Theorem 3.3. If ,1≥p  ,, n
oLK S∈  ,10 −≤≤ ni  then 

( ) ( ) ( ( ) ( ) ) inin
p

iin
p

pi
pin

i
in

ip KWLKWKWLKW −
−−

−−− −+≤
~~~,~

,  

( ) ( )p
i

pin
i LWKW ~~ −−≤  (3.20) 

with equality if and only if K and L are dilates. 

Proof. Let .n
oQ S∈  Then, using (2.5) and (2.9), we get 

( ) ( ) ( ) ( )∫ − +ρρ=+ −−
1 ,,1,~

, nS
p

p
ipn

pip udSuLKuQnLKQW  

( ) ( ( ) ( ) ) ( )∫ − ρ+ρρ= −−
1 ,,,1

nS
ppipn udSuLuKuQn  

( ) ( ).,~,~
,, LQWKQW ipip +=  (3.21) 

Let KQ =  in (3.21) and using (2.10), we get 

 ( ) ( ) ( ).,~~,~
,, LKWKWLKKW ipipip +=+  (3.22) 

Using (1.3), we have 

 ( ) ( ) ( ) .~~,~
, in

p
piin

pin
ipip LKWKWLKKW −−

−−
+≤+  (3.23) 

From inequalities (3.22) and (3.23), we obtain the first inequality of 
inequality (3.20) in Theorem 3.3. 

Using (1.1), the second inequality of inequality (3.20) in Theorem 3.3 is 
obtained. 

Theorem 3.4. If ,1≥p  ,, n
oLK S∈  ,10 −≤≤ ni  then 
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( ) ( ) ( ( ) ( ) ) inin
p

iin
p

pi
pin

i
in

ip KWLKWKWLKW −
−−

−−− −+≤
~~~~,~

,  

( ) ( )p
i

pin
i LWKW ~~ −−≤  (3.24) 

with equality if and only if K and L are dilates. For nipn <<−  or ,ni >  

(3.24) gets reversed. For ,pni −=  there is an equality in (3.24). 

Proof. Using (2.7), (2.9) and (2.10), we get 

( ) ( ) ( ) ( )∫ − +ρρ=+ −−
1 ,~,1~,~

, nS
p

p
ipn

pip udSuLKuKnLKKW  

( ) ( ( ) ( ) ) ( )∫ − ρ+ρρ= −−
1 ,,,1

nS
ppipn udSuLuKuKn  

( ) ( ).,~~
, LKWKW ipi +=  (3.25) 

Using (1.4), we have 

 ( ) ( ) ( ) .~~~~,~
, in

p
piin

pin
ipip LKWKWLKKW −−

−−
+≤+  (3.26) 

From inequalities (3.25) and (3.26), this is just first inequality of 
inequality (3.24) in Theorem 3.4. 

Using (1.2), the second inequality of inequality (3.24) in Theorem 3.4 is 
obtained. 
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