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Abstract 

In this article, we study some results on meromorphic functions 
defined by q-hypergeometric functions. In addition, certain sufficient 
conditions for these meromorphic functions to satisfy a subordination 
property are also pointed out. In fact, these results extend known 
results of starlikeness, convexity, and close to convexity. 
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1. Introduction 

In the present paper, we initiate the study of functions which are 

meromorphic in the punctured disk { }10: <<=∗ zzU  with a Laurent 

expansion about the origin, see [8]. 

Let A be the class of analytic functions ( )zh  with ( ) ,10 =h  which are 

convex and univalent in the open unit disk { }∪ 0∗= UU  and for which 

 ( ){ } ( ).0 ∗∈>ℜ Uzzh  (1.1) 

For functions f and g analytic in U, we say that f is subordinate to g and 
write 

gf ≺  in U or ( ) ( ) ( )U∈zzgzf ≺  (1.2) 

if there exists an analytic function ( )zω  in U such that 

 ( ) ( ) ( )( ) ( )., U∈ω=≤ω zzgzfzz  (1.3) 

Furthermore, if the function g is univalent in U, then 

( ) ( ) ( ) ( ),00 gfzgzf =⇔≺  

( ) ( ) ( ).UUU ∈⊆ zgf  (1.4) 

2. Preliminaries 

Let ∑ denote the class of meromorphic functions ( )zf  normalized by 

 ( ) ∑
∞

=

+=
1

,1

n

n
nzdzzf  (2.1) 

which are analytic in the punctured unit disk .∗U  For ,0 β≤  we denote by 

( )β∗S  and ( )βK  the subclasses of ∑ consisting of all meromorphic functions 

which are, respectively, starlike of order β and convex of order β in .∗U  
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For functions ( ) ( )2,1=jzf j  defined by 

 ( ) ∑
∞

=

+=
1

, ,1

n

n
jnj zdzzf  (2.2) 

we denote the Hadamard product (or convolution) of ( )zf1  and ( )zf2  by 

 ( ) ∑
∞

=

+=∗
1

2,1,21 .1

n

n
nn zddzff  (2.3) 

Cho et al. [3] and Ghanim and Darus [6] studied the following function: 

 ( ) ( )∑
∞

=

μ

μλ ≥μ>λ⎟
⎠
⎞⎜

⎝
⎛

λ++
λ+=

1
, .0,01

1

n

nznzzq  (2.4) 

Corresponding to the function ( )zq μλ,  and using the Hadamard product 

for ( ) ,∑∈zf  Ghanim and Darus [7] defined a linear operator ( )μλ,L  on ∑ 

by 

( ) ( ( ) ( )) ∑
∞

=

μ

μλμλ ⎟
⎠
⎞⎜

⎝
⎛

λ++
λ+=∗=

1
,, .1

1

n

n
n zdnzzqzfzfL  (2.5) 

As for the result of this paper on applications involving               
generalized hypergeometric functions, we need to utilize the well-known                            
q-hypergeometric function. 

For complex parameters laa ...,,1  and mbb ...,,1  ( =−≠ jb j ...;,1,0  

),...,,2,1 m  the q-hypergeometric function ( )zmlΨ  is defined by 

( )
( ) ( )

( ) ( ) ( )∑
∞

=

=Ψ
0 1

1
11 ,,,

,,
:,;...,,;...,,

n nmnn
nln

mlml qbqbqq
qaqa

zqbbaa …
…

 

[( ) ] ,1 12 nlm
n

n zq −+
⎟
⎠
⎞

⎜
⎝
⎛

−×  (2.6) 
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with ( ) ,21
2

−=⎟
⎠
⎞

⎜
⎝
⎛ nn

n
 where 0≠q  when 1+> ml  ( =∈ 0, Nml  

{ } )∪ .;0 U∈zN  

The q-shifted factorial is defined for C∈qa,  as a product of n factors 

by 

 ( ) ( ) ( ) ( ) ( )
( )⎩

⎨
⎧

=
∈−−−=

−

01
111:

1

n
naqaqaqa

n

n
N"  (2.7) 

and in terms of basic analogue of the gamma function 

 ( )
( ) ( )

( ) .0,
1

; >
Γ

−+Γ
= na

qna
qq

q

n
q

n
a  (2.8) 

It is of interest to note that 

(( ) ( ) ) ( ) ( ) ( )111;lim 1 −++==−−→ naaaaqqq n
n

n
a

q "  

is the familiar Pochhammer symbol and 

 ( )
( ) ( )
( ) ( )∑

∞

=

=Ψ
0 1

1
11 .!:;...,,;...,,

n

n

nmn

nln
mlml n

z
bb
aa

zbbaa "
"

 (2.9) 

Now for ,U∈z  10 << q  and ,1+= ml  the basic hypergeometric 

function defined in (2.9) takes the form 

( )
( ) ( )

( ) ( ) ( )∑
∞

=

=Ψ
0 1

1
11 ,,,,

,,
:,;...,,;...,,

n

n

nmnn
nln

mlml zqbqbqq
qaqa

zqbbaa "
"

 (2.10) 

which converges absolutely in the open unit disk U. 

Corresponding to the function ( )zqbbaa mlml ,;...,,;...,, 11Ψ  recently 

for meromorphic functions ∑∈f  consisting functions of the form (2.1), 

Aldweby and Darus [1] introduced q-analogue of Liu-Srivastava operator as 
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below: 

( ) ( )zfzqbbaa mlml ∗,;...,,;...,, 11ϒ  

( ) ( )zfzqbbaaz mlml ∗Ψ= ,;...,,;...,,1
11  

 
( )

( ) ( )
( ),

,,

,1

1 1 11

1 1∑
∏

∏∞

=

∗

= ++

= +
∈+=

n

n
nm

i nin

l
i ni

zzd
qbqq

qa
z U  (2.11) 

where ( ) ( ) ( )∏ = +++ =s
k nsnnk qaqaqa1 1111 ,,,, …  and 

( ) ( )zqbbaazzqbbaa mlmlmlml ,;...,,;...,,1,;...,,;...,, 1111 Ψ=ϒ  

( )

( ) ( )
∑

∏
∏∞

=
= ++

= +
+=

1 1 11

1 1 .
,,

,1

n

n
m
i nin

l
i ni

z
qbqq

qa
z  

Corresponding to the functions ( )zqbbaa mlml ,;...,,;...,, 11ϒ  and 

( )zq μλ,  given in (2.4) and using the Hadamard product for ( ) ,∑∈zf  we 

will define a new linear operator as ( )qbbbaaaL ml ;...,,,;...,,, 2121
λ
μ  on ∑ 

by 

( ) ( )zfqbbbaaaL ml ;...,,,;...,,, 2121
λ
μ  

( ( ) ( )) ( )zqzqbbaazf mlml μλ∗∗= ,11 ,;...,,;...,,ϒ  

( )

( ) ( )
∑

∏
∏∞

=

μ

= ++

= +
⎟
⎠
⎞⎜

⎝
⎛

λ++
λ+=

1 1 11

1 1 ,1,,

,1

n

n
nm

i nin

l
i ni

zdnqbqq

qa
z  (2.12) 

and for convenience, we shall henceforth denote 

( ) ( ) ( ) ( ).,,;...,,,;...,,, 2121 zfqbaLzfqbbbaaaL mlml
λ
μ

λ
μ =  (2.13) 
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Remark 2.1. (i) For ,0=μ  ,ia
i qa =  ,jb

j qb =  ,0>ia  0>jb  

( ),1,...,,1,...,,1 +=== mlmjli  ,1→q  the operator ( ) ( )zfqbaL ml ,,λ
μ  

[ ] ( )zfaH l
l
m=  which was investigated by Liu and Srivastava [11]. 

 (ii) For ,0=μ  ,2=l  ,1=m  ,2 qa =  ,1→q  the operator 

( ) ( ) ( ) ( )zfbaLzfqbqaL mlml ,,,, =λ
μ  was introduced and studied by Liu 

and Srivastava [10]. 

(iii) For ,0=μ  ,1=l  ,0=m  ,1+γ=ia  ,1→q  the operator 

( ) ( ) ( )
( )

( ) ( ),1
1

1,,1 1 −>γ∗
−

==+γ +γ
γλ

μ zf
zz

zfDzfqbL m  where γD  is 

the differential operator which was introduced by Ganigi and Uralegaddi [4] 
and then it was generalized by Yang [13]. 

For a function ( ) ( ),,, zfqbaLf ml
λ
μ∈  we define 

( ( ) ( )) ( ) ( ),,,,,0 zfqbaLzfqbaLI mlml
λ
μ

λ
μ =  

and for ...,,3,2,1=k  

( ( ) ( )) ( ( ) ( )) ,2,,,, 1
zzfqbaLIzzfqbaLI ml

k
ml

k +′= λ
μ

−λ
μ  

( ( ) ( ))zfqbaLI ml
k ,,λ

μ  

( )

( ) ( )
∑

∏
∏∞

=

μ

= ++

= +
⎟
⎠
⎞⎜

⎝
⎛

λ++
λ+=

1 1 11

1 1 .1,,

,1

n

n
nm

i nin

l
i nik zdnqbqq

qa
nz  (2.14) 

We note that kI  in (2.14) was studied by Ghanim and Darus [5], and 
Challab and Darus [2, 14]. Also, it follows from (2.12) that 

 ( ( ) ( )) ( ) ( ) ,1,,,, z
nzfqbanLzfqbaLz mlml
+−=′ λ

μ
λ
μ  (2.15) 
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also, from (2.15), we get 

( ( ) ( )) ( ) ( ) .1,,,, z
nzfqbaLnIzfqbaLIz ml

k
ml

k +−=′ λ
μ

λ
μ  (2.16) 

We obtain certain sufficient conditions for a function ∑∈f  to satisfy 

either of the following subordinations: 

( ) ( )
( ) ( )

( ) ,1
,,

,,1
z
z

zfqbaLI

zfqbaLI

ml
k

ml
k

−γ
−γ+

λ
μ

λ
μ ≺  

( ) ( )
,1

1,,
z

Az
z

zfqbaLI ml
k

−
+

λ
μ ≺  

( ) ( ) ( ) .1,,
z
z

z
zfqbaLI ml

k

−γ
−γ

λ
μ ≺  

To prove our main results, we need the following: 

Lemma 2.1 (cf. Miller and Mocanu [12, Theorem 3.4h, p. 132]). Let 
( )zq  be univalent in the unit disk U and let ϑ and ϕ be analytic in a domain 

( ) ,Dq ⊂U  with ( ) 0≠ωϕ  when ( ) .ω∈Uq  Set 

( ) ( ) ( )( ) ( ) ( )( ) ( ).:,: zQzqzhzqzqzzQ +ϑ=ϕ′=  

Suppose that 

(1) ( )zQ  is starlike univalent in U, and 

(2) ( )
( ) 0>⎟

⎠
⎞⎜

⎝
⎛ ′

ℜ zQ
zhz  for .U∈z  

If ( )zp  is analytic in U with ( ) ( ),00 qp =  ( ) Dp ⊂U  and 

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ),zqzqzzqzpzpzzp ϕ′+ϑϕ′+ϑ ≺  (2.17) 

then ( ) ( )zqzp ≺  and ( )zq  is the best dominant. 
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3. Main Results 

Theorem 3.1. Let R∈a  satisfy 11 ≤≤− a  and .1>γ  If ∑∈f  satisfies 

( ( ) ( )) 0,, ≠λ
μ zfqbaLIz ml

k  in ∗U  and 

( ) ( )
( ) ( ) ( ( ) ( ))

( ),
,,1

1
,,

,,1
zh

zfqbaLIz
n

zfqbaLI

zfqbaLI

ml
k

a

ml
k

ml
k

≺
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +
λ
μ

λ
μ

λ
μ  (3.1) 

where 

( ) ( )
( ( ) ( ))

( )
( )

,
1

1
,,1

11
2

1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−γ

−γ−
+
+

⎟
⎠
⎞⎜

⎝
⎛

−γ
−γ= λ

μ

+

z
z

zfqbaLIz
n

z
zzh

ml
k

a
 

then 

( ) ( )
( ) ( )

( ) .1
,,

,,1
z
z

zfqbaLI

zfqbaLI

ml
k

ml
k

−γ
−γ+

λ
μ

λ
μ ≺  

Proof. The condition (3.1) and ( ( ) ( )) 0,, ≠λ
μ zfqbaLIz ml

k  in ∗U  

imply that ( ( ) ( )) 0,,1 ≠+λ
μ zfqbaLIz ml

k  in .∗U  Define the function ( )zp  

by 

( )
( ) ( )
( ) ( )

.
,,

,,1
:

zfqbaLI

zfqbaLI
zp

ml
k

ml
k

λ
μ

λ
μ +

=  

Clearly, ( )zp  is analytic in .∗U  A computation shows that 

( )
( )

[ ( ) ( )]
( ) ( )

[ ( ) ( )]
( ) ( )

.
,,

,,

,,1

,,1

zfqbaLI

zfqbaLIz

zfqbaLI

zfqbaLIz
zp
zpz

ml
k

ml
k

ml
k

ml
k

λ
μ

λ
μ

λ
μ

λ
μ

′
−

+

′+
=

′  (3.2) 

By using the identities (2.16) and (3.2), we get 

( ( ) ( ))
( ) ( )

( ( ) ( ))
( )
( ) .

,,1
1

,,1
1

zp
zpz

zfqbaLIz
zpn

zfqbaLIz
n

ml
k

ml
k

′
−

+
+=

+
+

λ
μ

λ
μ

 (3.3) 
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Using (3.3) in (3.1), we get 

 ( ) ( )( )
( ( ) ( ))

( ) ( )( ) ( ).
,,1

1 1
1

zhzpzpz
zfqbaLIz

zpn a

ml
k

a
≺−

λ
μ

+
′−

+
+  (3.4) 

Let ( )zq  be the function defined by 

( ) ( ) .1: z
zzq

−γ
−γ=  

It is clear that q is convex univalent in .∗U  Since 

( ) ( ) ( )( )
( ( ) ( ))

( ) ( )( ) ,
,,1

1 1
1

−
λ
μ

+
′−

+
+= a

ml
k

a
zqzqz

zfqbaLIz
zqnzh  

we see that (3.4) can be written as (2.17) when ϑ and ϕ are given by 

( ) ( )
( ( ) ( ))

1

,,1
1 +

λ
μ

ω
+
+=ωϑ a

ml
k zfqbaLIz

n    and   ( ) .1−ω=ωϕ a  

Clearly, ϕ and ϑ are analytic in .0\C  Now 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
( )

,11: 1

1
1

a

aa
a

z
zzzqzqzzqzqzzQ +

−
−

−γ

−γγ−=′=ϕ′=  

( ) ( )( ) ( )zQzqzh +ϑ=:  

( ) ( )
( ( ) ( ))

( )
( )

.
1

1
,,1

11
2

1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−γ

−γ−
+
+

⎟
⎠
⎞⎜

⎝
⎛

−γ
−γ= λ

μ

+

z
z

zfqbaLIz
n

z
z

ml
k

a
 

By our assumptions on the parameters a and γ, we see that 

( )
( )

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛

−γ
++

−
−+ℜ=

′
ℜ z

zaz
az

zQ
zQz 11

11  

( ) ( )
γ+
γ+−−−> 1

112
11 aa  

( ) ( )
( ) ,012

11 >
γ+
−γ+= a  
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and therefore ( )zQ  is starlike. Also, we have 

( )
( )zQ

zhz ′
ℜ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )[ ]
( ) ( ) ( ( ) ( ))zfqbaLIzz

aznzzazzzn
ml

k ,,11
111111 2 +γ−−γ

+−+−γ−−+−γ−γℜ+= λ
μ

 

( )
( ) .0≥
′

ℜ+ zQ
zQz  

By an application of Lemma 2.1, we have ( ) ( )zqzp ≺  or 

( ) ( )
( ) ( )

( ) .1
,,

,,1
z
z

zfqbaLI

zfqbaLI

ml
k

ml
k

−γ
−γ+

λ
μ

λ
μ ≺  

This completes the proof of Theorem 3.1.  

Theorem 3.2. Let 01 <<− a  and .11 <<− A  If ∑∈f  satisfies the 

condition 
( ) ( )

0
,,

≠
λ
μ

z
zfqbaLI ml

k
 in ∗U  and 

 
( ) ( )

( ),1,,
2 zh

z
n

z
zfqbaLI

a
ml

k
≺⎟

⎠
⎞

⎜
⎝
⎛ +

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ λ
μ  (3.5) 

where 

( ) ( ) ( )
( ) ( ) ,11

111
1 1

⎟
⎠
⎞⎜

⎝
⎛

+−
++−⎟

⎠
⎞⎜

⎝
⎛

−
+=

+

Azz
zAnz

Azzh
a

 

then 

( ) ( )
.1

1,,
z

Az
z

zfqbaLI ml
k

−
+

λ
μ ≺  

Proof. Define the function ( )zp  by 

 ( )
( ) ( )

.
,,

: z
zfqbaLI

zp ml
k λ

μ=  (3.6) 
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It is clear that p is analytic in .∗U  By using the identity (2.16), we get from 
(3.6), 

 ( ) ( ) ( ).11
2 zpzzpn

z
n ′−−=+  (3.7) 

Using (3.7) in (3.5), we see that the subordination becomes 

( ) ( ) ( )( ) ( ) ( ).1 1 zhzpzpzzpn aa ≺′−− +  

Define the function ( )zq  by 

( ) .1
1: z

Azzq
−
+=  

It is clear that ( )zq  is univalent in U and ( )Uq  is the region ( ) >ℜ zq  

( ) .21 A−  Define the functions ϑ and ϕ by 

( ) ( ) 11 +ω−=ωϑ an    and   ( ) .aω=ωϕ  

We observe that (3.5) can be written as (2.17). Note that ϕ and ϑ are 
analytic in .0\C  Also, we see that 

( ) ( ) ( )( ) ( ) ( )
( ) a

a

z
AzAzzqzqzzQ +−

++=ϕ′= 21
11:  

and 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) .11

111
1:

1
⎟
⎠
⎞⎜

⎝
⎛

−+
++−⎟

⎠
⎞⎜

⎝
⎛

−
+=+ϑ=

+

zAz
zAnz

AzzQzqzh
a

 

By our assumptions, we have 

( )
( ) ( ) ⎥⎦

⎤
⎢⎣
⎡

−
++

+
+ℜ=

′
ℜ z

zaAz
AzazQ

zQz
1211  

( )
( ) ,012

1
2

2
11 >

+
−−

=+−
+

+> A
Aaa

A
Aa  
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and 

( )
( )

( )( )
( )( )

( )
( ) ( ) ( ) ( )

( ) .011 ≥
′

ℜ++−=⎥⎦
⎤

⎢⎣
⎡ ′

+
ϕ
ϑ′ℜ=

′
ℜ zQ

zQzanzQ
zQz

zq
zq

zQ
zhz  

The results now follow by an application of Lemma 2.1.  

Theorem 3.3. Let ,1−≥a  ,1>γ  ∑∈f  and ( ) ( ) zzfqbaLI ml
k ,,λ

μ  

0≠  in .∗U  If f satisfies 

( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ λ
μ

2
1,,

z
n

z
zfqbaLI

a
ml

k
 

 ( )
( ) ( ) ( )

( ) ( ) ,1
111 1

⎟
⎠
⎞⎜

⎝
⎛

−γ−
γ−−−⎟

⎠
⎞⎜

⎝
⎛

−γ
−γ +

zz
znz

z a
≺  (3.8) 

then 

( ) ( ) ( ) ( ).1,, ∗
λ
μ ∈

−γ
−γ Uzz

z
z

zfqbaLI ml
k

≺  

Proof. Define the function ( )zp  by 

 ( )
( ) ( )

.
,,

z
zfqbaLI

zp ml
k λ

μ=  (3.9) 

Clearly, ( )zp  is analytic in ,∗U  we can compute to show 

( )
( ( ) ( )) ( ) ( )

.
,,,,

z
zfqbaLIzfqbaLIz

zpz ml
k

ml
k λ

μ
λ
μ −′

=′  (3.10) 

By using the identity (2.16), we can get from (3.10), 

 ( ) ( ) ( ).11
2 zpzzpn

z
n ′−−=+  (3.11) 

Using (3.11) in (3.8), we obtain 

( ) ( )( ) ( ) ( )( )aa zpzpzzpn ′−− +11  

 ( )
( ) ( ) ( )

( ) ( ) .1
111 1

⎟
⎠
⎞⎜

⎝
⎛

−γ−
γ−−−⎟

⎠
⎞⎜

⎝
⎛

−γ
−γ +

zz
znz

z a
≺  (3.12) 
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Define the function ( )zq  by 

( ) ( )
z
zzq

−γ
−γ= 1  

which is univalent in .∗U  We see that (3.12) can be written as (2.17) when  

ϑ and ϕ are given by ( ) ( ) ( ) aan ω−=ωϕω−=ωϑ + ,1 1  such that ϑ and ϕ are 

analytic in .0\C  Now 

( ) ( ) ( )( ) ( ) ( )
( )

,111

za

aa

z
zzzqzqzzQ +

+

−γ

−γ−γ−=ϕ′=  

( ) ( )( ) ( ) ( )
( ) ( ) ( )

( ) ( ) .1
111 1

⎟
⎠
⎞⎜

⎝
⎛

−γ−
γ−−−⎟

⎠
⎞⎜

⎝
⎛

−γ
−γ=+ϑ=

+

zz
znz

zzQzqzh
a

 

By our assumptions, we have 
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⎠
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( ) ( )
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( ) ( )
( ) ,012

11 >
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−γ+= a  

hence ( )zQ  is starlike. Now 

( )
( )

( )( )
( )( )

( )
( ) ( ) ( ) ( )

( ) .011 ≥
′

ℜ++−=⎥⎦
⎤

⎢⎣
⎡ ′

+
ϕ
ϑ′ℜ=

′
ℜ zQ

zQzanzQ
zQz

zq
zq
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Now we can apply Lemma 2.1 to get ( ) ( ).zqzp ≺  We have 

( ) ( ) ( ) .1,,1
z
z

z
zfqbaLI ml

k

−γ
−γ+λ

μ ≺  

This completes the proof of Theorem 3.3.  
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