Far East Journal of Mathematical Sciences (FJMS) © 2017 Pushpa Publishing House, Allahabad, India

http://www.pphmj.com http://dx.doi.org/10.17654/MS101102095

Volume 101, Number 10, 2017, Pages 2095-2109

ISSN: 0972-0871

ON q-HYPERGEOMETRIC FUNCTIONS

K. A. Challab¹, M. Darus^{1,*} and F. Ghanim²

¹School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia Bangi 43600, Selangor D. Ehsan Malaysia

²Department of Mathematics College of Sciences University of Sharjah Sharjah, United Arab Emirates

Abstract

In this article, we study some results on meromorphic functions defined by q-hypergeometric functions. In addition, certain sufficient conditions for these meromorphic functions to satisfy a subordination property are also pointed out. In fact, these results extend known results of starlikeness, convexity, and close to convexity.

Received: October 14, 2016; Revised: February 17, 2017; Accepted: March 6, 2017 2010 Mathematics Subject Classification: 30C45.

Keywords and phrases: analytic functions, meromorphic functions, starlike functions, convex functions, Hadamard product, subordination property, q-hypergeometric function.

*Corresponding author

1. Introduction

In the present paper, we initiate the study of functions which are meromorphic in the punctured disk $\mathbf{U}^* = \{z : 0 < |z| < 1\}$ with a Laurent expansion about the origin, see [8].

Let A be the class of analytic functions h(z) with h(0) = 1, which are convex and univalent in the open unit disk $\mathbf{U} = \mathbf{U}^* \bigcup \{0\}$ and for which

$$\Re\{h(z)\} > 0 \quad (z \in \mathbf{U}^*). \tag{1.1}$$

For functions f and g analytic in \mathbf{U} , we say that f is *subordinate to* g and write

$$f \prec g \text{ in } U \text{ or } f(z) \prec g(z) \quad (z \in \mathbf{U})$$
 (1.2)

if there exists an analytic function $\omega(z)$ in **U** such that

$$|\omega(z)| \le |z|, \quad f(z) = g(\omega(z)) \quad (z \in \mathbf{U}). \tag{1.3}$$

Furthermore, if the function g is univalent in \mathbf{U} , then

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0),$$

 $f(\mathbf{U}) \subseteq g(\mathbf{U}) \quad (z \in \mathbf{U}).$ (1.4)

2. Preliminaries

Let Σ denote the class of meromorphic functions f(z) normalized by

$$f(z) = \frac{1}{z} + \sum_{n=1}^{\infty} d_n z^n,$$
 (2.1)

which are analytic in the punctured unit disk \mathbf{U}^* . For $0 \le \beta$, we denote by $S^*(\beta)$ and $K(\beta)$ the subclasses of Σ consisting of all meromorphic functions which are, respectively, starlike of order β and convex of order β in \mathbf{U}^* .

For functions $f_i(z)(j = 1, 2)$ defined by

$$f_j(z) = \frac{1}{z} + \sum_{n=1}^{\infty} d_{n,j} z^n,$$
 (2.2)

we denote the Hadamard product (or convolution) of $f_1(z)$ and $f_2(z)$ by

$$(f_1 * f_2) = \frac{1}{z} + \sum_{n=1}^{\infty} d_{n,1} d_{n,2} z^n.$$
 (2.3)

Cho et al. [3] and Ghanim and Darus [6] studied the following function:

$$q_{\lambda, \mu}(z) = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{\lambda}{n+1+\lambda}\right)^{\mu} z^n \quad (\lambda > 0, \ \mu \ge 0).$$
 (2.4)

Corresponding to the function $q_{\lambda,\mu}(z)$ and using the Hadamard product for $f(z) \in \Sigma$, Ghanim and Darus [7] defined a linear operator $L(\lambda, \mu)$ on Σ by

$$L_{\lambda, \mu} f(z) = (f(z) * q_{\lambda, \mu}(z)) = \frac{1}{z} + \sum_{n=1}^{\infty} \left(\frac{\lambda}{n+1+\lambda} \right)^{\mu} |d_n| z^n.$$
 (2.5)

As for the result of this paper on applications involving generalized hypergeometric functions, we need to utilize the well-known q-hypergeometric function.

For complex parameters $a_1, ..., a_l$ and $b_1, ..., b_m$ $(b_j \neq 0, -1, ...; j = 1, 2, ..., m)$, the *q*-hypergeometric function ${}_{l}\Psi_m(z)$ is defined by

$${}_{l}\Psi_{m}(a_{1},...,a_{l};b_{1},...,b_{m};q,z) := \sum_{n=0}^{\infty} \frac{(a_{1},q)_{n}...(a_{l},q)_{n}}{(q,q)_{n}(b_{1},q)_{n}...(b_{m},q)_{n}}$$

$$\times [(-1)^n q^{\binom{n}{2}}]^{1+m-l} z^n,$$
 (2.6)

with
$$\binom{n}{2} = n(n-1)/2$$
, where $q \neq 0$ when $l > m+1$ $(l, m \in \mathbb{N}_0 = \mathbb{N} \bigcup \{0\}; z \in \mathbf{U})$.

The q-shifted factorial is defined for $a, q \in \mathbb{C}$ as a product of n factors by

$$(a:q)_n = \begin{cases} (1-a)(1-aq)\cdots(1-aq^{n-1}) & (n \in \mathbb{N}) \\ 1 & (n = 0) \end{cases}$$
 (2.7)

and in terms of basic analogue of the gamma function

$$(q^a; q)_n = \frac{\Gamma_q(a+n)(1-q)^n}{\Gamma_q(a)}, \quad n > 0.$$
 (2.8)

It is of interest to note that

$$\lim_{q \to -1} ((q^a; q)_n / (1 - q)^n) = (a)_n = a(a + 1) \cdots (a + n - 1)$$

is the familiar Pochhammer symbol and

$${}_{l}\Psi_{m}(a_{1}, ..., a_{l}; b_{1}, ..., b_{m}; z) \coloneqq \sum_{n=0}^{\infty} \frac{(a_{1})_{n} \cdots (a_{l})_{n}}{(b_{1})_{n} \cdots (b_{m})_{n}} \frac{z^{n}}{n!}.$$
 (2.9)

Now for $z \in \mathbb{U}$, 0 < |q| < 1 and l = m + 1, the basic hypergeometric function defined in (2.9) takes the form

$${}_{l}\Psi_{m}(a_{1}, ..., a_{l}; b_{1}, ..., b_{m}; q, z) := \sum_{n=0}^{\infty} \frac{(a_{1}, q)_{n} \cdots (a_{l}, q)_{n}}{(q, q)_{n} (b_{1}, q)_{n} \cdots (b_{m}, q)_{n}} z^{n}, (2.10)$$

which converges absolutely in the open unit disk U.

Corresponding to the function ${}_{l}\Psi_{m}(a_{1},...,a_{l};b_{1},...,b_{m};q,z)$ recently for meromorphic functions $f\in\Sigma$ consisting functions of the form (2.1), Aldweby and Darus [1] introduced q-analogue of Liu-Srivastava operator as

below:

$${}_{l}\Upsilon_{m}(a_{1}, ..., a_{l}; b_{1}, ..., b_{m}; q, z) * f(z)$$

$$= \frac{1}{z} {}_{l}\Psi_{m}(a_{1}, ..., a_{l}; b_{1}, ..., b_{m}; q, z) * f(z)$$

$$= \frac{1}{z} + \sum_{n=1}^{\infty} \frac{\prod_{i=1}^{l} (a_{i}, q)_{n+1}}{(q, q)_{n+1} \prod_{i=1}^{m} (b_{i}, q)_{n+1}} d_{n}z^{n} \quad (z \in \mathbf{U}^{*}), \qquad (2.11)$$

where $\prod_{k=1}^{s} (a_k, q)_{n+1} = (a_1, q)_{n+1} \dots (a_s, q)_{n+1}$, and

$${}_{l}\Upsilon_{m}(a_{1}, ..., a_{l}; b_{1}, ..., b_{m}; q, z) = \frac{1}{z} {}_{l}\Psi_{m}(a_{1}, ..., a_{l}; b_{1}, ..., b_{m}; q, z)$$

$$= \frac{1}{z} + \sum_{n=1}^{\infty} \frac{\prod_{i=1}^{l} (a_{i}, q)_{n+1}}{(q, q)_{n+1} \prod_{i=1}^{m} (b_{i}, q)_{n+1}} z^{n}.$$

Corresponding to the functions ${}_{l}\Upsilon_{m}(a_{1},...,a_{l};b_{1},...,b_{m};q,z)$ and $q_{\lambda,\,\mu}(z)$ given in (2.4) and using the Hadamard product for $f(z)\in\Sigma$, we will define a new linear operator as $L^{\lambda}_{\mu}(a_{1},\,a_{2},...,\,a_{l};\,b_{1},\,b_{2},\,...,\,b_{m};\,q)$ on Σ by

$$L_{\mu}^{\lambda}(a_{1}, a_{2}, ..., a_{l}; b_{1}, b_{2}, ..., b_{m}; q) f(z)$$

$$= (f(z) *_{l} \Upsilon_{m}(a_{1}, ..., a_{l}; b_{1}, ..., b_{m}; q, z)) *_{q_{\lambda, \mu}}(z)$$

$$= \frac{1}{z} + \sum_{n=1}^{\infty} \frac{\prod_{i=1}^{l} (a_{i}, q)_{n+1}}{(q, q)_{n+1} \prod_{i=1}^{m} (b_{i}, q)_{n+1}} \left(\frac{\lambda}{n+1+\lambda}\right)^{\mu} |d_{n}| z^{n}, \qquad (2.12)$$

and for convenience, we shall henceforth denote

$$L^{\lambda}_{\mu}(a_1, a_2, ..., a_l; b_1, b_2, ..., b_m; q) f(z) = L^{\lambda}_{\mu}(a_l, b_m, q) f(z).$$
 (2.13)

Remark 2.1. (i) For $\mu = 0$, $a_i = q^{a_i}$, $b_j = q^{b_j}$, $a_i > 0$, $b_j > 0$ (i = 1, ..., l, j = 1, ..., m, l = m + 1), $q \to 1$, the operator $L^{\lambda}_{\mu}(a_l, b_m, q) f(z) = H^l_m[a_l] f(z)$ which was investigated by Liu and Srivastava [11].

- (ii) For $\mu = 0$, l = 2, m = 1, $a_2 = q$, $q \to 1$, the operator $L^{\lambda}_{\mu}(a_l, q, b_m, q) f(z) = L(a_l, b_m) f(z)$ was introduced and studied by Liu and Srivastava [10].
- (iii) For $\mu = 0$, l = 1, m = 0, $a_i = \gamma + 1$, $q \to 1$, the operator $L^{\lambda}_{\mu}(\gamma + 1, b_m, q) f(z) = D^{\gamma} f(z) = \frac{1}{z(1-z)^{\gamma+1}} * f(z)(\gamma > -1)$, where D^{γ} is

the differential operator which was introduced by Ganigi and Uralegaddi [4] and then it was generalized by Yang [13].

For a function $f \in L^{\lambda}_{\mu}(a_l, b_m, q) f(z)$, we define

$$I^{0}(L^{\lambda}_{\mu}(a_{l}, b_{m}, q) f(z)) = L^{\lambda}_{\mu}(a_{l}, b_{m}, q) f(z),$$

and for k = 1, 2, 3, ...,

$$I^{k}(L^{\lambda}_{\mu}(a_{l}, b_{m}, q) f(z)) = z(I^{k-1}L^{\lambda}_{\mu}(a_{l}, b_{m}, q) f(z))' + \frac{2}{z},$$

$$I^{k}(L^{\lambda}_{\mu}(a_{l}, b_{m}, q) f(z))$$

$$= \frac{1}{z} + \sum_{n=1}^{\infty} n^k \frac{\prod_{i=1}^{l} (a_i, q)_{n+1}}{(q, q)_{n+1} \prod_{i=1}^{m} (b_i, q)_{n+1}} \left(\frac{\lambda}{n+1+\lambda}\right)^{\mu} |d_n| z^n.$$
 (2.14)

We note that I^k in (2.14) was studied by Ghanim and Darus [5], and Challab and Darus [2, 14]. Also, it follows from (2.12) that

$$z(L^{\lambda}_{\mu}(a_{l}, b_{m}, q) f(z))' = nL^{\lambda}_{\mu}(a_{l}, b_{m}, q) f(z) - \frac{n+1}{z}, \qquad (2.15)$$

also, from (2.15), we get

$$z(I^{k}L_{\mu}^{\lambda}(a_{l}, b_{m}, q)f(z))' = nI^{k}L_{\mu}^{\lambda}(a_{l}, b_{m}, q)f(z) - \frac{n+1}{z}.$$
 (2.16)

We obtain certain sufficient conditions for a function $f \in \Sigma$ to satisfy either of the following subordinations:

$$\frac{I^k L^{\lambda}_{\mu}(a_l+1, b_m, q) f(z)}{I^k L^{\lambda}_{\mu}(a_l, b_m, q) f(z)} \prec \frac{\gamma(1-z)}{\gamma-z},$$

$$\frac{I^k L^{\lambda}_{\mu}(a_l, b_m, q) f(z)}{z} \prec \frac{1 + Az}{1 - z},$$

$$\frac{I^k L^{\lambda}_{\mu}(a_l,\,b_m,\,q)f(z)}{z} \prec \frac{\gamma(1-z)}{\gamma-z}.$$

To prove our main results, we need the following:

Lemma 2.1 (cf. Miller and Mocanu [12, Theorem 3.4h, p. 132]). Let q(z) be univalent in the unit disk \mathbf{U} and let ϑ and φ be analytic in a domain $q(\mathbf{U}) \subset D$, with $\varphi(\omega) \neq 0$ when $q(\mathbf{U}) \in \omega$. Set

$$Q(z) := zq'(z)\varphi(q(z)), \quad h(z) := \vartheta(q(z)) + Q(z).$$

Suppose that

(1) Q(z) is starlike univalent in **U**, and

(2)
$$\Re\left(\frac{zh'(z)}{Q(z)}\right) > 0$$
 for $z \in \mathbf{U}$.

If p(z) is analytic in **U** with p(0) = q(0), $p(\mathbf{U}) \subset D$ and

$$\vartheta(p(z)) + zp'(z)\varphi(p(z)) \prec \vartheta(q(z)) + zq'(z)\varphi(q(z)), \tag{2.17}$$

then $p(z) \prec q(z)$ and q(z) is the best dominant.

3. Main Results

Theorem 3.1. Let $a \in \mathbb{R}$ satisfy $-1 \le a \le 1$ and $\gamma > 1$. If $f \in \Sigma$ satisfies $z(I^k L^{\lambda}_{\mathfrak{u}}(a_l, b_m, q) f(z)) \ne 0$ in \mathbf{U}^* and

$$\left(\frac{I^{k}L_{\mu}^{\lambda}(a_{l}+1, b_{m}, q)f(z)}{I^{k}L_{\mu}^{\lambda}(a_{l}, b_{m}, q)f(z)}\right)^{a} \left(\frac{n+1}{z(I^{k}L_{\mu}^{\lambda}(a_{l}+1, b_{m}, q)f(z))}\right) \prec h(z), \quad (3.1)$$

where

$$h(z) = \left(\frac{\gamma(1-z)}{\gamma-z}\right)^{a+1} \left(\frac{n+1}{z(I^k L_{\mu}^{\lambda}(a_l+1, b_m, q)f(z))} - \frac{(\gamma-1)z}{\gamma(1-z)^2}\right),$$

then

$$\frac{I^k L_{\mu}^{\lambda}(a_l+1, b_m, q) f(z)}{I^k L_{\mu}^{\lambda}(a_l, b_m, q) f(z)} \prec \frac{\gamma(1-z)}{\gamma - z}.$$

Proof. The condition (3.1) and $z(I^k L^{\lambda}_{\mu}(a_l, b_m, q) f(z)) \neq 0$ in \mathbf{U}^* imply that $z(I^k L^{\lambda}_{\mu}(a_l+1, b_m, q) f(z)) \neq 0$ in \mathbf{U}^* . Define the function p(z) by

$$p(z) \coloneqq \frac{I^k L_{\mu}^{\lambda}(a_l + 1, b_m, q) f(z)}{I^k L_{\mu}^{\lambda}(a_l, b_m, q) f(z)}.$$

Clearly, p(z) is analytic in \mathbf{U}^* . A computation shows that

$$\frac{zp'(z)}{p(z)} = \frac{z[I^k L_{\mu}^{\lambda}(a_l+1, b_m, q)f(z)]'}{I^k L_{\mu}^{\lambda}(a_l+1, b_m, q)f(z)} - \frac{z[I^k L_{\mu}^{\lambda}(a_l, b_m, q)f(z)]'}{I^k L_{\mu}^{\lambda}(a_l, b_m, q)f(z)}.$$
 (3.2)

By using the identities (2.16) and (3.2), we get

$$\frac{n+1}{z(I^k L_{\mathsf{u}}^{\lambda}(a_l+1, b_m, q)f(z))} = \frac{(n+1)p(z)}{z(I^k L_{\mathsf{u}}^{\lambda}(a_l+1, b_m, q)f(z))} - \frac{zp'(z)}{p(z)}. (3.3)$$

Using (3.3) in (3.1), we get

$$\frac{(n+1)(p(z))^{a+1}}{z(I^k L_{\mathsf{u}}^{\lambda}(a_l+1, b_m, q)f(z))} - zp'(z)(p(z))^{a-1} \prec h(z). \tag{3.4}$$

Let q(z) be the function defined by

$$q(z) \coloneqq \frac{\gamma(1-z)}{\gamma-z}.$$

It is clear that q is convex univalent in \mathbf{U}^* . Since

$$h(z) = \frac{(n+1)(q(z))^{a+1}}{z(I^k L_1^{\lambda}(a_I+1, b_m, q)f(z))} - zq'(z)(q(z))^{a-1},$$

we see that (3.4) can be written as (2.17) when θ and φ are given by

$$\vartheta(\omega) = \frac{(n+1)}{z(I^k L_{\mathsf{u}}^{\lambda}(a_l+1, b_m, q) f(z))} \omega^{a+1} \quad \text{and} \quad \varphi(\omega) = \omega^{a-1}.$$

Clearly, φ and ϑ are analytic in $\mathbb{C}\backslash 0$. Now

$$Q(z) := zq'(z)\varphi(q(z)) = zq'(z)(q(z))^{a-1} = \frac{(1-\gamma)z\gamma^{a}(1-z)^{a-1}}{(\gamma-z)^{1+a}},$$

$$h(z) := 9(q(z)) + Q(z)$$

$$= \left(\frac{\gamma(1-z)}{\gamma-z}\right)^{1+a} \left(\frac{(n+1)}{z(I^{k}L^{\lambda}_{u}(a_{l}+1,b_{m},a)f(z))} - \frac{(\gamma-1)z}{\gamma(1-z)^{2}}\right).$$

By our assumptions on the parameters a and γ , we see that

$$\Re \frac{zQ'(z)}{Q(z)} = \Re \left(1 + \frac{z(1-a)}{1-z} + (1+a)\frac{z}{\gamma - z} \right)$$

$$> 1 - \frac{1}{2}(1-a) - \frac{(1+a)\gamma}{1+\gamma}$$

$$= \frac{(1+a)(\gamma - 1)}{2(1+\gamma)} > 0,$$

and therefore Q(z) is starlike. Also, we have

$$\Re \frac{zh'(z)}{Q(z)} = (n+1)\Re \frac{\gamma(z-1)[z(\gamma-z)(1+a)-(1-z)((\gamma-z)(n+1)-z(1+a))]}{z^2(\gamma-z)(1-\gamma)(I^k L^{\lambda}_{\mu}(a_l+1, b_m, q)f(z))} + \Re \frac{zQ'(z)}{Q(z)} \ge 0.$$

By an application of Lemma 2.1, we have $p(z) \prec q(z)$ or

$$\frac{I^k L_{\mu}^{\lambda}(a_l+1, b_m, q) f(z)}{I^k L_{\mu}^{\lambda}(a_l, b_m, q) f(z)} \prec \frac{\gamma(1-z)}{\gamma - z}.$$

This completes the proof of Theorem 3.1.

Theorem 3.2. Let -1 < a < 0 and -1 < A < 1. If $f \in \Sigma$ satisfies the

condition
$$\frac{I^k L^{\lambda}_{\mu}(a_l, b_m, q) f(z)}{z} \neq 0$$
 in \mathbf{U}^* and

$$\left(\frac{I^k L^{\lambda}_{\mu}(a_l, b_m, q) f(z)}{z}\right)^a \left(\frac{n+1}{z^2}\right) \prec h(z), \tag{3.5}$$

where

$$h(z) = \left(\frac{1+Az}{1-z}\right)^{a+1} \left((n-1) + \frac{(1+A)z}{(1-z)(1+Az)}\right),$$

then

$$\frac{I^k L^{\lambda}_{\mu}(a_l,\,b_m,\,q)f(z)}{z} \prec \frac{1+Az}{1-z}.$$

Proof. Define the function p(z) by

$$p(z) \coloneqq \frac{I^k L_{\mu}^{\lambda}(a_l, b_m, q) f(z)}{z}.$$
 (3.6)

It is clear that p is analytic in U^* . By using the identity (2.16), we get from (3.6),

$$\frac{n+1}{z^2} = (n-1)p(z) - zp'(z). \tag{3.7}$$

Using (3.7) in (3.5), we see that the subordination becomes

$$(n-1) p(z)^{1+a} - z(p(z))^a p'(z) \prec h(z).$$

Define the function q(z) by

$$q(z) \coloneqq \frac{1 + Az}{1 - z}.$$

It is clear that q(z) is univalent in **U** and $q(\mathbf{U})$ is the region $\Re q(z) > (1-A)/2$. Define the functions ϑ and φ by

$$\vartheta(\omega) = (n-1)\omega^{a+1}$$
 and $\varphi(\omega) = \omega^a$.

We observe that (3.5) can be written as (2.17). Note that φ and ϑ are analytic in $\mathbb{C}\backslash 0$. Also, we see that

$$Q(z) := zq'(z)\varphi(q(z)) = \frac{z(1+A)(1+Az)^a}{(1-z)^{2+a}}$$

and

$$h(z) := \vartheta(q(z)) + Q(z) = \left(\frac{1+Az}{1-z}\right)^{a+1} \left((n-1) + \frac{(1+A)z}{(1+Az)(1-z)}\right).$$

By our assumptions, we have

$$\Re \frac{zQ'(z)}{Q(z)} = \Re \left[1 + a \frac{Az}{1 + Az} + (2 + a) \frac{z}{1 - z} \right]$$

$$> 1 + \frac{a|A|}{1 + |A|} - \frac{2 + a}{2} = \frac{-a(1 - |A|)}{2(1 + |A|)} > 0,$$

and

$$\Re\frac{zh'(z)}{Q(z)}=\Re\left[\frac{\vartheta'(q(z))}{\varphi(q(z))}+\frac{zQ'(z)}{Q(z)}\right]=(n-1)(1+a)+\Re\frac{zQ'(z)}{Q(z)}\geq 0.$$

The results now follow by an application of Lemma 2.1.

Theorem 3.3. Let $a \ge -1$, $\gamma > 1$, $f \in \Sigma$ and $I^k L^{\lambda}_{\mu}(a_l, b_m, q) f(z)/z$ $\neq 0$ in \mathbf{U}^* . If f satisfies

$$\left(\frac{I^{k}L_{\mu}^{\lambda}(a_{l}, b_{m}, q)f(z)}{z}\right)^{a}\left(\frac{n+1}{z^{2}}\right)$$

$$\prec \left(\frac{\gamma(1-z)}{(\gamma-z)}\right)^{1+a}\left((n-1) - \frac{z(1-\gamma)}{(1-z)(\gamma-z)}\right), \tag{3.8}$$

then

$$\frac{I^k L^{\lambda}_{\mu}(a_l, b_m, q) f(z)}{z} \prec \frac{\gamma(1-z)}{\gamma-z} \quad (z \in U^*).$$

Proof. Define the function p(z) by

$$p(z) = \frac{I^{k} L_{\mu}^{\lambda}(a_{l}, b_{m}, q) f(z)}{z}.$$
 (3.9)

Clearly, p(z) is analytic in U^* , we can compute to show

$$zp'(z) = \frac{z(I^k L_{\mu}^{\lambda}(a_l, b_m, q) f(z))' - I^k L_{\mu}^{\lambda}(a_l, b_m, q) f(z)}{z}.$$
 (3.10)

By using the identity (2.16), we can get from (3.10),

$$\frac{n+1}{z^2} = (n-1)p(z) - zp'(z). \tag{3.11}$$

Using (3.11) in (3.8), we obtain

$$(n-1)(p(z))^{a+1} - zp'(z)(p(z))^a$$

Define the function q(z) by

$$q(z) = \frac{\gamma(1-z)}{\gamma - z}$$

which is univalent in \mathbf{U}^* . We see that (3.12) can be written as (2.17) when ϑ and φ are given by $\vartheta(\omega) = (n-1)\omega^{a+1}$, $\varphi(\omega) = -\omega^a$ such that ϑ and φ are analytic in $\mathbf{C} \setminus 0$. Now

$$Q(z) = zq'(z)\varphi(q(z)) = \frac{-z\gamma^{a+1}(1-\gamma)(1-z)^a}{(\gamma-z)^{a+z}},$$

$$h(z) = \vartheta(q(z)) + Q(z) = \left(\frac{\gamma(1-z)}{(\gamma-z)}\right)^{1+a} \left((n-1) - \frac{z(1-\gamma)}{(1-z)(\gamma-z)}\right).$$

By our assumptions, we have

$$\Re \frac{zQ'(z)}{Q(z)} = \Re \left(1 + \frac{z(1-a)}{1-z} + (1+a)\frac{z}{\gamma - z} \right)$$

$$> 1 - \frac{1}{2}(1-a) - \frac{(1+a)\gamma}{1+\gamma}$$

$$= \frac{(1+a)(\gamma - 1)}{2(1+\gamma)} > 0,$$

hence Q(z) is starlike. Now

$$\Re\frac{zh'(z)}{Q(z)}=\Re\left[\frac{\vartheta'(q(z))}{\varphi(q(z))}+\frac{zQ'(z)}{Q(z)}\right]=(1-n)(1+a)+\Re\frac{zQ'(z)}{Q(z)}\geq0.$$

Now we can apply Lemma 2.1 to get $p(z) \prec q(z)$. We have

$$\frac{I^k L^{\lambda}_{\mu}(a_l+1, b_m, q) f(z)}{z} \prec \frac{\gamma(1-z)}{\gamma-z}.$$

This completes the proof of Theorem 3.3.

Acknowledgement

The authors thank the anonymous referees for their valuable suggestions and constructive criticism which improved the presentation of the paper. The work here is also supported by MOHE grant: FRGS/1/2016/STG06/UKM/01/1.

References

- [1] H. Aldweby and M. Darus, Integral operator defined by *q*-analogue of Liu-Srivastava operator, Studia Univ. Babes-Bolyai Math. 58(4) (2013), 529-537.
- [2] K. Challab and M. Darus, On certain class of meromorphic harmonic concave functions defined by Salagean operator, Journal of Quality Measurement and Analysis 11(1) (2015), 49-60.
- [3] N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion and argument properties for certain subclasses of meromorphic functions associated with a family of multiplier transformations, J. Math. Anal. Appl. 300(2) (2004), 505-520.
- [4] M. R. Ganigi and B. A. Uralegaddi, New criteria for meromorphic univalent functions, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 33(81) (1989), 9-13.
- [5] F. Ghanim and M. Darus, Linear operators associated with a subclass of hypergeometric meromorphic uniformly convex functions, Acta Universitatis Apulensis 17 (2009), 49-60.
- [6] F. Ghanim and M. Darus, Some properties on a certain class of meromorphic functions related to Cho-Kwon-Srivastava operator, Asian-European Journal of Mathematics 5(4) (2012), Art. ID 1250052. DOI: 10.1142/S1793557112500520.
- [7] F. Ghanim and M. Darus, A study of Cho-Kwon-Srivastava operator with applications to generalized hypergeometric functions, Int. J. Math. Math. Sci. 2014 (2014), Art. ID 374821, 6 pp.
- [8] A. W. Goodman, Functions typically-real and meromorphic in the unit circle, Trans. Amer. Math. Soc. 81(1) (1956), 92-105.
- [9] S. G. Krantz, Meromorphic functions and singularities at infinity, Handbook of Complex Variables, Birkhaüser, Boston, MA, 1999, pp. 63-68.
- [10] J.-L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259(2) (2001), 566-581.

- [11] J.-L. Liu and H. M. Srivastava, Classes of meromorphically multivalent functions associated with the generalized hypergeometric function, Math. Comput. Modelling 39(1) (2004), 21-34.
- [12] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, CRC Press, 2000.
- [13] D. Yang, On a class of meromorphic starlike multivalent functions, Bull. Inst. Math. Acad. Sinica 24 (1996), 151-158.
- [14] K. Challab and M. Darus, On certain class of meromorphic harmonic concave functions defined by Al-Oboudi operator, Journal of Quality Measurement and Analysis 12(1-2) (2016), 53-65.