GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE TRANS-SASAKIAN MANIFOLD

Dae Ho Jin
Department of Mathematics
Dongguk University
Gyeongju 780-714, Korea

Abstract

We study generic lightlike submanifolds M of an indefinite transSasakian manifold \bar{M}. The purpose of this paper is to prove several classification theorems of such a generic lightlike submanifold subject to the condition that the structure vector field ζ of \bar{M} is tangent to M.

1. Introduction

In the theory of Riemannian submanifold, there exists a class of submanifolds of an almost contact manifold \bar{M}. A submanifold M of \bar{M} is called generic [12, 13] if the normal bundle $T M^{\perp}$ of M is mapped into the tangent bundle $T M$ by action of the almost contact structure tensor J of \bar{M}, that is,

[^0]$$
J\left(T M^{\perp}\right) \subset T M
$$

We extended the concept of generic submanifold in case M is a lightlike submanifold of an indefinite almost contact manifold \bar{M}. In case M is lightlike submanifold, the radical distribution $\operatorname{Rad}(T M)=T M \bigcap T M^{\perp}$ is non-trivial vector bundle of M and $T M$ is lightlike vector bundle. Thus, we have

$$
T \bar{M} \neq T M \oplus_{\text {orth }} T M^{\perp}
$$

Consider a complementary vector bundle $S(T M)$ of $\operatorname{Rad}(T M)$ in $T M$, i.e.,

$$
T M=\operatorname{Rad}(T M) \oplus_{o r t h} S(T M)
$$

We call $S(T M)$ a screen distribution of M. It is immediate from the last equation that $S(T M)$ is non-degenerate. Moreover, if M is para-compact, then there always exists a screen distribution $S(T M)$. Along M, we have

$$
T \bar{M}_{\mid M}=S(T M) \oplus_{\text {orth }} S(T M)^{\perp}, S(T M) \cap S(T M)^{\perp} \neq\{0\}
$$

where $S(T M)^{\perp}$ is orthogonal complement to $S(T M)$ in $T \bar{M}_{\mid M}$. Although $S(T M)$ is not unique, it is canonically isomorphic to the factor vector bundle $S(T M)^{*}=T M / \operatorname{Rad}(T M)$ [10]. Thus, all $S(T M) s$ are mutually isomorphic. Moreover, while $T M$ is lightlike, all $S(T M) s$ are non-degenerate. Due to these reasons, we defined generic lightlike submanifold as follows [6-8]:

A lightlike submanifold M of an indefinite almost contact manifold \bar{M} is called generic if there exists a screen distribution $S(T M)$ of M such that

$$
\begin{equation*}
J\left(S(T M)^{\perp}\right) \subset S(T M) \tag{1.1}
\end{equation*}
$$

The geometry of generic lightlike submanifold is an extension of the geometry of lightlike hypersurface or 1-lightlike submanifold. Much of its theory will be immediately generalized in a formal way to general lightlike submanifolds.

Oubina [11] introduced the notion of trans-Sasakian manifold of type (α, β), where α and β are smooth functions. Sasakian, Kenmotsu and cosymplectic manifolds are three important kinds of trans-Sasakian manifold such that

$$
\alpha=\varepsilon, \beta=0 ; \quad \alpha=0, \beta=\varepsilon ; \quad \alpha=\beta=0
$$

respectively, where $\varepsilon= \pm 1$. In this case, if \bar{M} is a semi-Riemannian manifold, then we say that \bar{M} is an indefinite trans-Sasakian manifold of type (α, β).

Alegre et al. [2] introduced generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$. Sasakian, Kenmotsu and cosymplectic space forms are three important kinds of generalized Sasakian space forms such that

$$
\begin{aligned}
& f_{1}=\frac{c+3}{4}, f_{2}=f_{3}=\frac{c-1}{4} ; \quad f_{1}=\frac{c-3}{4}, f_{2}=f_{3}=\frac{c+1}{4} \\
& f_{1}=f_{2}=f_{3}=\frac{c}{4}
\end{aligned}
$$

respectively, where c is a constant J-sectional curvature of each space forms.
We study generic lightlike submanifolds of an indefinite trans-Sasakian manifold \bar{M} or an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$. We prove several classification theorems of such a generic lightlike submanifold subject such that the structure vector field ζ of \bar{M} is tangent to M.

2. Preliminaries

An odd-dimensional semi-Riemannian manifold (\bar{M}, \bar{g}) is called an indefinite trans-Sasakian manifold if there exists a structure set $\{J, \zeta, \theta, \bar{g}\}$, where J is a $(1,1)$-type tensor field, ζ is a vector field which is called the structure vector field and θ is a 1 -form, a Levi-Civita connection $\bar{\nabla}$ on \bar{M} and two smooth functions α and β on \bar{M}, such that

$$
\begin{align*}
& J^{2} \bar{X}=-\bar{X}+\theta(\bar{X}) \zeta, \theta(\zeta)=1, \theta(\bar{X})=\varepsilon \bar{g}(\bar{X}, \zeta), \\
& \theta \circ J=0, \bar{g}(J \bar{X}, J \bar{Y})=\bar{g}(\bar{X}, \bar{Y})-\varepsilon \theta(\bar{X}) \theta(\bar{Y}), \tag{2.1}\\
& \left(\bar{\nabla}_{\bar{X}} J\right) \bar{Y}=\alpha\{\bar{g}(\bar{X}, \bar{Y}) \zeta-\varepsilon \theta(\bar{Y}) \bar{X}\}+\beta\{\bar{g}(J \bar{X}, \bar{Y}) \zeta-\varepsilon \theta(\bar{Y}) J \bar{X}\}, \tag{2.2}
\end{align*}
$$

for any vector fields \bar{X}, \bar{Y} and \bar{Z} on \bar{M}, where $\varepsilon=1$ or -1 according as the vector field ζ is spacelike or timelike, respectively. In this case, the set $\{J, \zeta, \theta, \bar{g}\}$ is called an indefinite trans-Sasakian structure of type (α, β).

Throughout this paper, we may assume that the structure vector field ζ is unit spacelike, i.e., $\varepsilon=1$, no loss of generality. From (2.1) and (2.2), we get

$$
\begin{equation*}
\bar{\nabla}_{\bar{X}} \zeta=-\alpha J \bar{X}+\beta\{\bar{X}-\theta(\bar{X}) \zeta\}, \quad d \theta(\bar{X}, \bar{Y})=\alpha \bar{g}(\bar{X}, J \bar{Y}) . \tag{2.3}
\end{equation*}
$$

An indefinite trans-Sasakian manifold \bar{M} is called an indefinite generalized Sasakian space form and denote it by $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ if it admits a curvature tensor \bar{R} and three smooth functions f_{1}, f_{2} and f_{3} satisfying

$$
\begin{align*}
\bar{R}(\bar{X}, \bar{Y}) \bar{Z}= & f_{1}\{\bar{g}(\bar{Y}, \bar{Z}) \bar{X}-\bar{g}(\bar{X}, \bar{Z}) \bar{Y}\} \\
& +f_{2}\{\bar{g}(\bar{X}, J \bar{Z}) J \bar{Y}-\bar{g}(\bar{Y}, J \bar{Z}) J \bar{X}+2 \bar{g}(\bar{X}, J \bar{Y}) J \bar{Z}\} \\
& +f_{3}\{\theta(\bar{X}) \theta(\bar{Z}) \bar{Y}-\theta(\bar{Y}) \theta(\bar{Z}) \bar{X} \\
& +\bar{g}(\bar{X}, \bar{Z}) \theta(\bar{Y}) \zeta-\bar{g}(\bar{Y}, \bar{Z}) \theta(\bar{X}) \zeta\} . \tag{2.4}
\end{align*}
$$

Let (M, g) be an m-dimensional lightlike submanifold of an indefinite trans-Sasakian manifold (\bar{M}, \bar{g}), of dimension $(m+n)$. Then the radical distribution $\operatorname{Rad}(T M)=T M \cap T M^{\perp}$ of M is a subbundle of the tangent bundle $T M$ and the normal bundle $T M^{\perp}$, of rank $r(1 \leq r \leq \min \{m, n\})$. In general, there exist two complementary non-degenerate distributions $S(T M)$ and $S\left(T M^{\perp}\right)$ of $\operatorname{Rad}(T M)$ in $T M$ and $T M^{\perp}$, respectively, which are called the screen distribution and the co-screen distribution of M, such that

$$
T M=\operatorname{Rad}(T M) \oplus_{\text {orth }} S(T M), T M^{\perp}=\operatorname{Rad}(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right),
$$

where $\oplus_{\text {orth }}$ denotes the orthogonal direct sum. Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle E. Also denoted by $(2.1)_{i}$ the i th equation of (2.1). We use the same notations for any others. We use the following range of indices:

$$
i, j, k, \ldots \in\{1, \ldots, r\}, \quad a, b, c, \ldots \quad \in\{r+1, \ldots, n\} .
$$

Let $\operatorname{tr}(T M)$ and $\operatorname{ltr}(T M)$ be complementary vector bundles to $T M$ in $T \bar{M}_{\mid M}$ and $T M^{\perp}$ in $S(T M)^{\perp}$, respectively and let $\left\{N_{1}, \ldots, N_{r}\right\}$ be a lightlike basis of $\operatorname{ltr}(T M)_{\mathcal{U}}$, where \mathcal{U} is a coordinate neighborhood of M, such that

$$
\bar{g}\left(N_{i}, \xi_{j}\right)=\delta_{i j}, \quad \bar{g}\left(N_{i}, N_{j}\right)=0,
$$

where $\left\{\xi_{1}, \ldots, \xi_{r}\right\}$ is a lightlike basis of $\operatorname{Rad}(T M)_{\mid \mathcal{U}}$. Then we have

$$
\begin{aligned}
T \bar{M} & =T M \oplus \operatorname{tr}(T M)=\{\operatorname{Rad}(T M) \oplus \operatorname{tr}(T M)\} \oplus_{\text {orth }} S(T M) \\
& =\{\operatorname{Rad}(T M) \oplus \operatorname{ltr}(T M)\} \oplus_{\text {orth }} S(T M) \oplus_{\text {orth }} S\left(T M^{\perp}\right) .
\end{aligned}
$$

We say that a lightlike submanifold $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$ of \bar{M} is
(1) r-lightlike submanifold if $1 \leq r<\min \{m, n\}$;
(2) co-isotropic submanifold if $1 \leq r=n<m$;
(3) isotropic submanifold if $1 \leq r=m<n$;
(4) totally lightlike submanifold if $1 \leq r=m=n$.

The above three classes (2)~(4) are particular cases of the class (1) as follows:

$$
S\left(T M^{\perp}\right)=\{0\}, \quad S(T M)=\{0\}, \quad S(T M)=S\left(T M^{\perp}\right)=\{0\},
$$

respectively. The geometry of r-lightlike submanifolds is more general form than that of the others. For this reason, we consider only r-lightlike submanifolds M, with following local quasi-orthonormal field of frames of \bar{M} :

$$
\left\{\xi_{1}, \ldots, \xi_{r}, N_{1}, \ldots, N_{r}, F_{r+1}, \ldots, F_{m}, E_{r+1}, \ldots, E_{n}\right\}
$$

where $\left\{F_{r+1}, \ldots, F_{m}\right\}$ and $\left\{E_{r+1}, \ldots, E_{n}\right\}$ are orthonormal bases of $S(T M)$ and $S\left(T M^{\perp}\right)$, respectively. Denote $\varepsilon_{a}=\bar{g}\left(E_{a}, E_{a}\right)$. Then $\varepsilon_{a} \delta_{a b}=\bar{g}\left(E_{a}, E_{b}\right)$.

In the following, let X, Y, Z and W be the vector fields on M, unless otherwise specified. Let P be the projection morphism of $T M$ on $S(T M)$. Then the local Gauss-Weingarten formulae of M and $S(T M)$ are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+\sum_{i=1}^{r} h_{i}^{\ell}(X, Y) N_{i}+\sum_{a=r+1}^{n} h_{a}^{s}(X, Y) E_{a}, \tag{2.5}\\
& \bar{\nabla}_{X} N_{i}=-A_{N_{i}} X+\sum_{j=1}^{r} \tau_{i j}(X) N_{j}+\sum_{a=r+1}^{n} \rho_{i a}(X) E_{a}, \tag{2.6}\\
& \bar{\nabla}_{X} E_{a}=-A_{E_{a}} X+\sum_{i=1}^{r} \phi_{a i}(X) N_{i}+\sum_{a=r+1}^{n} \sigma_{a b}(X) E_{b}, \tag{2.7}\\
& \nabla_{X} P Y=\nabla_{X}^{*} P Y+\sum_{i=1}^{r} h_{i}^{*}(X, P Y) \xi_{i}, \tag{2.8}\\
& \nabla_{X} \xi_{i}=-A_{\xi_{i}}^{*} X-\sum_{j=1}^{r} \tau_{j i}(X) \xi_{j}, \tag{2.9}
\end{align*}
$$

respectively, where ∇ and ∇^{*} are induced linear connections on $T M$ and $S(T M)$, respectively, h_{i}^{ℓ} and h_{a}^{s} are called the local second fundamental forms on $T M, h_{i}^{*}$ are called the local second fundamental forms on $S(T M)$.
$A_{N_{i}}, A_{E_{a}}$ and $A_{\xi_{i}}^{*}$ are the shape operators and $\tau_{i j}, \rho_{i a}, \phi_{a i}$ and $\sigma_{\alpha \beta}$ are 1-forms.

Since $\bar{\nabla}$ is torsion-free, ∇ is also torsion-free, and both h_{i}^{ℓ} and h_{a}^{s} are symmetric. From the fact that $h_{i}^{\ell}(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, \xi_{i}\right)$, we know that each h_{i}^{ℓ} is independent of the choice of the screen distribution $S(T M)$. The above three local second fundamental forms are related to their shape operators by

$$
\begin{align*}
& g\left(A_{\xi_{i}}^{*} X, Y\right)=h_{i}^{\ell}(X, Y)+\sum_{j=1}^{r} h_{j}^{\ell}\left(X, \xi_{i}\right) \eta_{j}(Y), \tag{2.10}\\
& g\left(A_{E_{a}} X, Y\right)=\varepsilon_{a} h_{a}^{s}(X, Y)+\sum_{i=1}^{r} \phi_{a i}(X) \eta_{i}(Y), \tag{2.11}\\
& g\left(A_{N_{i}} X, P Y\right)=h_{i}^{*}(X, P Y), \eta_{k}\left(A_{\xi_{i}}^{*} X\right)=0 \tag{2.12}
\end{align*}
$$

where η_{i} is the 1 -forms given by $\eta_{i}(X)=\bar{g}\left(X, N_{i}\right)$. Applying $\bar{\nabla}_{X}$ to $g\left(\xi_{i}, \xi_{j}\right)=0, \quad \bar{g}\left(\xi_{i}, E_{a}\right)=0, \quad \bar{g}\left(N_{i}, N_{j}\right)=0, \quad \bar{g}\left(N_{i}, E_{a}\right)=0 \quad$ and $\bar{g}\left(E_{a}, E_{b}\right)=\varepsilon \delta_{a b}$, we get

$$
\begin{align*}
& h_{i}^{\ell}\left(X, \xi_{j}\right)+h_{j}^{\ell}\left(X, \xi_{i}\right)=0, h_{a}^{s}\left(X, \xi_{i}\right)=-\varepsilon_{a} \phi_{a i}(X), \\
& \eta_{j}\left(A_{N_{i}} X\right)+\eta_{i}\left(A_{N_{j}} X\right)=0, \bar{g}\left(A_{E_{a}} X, N_{i}\right)=\varepsilon_{a} \rho_{i a}(X), \\
& \varepsilon_{b} \sigma_{a b}+\varepsilon_{a} \sigma_{b a}=0 \text { and } h_{i}^{\ell}\left(X, \xi_{i}\right)=0, h_{i}^{\ell}\left(\xi_{j}, \xi_{k}\right)=0 . \tag{2.13}
\end{align*}
$$

Denote by \bar{R}, R and R^{*} the curvature tensors of the Levi-Civita connection $\bar{\nabla}$ on \bar{M} and the linear connections ∇ and ∇^{*} on M and $S(T M)$, respectively. By using the Gauss-Weingarten formulae (2.5)~(2.9) for M and $S(T M)$, we obtain the Gauss equations for M and $S(T M)$ such that

$$
\begin{align*}
\bar{R}(X, Y) Z= & R(X, Y) Z+\sum_{i=1}^{r}\left\{h_{i}^{\ell}(X, Z) A_{N_{i}} Y-h_{i}^{\ell}(Y, Z) A_{N_{i}} X\right\} \\
& +\sum_{a=r+1}^{n}\left\{h_{a}^{s}(X, Z) A_{E_{a}} Y-h_{a}^{s}(Y, Z) A_{E_{a}} X\right\} \\
& +\sum_{i=1}^{r}\left\{\left(\nabla_{X} h_{i}^{\ell}\right)(Y, Z)-\left(\nabla_{Y} h_{i}^{\ell}\right)(X, Z)\right. \\
& +\sum_{j=1}^{r}\left[\tau_{j i}(X) h_{j}^{\ell}(Y, Z)-\tau_{j i}(Y) h_{j}^{\ell}(X, Z)\right] \\
& \left.+\sum_{a=r+1}^{n}\left[\phi_{a i}(X) h_{a}^{s}(Y, Z)-\phi_{a i}(Y) h_{a}^{s}(X, Z)\right]\right\} N_{i} \\
& +\sum_{a=r+1}^{n}\left\{\left(\nabla_{X} h_{a}^{s}\right)(Y, Z)-\left(\nabla_{Y} h_{a}^{s}\right)(X, Z)\right. \\
& +\sum_{i=1}^{r}\left[\rho_{i a}(X) h_{i}^{\ell}(Y, Z)-\rho_{i a}(Y) h_{a}^{s}(X, Z)\right] \\
& \left.+\sum_{b=r+1}^{n}\left[\sigma_{b a}(X) h_{b}^{s}(Y, Z)-\sigma_{b a}(Y) h_{b}^{s}(X, Z)\right]\right\} E_{a} . \tag{2.14}
\end{align*}
$$

$$
R(X, Y) P Z=R^{*}(X, Y) P Z+\sum_{i=1}^{r}\left\{h_{i}^{*}(X, P Z) A_{\xi_{i}}^{*} Y-h_{i}^{*}(Y, P Z) A_{\xi_{i}}^{*} X\right\}
$$

$$
+\sum_{i=1}^{r}\left\{\left(\nabla_{X} h_{i}^{*}\right)(Y, P Z)-\left(\nabla_{Y} h_{i}^{*}\right)(X, P Z)\right.
$$

$$
\begin{equation*}
\left.+\sum_{j=1}^{r}\left[\tau_{i j}(Y) h_{j}^{*}(X, P Z)-\tau_{i j}(X) h_{j}^{*}(Y, P Z)\right]\right\} \xi_{i} . \tag{2.15}
\end{equation*}
$$

In the case $R=0$, we say that M is flat.

3. Generic Lightlike Submanifolds

For a generic lightlike submanifold M, from (1.1) we see that $J(\operatorname{Rad}(T M)), J(\operatorname{ltr}(T M))$ and $J\left(S\left(T M^{\perp}\right)\right)$ are subbundles of $S(T M)$. In the following, we shall assume that the vector field ζ is tangent to M. Călin [3] proved that if ζ is tangent to M, then it belongs to $S(T M)$. Using this result, there exists a non-degenerate almost complex distribution H_{o}, i.e., $J\left(H_{o}\right)=H_{o}$, such that

$$
S(T M)=\{J(\operatorname{Rad}(T M)) \oplus J(\operatorname{ltr}(T M))\} \oplus_{\text {orth }} J\left(S\left(T M^{\perp}\right)\right) \oplus_{\text {orth }} H_{o}
$$

Denote by H the almost complex distribution with respect to J such that

$$
H=\operatorname{Rad}(T M) \oplus_{\text {orth }} J(\operatorname{Rad}(T M)) \oplus_{\text {orth }} H_{o}
$$

Therefore, the general decomposition form of $T M$ in Section 2 is reduced to

$$
\begin{equation*}
T M=H \oplus J(\operatorname{ltr}(T M)) \oplus_{\text {orth }} J\left(S\left(T M^{\perp}\right)\right) \tag{3.1}
\end{equation*}
$$

Consider $2 r$-local null vector fields U_{i} and $V_{i},(n-r)$-local non-null unit vector fields W_{a}, and their associated 1-forms u_{i}, v_{i} and w_{a} defined by

$$
\begin{align*}
& U_{i}=-J N_{i}, \quad V_{i}=-J \xi_{i}, \quad W_{a}=-J E_{a} \tag{3.2}\\
& u_{i}(X)=g\left(X, V_{i}\right), \quad v_{i}(X)=g\left(X, U_{i}\right), \quad w_{a}(X)=\varepsilon_{a} g\left(X, W_{a}\right) \tag{3.3}
\end{align*}
$$

Denote by S the projection morphism of $T M$ on H and F a tensor field of type $(1,1)$ globally defined on M by $F=J \circ S$. Then $J X$ is expressed as

$$
\begin{equation*}
J X=F X+\sum_{i=1}^{r} u_{i}(X) N_{i}+\sum_{a=r+1}^{n} w_{a}(X) E_{a} \tag{3.4}
\end{equation*}
$$

Applying $\bar{\nabla}_{X}$ to (3.2)~(3.4) by turns and using (2.2), (2.5) $\sim(2.13)$ and (3.2)~(3.4), we have

$$
\begin{align*}
& h_{j}^{\ell}\left(X, U_{i}\right)=h_{i}^{*}\left(X, V_{j}\right), \varepsilon_{a} h_{i}^{*}\left(X, W_{a}\right)=h_{a}^{S}\left(X, U_{i}\right) \\
& h_{j}^{\ell}\left(X, V_{i}\right)=h_{i}^{\ell}\left(X, V_{j}\right), \varepsilon_{a} h_{i}^{\ell}\left(X, W_{a}\right)=h_{a}^{S}\left(X, V_{i}\right) \\
& \varepsilon_{b} h_{b}^{S}\left(X, W_{a}\right)=\varepsilon_{a} h_{a}^{S}\left(X, W_{b}\right) \tag{3.5}
\end{align*}
$$

$$
\begin{align*}
\nabla_{X} U_{i}= & F\left(A_{N_{i}} X\right)+\sum_{j=1}^{r} \tau_{i j}(X) U_{j}+\sum_{a=r+1}^{n} \rho_{i a}(X) W_{a} \\
& -\left\{\alpha \eta_{i}(X)+\beta v_{i}(X)\right\} \zeta, \tag{3.6}\\
\nabla_{X} V_{i}= & F\left(A_{\xi_{i}^{*}}^{*} X\right)-\sum_{j=1}^{r} \tau_{j i}(X) V_{j}+\sum_{j=1}^{r} h_{j}^{\ell}\left(X, \xi_{i}\right) U_{j} \\
- & \sum_{a=r+1}^{n} \varepsilon_{a} \phi_{a i}(X) W_{a}-\beta u_{i}(X) \zeta \tag{3.7}\\
\nabla_{X} W_{a}= & F\left(A_{E_{a}} X\right)+\sum_{i=1}^{r} \phi_{a i}(X) U_{i}+\sum_{b=r+1}^{n} \sigma_{a b}(X) W_{b} \\
& -\varepsilon_{a} \beta w_{a}(X) \zeta, \tag{3.8}\\
\left(\nabla_{X} u_{i}\right)(Y)= & -\sum_{j=1}^{r} u_{j}(Y) \tau_{j i}(X)-\sum_{a=r+1}^{n} w_{a}(Y) \phi_{a i}(X) \\
& -\beta \theta(Y) u_{i}(X)-h_{i}^{\ell}(X, F Y), \tag{3.9}\\
\left(\nabla_{X} v_{i}\right)(Y)= & \sum_{j=1}^{r} v_{j}(Y) \tau_{i j}(X)+\sum_{a=r+1}^{n} \varepsilon_{a} w_{a}(Y) \rho_{i a}(X) \\
& \quad-\sum_{j=r+1}^{r} u_{j}(Y) \eta_{j}\left(A_{N_{i}} X\right)-g\left(A_{N_{i}} X, F Y\right) \\
& \quad-\theta(Y)\left\{\alpha \eta_{i}(X)+\beta v_{i}(X)\right\} \tag{3.10}\\
& -\sum_{i=1}^{r} h_{i}^{\ell}(X, Y) U_{i}-\sum_{a=r+1}^{n} h_{a}^{s}(X, Y) W_{a} \\
& +\alpha\{g(X, Y) \zeta-\theta(Y) X\}+\beta\{\bar{g}(J X, Y) \zeta-\theta(Y) F X\} .
\end{align*}
$$

Applying $\bar{\nabla}_{X}$ to $\bar{g}\left(\zeta, \xi_{i}\right)=0, \bar{g}\left(\zeta, E_{a}\right)=0$ and $\bar{g}\left(\zeta, N_{i}\right)=0$ by turns and using (2.1), (2.3), (2.5) $\sim(2.12),(3.2)$ and (3.3), we have

$$
\begin{align*}
& h_{i}^{\ell}(X, \zeta)=-\alpha u_{i}(X), \quad h_{a}^{s}(X, \zeta)=-\alpha w_{a}(X) \\
& h_{i}^{*}(X, \zeta)=-\alpha v_{i}(X)+\beta \eta_{i}(X) \tag{3.12}
\end{align*}
$$

Substituting (3.4) into (2.3) and using (2.5), we have

$$
\begin{equation*}
\nabla_{X} \zeta=-\alpha F X+\beta(X-\theta(X) \zeta) \tag{3.13}
\end{equation*}
$$

We denote by $\lambda_{i j}, \mu_{i a}, v_{i a}, \kappa_{a b}$ and $\chi_{i j}$ the 1 -forms such that

$$
\begin{align*}
& \lambda_{i j}(X)=h_{i}^{\ell}\left(X, U_{j}\right)=h_{j}^{*}\left(X, V_{i}\right), \quad \kappa_{a b}(X)=\varepsilon_{a} h_{a}^{S}\left(X, W_{b}\right) \\
& \mu_{i a}(X)=h_{i}^{\ell}\left(X, W_{a}\right)=\varepsilon_{a} h_{a}^{S}\left(X, V_{i}\right), \quad \chi_{i j}(X)=h_{i}^{\ell}\left(X, V_{j}\right) \\
& v_{a i}(X)=h_{i}^{*}\left(X, W_{a}\right)=\varepsilon_{a} h_{a}^{S}\left(X, U_{i}\right) \tag{3.14}
\end{align*}
$$

Note that, from $(3.5)_{3,5}$ and $(3.14)_{2,4}$, we see that $\chi_{i j}$ and $\kappa_{a b}$ are symmetric.

Denote by H^{\prime} the distribution on $H(T M)$ such that

$$
H^{\prime}=J(\operatorname{ltr}(T M)) \oplus_{\text {orth }} J\left(S\left(T M^{\perp}\right)\right), \quad T M=H \oplus H^{\prime}
$$

Definition. We say that a lightlike submanifold M of \bar{M} is called
(1) irrotational [10] if $\bar{\nabla}_{X} \xi_{i} \in \Gamma(T M)$ for all $i \in\{1, \ldots, r\}$,
(2) solenoidal [9] if $A_{W_{a}}$ and $A_{N_{i}}$ are $S(T M)$-valued,
(3) statical [9] if M is both irrotational and solenoidal.

Remark. From (2.5) and (3.12) $)_{2}$, the item (1) is equivalent to

$$
h_{i}^{\ell}\left(X, \xi_{i}\right)=0, \quad h_{a}^{S}\left(X, \xi_{i}\right)=\phi_{a i}(X)=0
$$

By using (3.12) $)_{4}$, the item (2) is equivalent to

$$
\eta_{j}\left(A_{N_{i}} X\right)=0, \rho_{i a}(X)=\eta_{j}\left(A_{E_{a}} X\right)=0
$$

Theorem 3.1. Let M be a generic lightlike submanifold of an indefinite trans-Sasakian manifold \bar{M}. If F is parallel with respect to the induced connection ∇, then the following statements are satisfied:
(1) \bar{M} is an indefinite cosymplectic manifold, i.e., $\alpha=\beta=0$,
(2) M is statical,
(3) $J(\operatorname{ltr}(T M)), J\left(S\left(T M^{\perp}\right)\right)$ and H are parallel distributions on M,
(4) M is locally a product manifold $M_{r} \times M_{n-r} \times M^{\#}$, where M_{r}, M_{n-r} and $M^{\#}$ are leaves of $J(\operatorname{ltr}(T M)), J\left(S\left(T M^{\perp}\right)\right)$ and H, respectively.

Proof. (1) As $\nabla_{X} F=0$, taking the scalar product with U_{j} to (3.11), we get

$$
\begin{aligned}
\sum_{i=1}^{r} u_{i}(Y) g\left(A_{N_{i}} X, U_{j}\right)+\sum_{\alpha=r+1}^{n} w_{a}(Y) g\left(A_{E_{a}} X, U_{j}\right) \\
-\theta(Y)\left\{\alpha v_{j}(X)-\beta \eta_{j}(Y)\right\}=0
\end{aligned}
$$

Replacing Y by ζ to this equation, we have $\alpha v_{j}(X)-\beta \eta_{j}(X)=0$. Therefore, $\alpha=\beta=0$ and \bar{M} is an indefinite cosymplectic manifold.
(2) From the last equation, we obtain

$$
\begin{equation*}
\bar{g}\left(A_{N_{i}} X, U_{j}\right)=0, \quad v_{a i}(X)=\bar{g}\left(A_{E_{a}} X, U_{j}\right)=0 . \tag{3.15}
\end{equation*}
$$

Replacing Y by ξ_{j} to (3.11) such that $\alpha=\beta=0$, we get

$$
\sum_{i=1}^{r} h_{i}^{\ell}\left(X, \xi_{j}\right) U_{i}+\sum_{a=r+1}^{n} h_{a}^{s}\left(X, \xi_{j}\right) W_{a}=0
$$

From this equation and $(2.13)_{2}$, we obtain

$$
\begin{equation*}
h_{i}^{\ell}\left(X, \xi_{j}\right)=0, \quad \phi_{a i}(X)=h_{a}^{s}\left(X, \xi_{i}\right)=0 . \tag{3.16}
\end{equation*}
$$

Taking the scalar product with N_{j} to (3.11) such that $\alpha=\beta=0$, we have

$$
\sum_{i=1}^{r} u_{i}(Y) \bar{g}\left(A_{N_{i}} X, N_{j}\right)+\sum_{\alpha=r+1}^{n} w_{a}(Y) \bar{g}\left(A_{E_{a}} X, N_{j}\right)=0
$$

From this equation and $(2.13)_{4}$, we obtain

$$
\begin{equation*}
\bar{g}\left(A_{N_{i}} X, N_{j}\right)=0, \quad \rho_{i a}(X)=\bar{g}\left(A_{E_{a}} X, N_{j}\right)=0 . \tag{3.17}
\end{equation*}
$$

From (3.16) and (3.17), we see that M is statical.
(3) Taking the scalar product with V_{j} and W_{b} to (3.11) by turns, we get

$$
\begin{aligned}
& h_{j}^{\ell}(X, Y)=\sum_{i=1}^{r} u_{i}(Y) \lambda_{j i}(X)+\sum_{a=r+1}^{n} w_{a}(Y) \mu_{j a}(X), \\
& h_{b}^{s}(X, Y)=\sum_{a=r+1}^{n} w_{a}(Y) \kappa_{a b}(X),
\end{aligned}
$$

due to $v_{a i}(X)=0$. Replacing Y by V_{i} to the second equation, we have

$$
\mu_{i a}(X)=h_{i}^{\ell}\left(X, W_{a}\right)=\varepsilon_{a} h_{a}^{s}\left(X, V_{i}\right)=0 .
$$

As $\rho_{i a}=0, A_{W_{a}} X$ belongs to $S(T M)$ by (2.13) 4 . As $A_{\xi_{i}}^{*} X$ and $A_{W_{a}} X$ belong to $S(T M)$ and $S(T M)$ is non-degenerate, from the last three equations we get

$$
\begin{equation*}
A_{\xi_{i}}^{*} X=\sum_{j=1}^{r} \lambda_{i j}(X) V_{j}, \quad A_{E_{a}} X=\sum_{b=r+1}^{n} \kappa_{a b}(X) W_{b} \tag{3.18}
\end{equation*}
$$

As $v_{a j}(X)=h_{a}^{s}\left(X, U_{j}\right)=0$, taking $Y=U_{j}$ to (3.11), we get

$$
\begin{equation*}
A_{N_{i}} X=\sum_{j=1}^{r} \lambda_{j i}(X) U_{j} . \tag{3.19}
\end{equation*}
$$

Taking $Y \in \Gamma(H)$ and then, taking $Y=V_{j}$ to (3.11) by turns, we have

$$
\begin{aligned}
& \sum_{i=1}^{r} h_{i}^{\ell}(X, Y) U_{i}+\sum_{a=r+1}^{n} h_{a}^{s}(X, Y) W_{a}=0 \\
& \sum_{i=1}^{r} h_{i}^{\ell}\left(X, V_{j}\right) U_{i}+\sum_{a=r+1}^{n} h_{a}^{s}\left(X, V_{j}\right) W_{a}=0
\end{aligned}
$$

respectively. Taking the scalar product with U_{j} and W_{b} to these two equations by turns, for any $X \in \Gamma(T M)$ and $Y \in \Gamma(H)$, we have

$$
\begin{equation*}
h_{i}^{\ell}(X, Y)=0, \quad h_{a}^{S}(X, Y)=0, \quad h_{i}^{\ell}\left(X, V_{j}\right)=0, \quad h_{a}^{S}\left(X, V_{j}\right)=0 \tag{3.20}
\end{equation*}
$$

respectively. Taking the scalar product with $Z \in \Gamma\left(H_{o}\right)$ to (3.11), we get

$$
\sum_{i=1}^{r} u_{i}(Y) h_{i}^{*}(X, Z)+\sum_{a=r+1}^{n} \varepsilon_{a} w_{a}(Y) h_{a}^{S}(X, Z)=0
$$

Taking $Y=U_{k}$ to this equation, we have

$$
\begin{equation*}
h_{i}^{*}(X, Y)=0, \quad \forall X \in \Gamma(T M), \quad Y \in \Gamma\left(H_{o}\right) \tag{3.21}
\end{equation*}
$$

By directed calculations from (3.1) and by using (2.5), (3.5), (3.7), (3.8), (3.16), (3.17), (3.20) and the fact that $\phi_{a i}=\rho_{i a}=0$, we derive

$$
\begin{aligned}
& g\left(\nabla_{X} \xi_{i}, V_{j}\right)=g\left(\nabla_{X} V_{i}, V_{j}\right)=g\left(\nabla_{X} Y, V_{i}\right)=0 \\
& g\left(\nabla_{X} \xi_{i}, W_{a}\right)=g\left(\nabla_{X} V_{i}, W_{a}\right)=g\left(\nabla_{X} Y, W_{a}\right)=0
\end{aligned}
$$

for all $X \in \Gamma(T M)$ and $Y \in \Gamma\left(H_{o}\right)$, or equivalently, we get

$$
\nabla_{X} Y \in \Gamma(H), \quad \forall X \in \Gamma(T M), \quad \forall Y \in \Gamma(H)
$$

This result implies that H is a parallel distribution on M.
By using (3.4), (3.6), (3.15), (3.17), (3.20), (3.21) and $\rho_{i a}=0$, we derive

$$
\begin{aligned}
& g\left(\nabla_{X} U_{i}, N_{j}\right)=g\left(\nabla_{X} U_{i}, U_{j}\right)=g\left(\nabla_{X} U_{i}, Y\right)=0 \\
& g\left(\nabla_{X} W_{a}, N_{j}\right)=g\left(\nabla_{X} W_{a}, U_{j}\right)=g\left(\nabla_{X} W_{a}, Y\right)=0
\end{aligned}
$$

for all $X \in \Gamma(T M)$ and $Y \in \Gamma\left(H_{o}\right)$, or equivalently, we get

$$
\nabla_{X} Z \in \Gamma\left(H^{\prime}\right), \quad \forall X \in \Gamma(T M), \quad Z \in \Gamma\left(H^{\prime}\right) .
$$

Thus, H^{\prime} is also a parallel distribution of M.
(4) As $T M=H \oplus H^{\prime}$, and H and H^{\prime} are parallel distributions, by the decomposition theorem of de Rham [4], M is locally a product manifold $M_{1} \times M_{2}$, where M_{1} and M_{2} are leaves of the distributions H^{\prime} and H, respectively.

Theorem 3.2. Let M be a generic lightlike submanifold of an indefinite trans-Sasakian manifold \bar{M}. If U_{i} or V_{i} is parallel with respect to ∇, then $\alpha=\beta=0$, i.e., \bar{M} is an indefinite cosymplectic manifold.

Proof. (1) If U_{i} is parallel with respect to ∇, then, taking the scalar product with ζ to (3.6), we have $\alpha \eta_{i}(X)+\beta v_{i}(X)=0$. Thus, $\alpha=\beta=0$ and \bar{M} is an indefinite cosymplectic manifold. Taking the scalar product with V_{k} and W_{b} to (3.6) by turns, we get $\tau_{i j}=0$ and $\rho_{i a}=0$, respectively. Applying J to (3.6) and using (2.1) $1_{1},(3.12)_{3}$, we obtain

$$
\begin{equation*}
A_{N_{i}} X=\sum_{j=1}^{r} \lambda_{j i}(X) U_{j}+\sum_{a=r+1}^{n} v_{a i}(X) W_{a} \tag{3.22}
\end{equation*}
$$

Taking the scalar product with N_{j} to (3.22), we obtain $\eta_{j}\left(A_{N_{i}} X\right)=0$.
(2) If V_{i} is parallel with respect ∇, then, taking the scalar product with ζ, U_{k}, V_{k} and W_{b} to (3.7) by turns, we have $\beta=0, \tau_{j i}=0, h_{j}^{\ell}\left(X, \xi_{i}\right)=0$ and $\phi_{a i}=0$, respectively. Applying J to (3.7) and using (2.1) and (3.12) ${ }_{1}$, we get

$$
A_{\xi_{i}}^{*} X=-\alpha u_{i}(X) \zeta+\sum_{j=1}^{r} \chi_{i j}(X) U_{j}+\sum_{a=r+1}^{n} \mu_{i a}(X) W_{a}
$$

Taking the scalar product with U_{k}, we get $h_{i}^{\ell}\left(X, U_{j}\right)=0$. Taking $X=U_{i}$ to $(3.12)_{1}$, we have $-\alpha=-\alpha u_{i}\left(U_{i}\right)=h_{i}^{\ell}\left(U_{i}, \zeta\right)=0$. As $\alpha=0$, we obtain

$$
\begin{equation*}
A_{\xi_{i}}^{*} X=\sum_{j=1}^{r} \chi_{i j}(X) U_{j}+\sum_{a=r+1}^{n} \mu_{i a}(X) W_{a} . \tag{3.23}
\end{equation*}
$$

4. Submanifolds of Space Forms

Theorem 4.1. Let M be a generic lightlike submanifold of an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$. Then we have the following:
(1) α is a constant,
(2) $\alpha \beta=0$,
(3) $f_{1}-f_{2}=\alpha^{2}-\beta^{2}$ and $f_{1}-f_{3}=\left(\alpha^{2}-\beta^{2}\right)-\zeta \beta$.

Proof. Comparing the tangential, lightlike transversal and co-screen components of the two equations (2.4) and (2.14), and using (3.4), we get

$$
\begin{align*}
R(X, Y) Z= & f_{1}\{g(Y, Z) X-g(X, Z) Y\} \\
& +f_{2}\{\bar{g}(X, J Z) F Y-\bar{g}(Y, J Z) F X+2 \bar{g}(X, J Y) F Z\} \\
& +f_{3}\{\theta(X) \theta(Z) Y-\theta(Y) \theta(Z) X \\
& +\bar{g}(X, Z) \theta(Y) \zeta-\bar{g}(Y, Z) \theta(X) \zeta\} \\
& +\sum_{i=1}^{r}\left\{h_{i}^{\ell}(Y, Z) A_{N_{i}} X-h_{i}^{\ell}(X, Z) A_{N_{i}} Y\right\} \\
& +\sum_{a=r+1}^{n}\left\{h_{a}^{s}(Y, Z) A_{E_{a}} X-h_{a}^{s}(X, Z) A_{E_{a}} Y\right\}, \tag{4.1}
\end{align*}
$$

$$
\begin{align*}
& \left(\nabla_{X} h_{i}^{\ell}\right)(Y, Z)-\left(\nabla_{Y} h_{i}^{\ell}\right)(X, Z) \\
& +\sum_{j=1}^{r}\left\{\tau_{j i}(X) h_{j}^{\ell}(Y, Z)-\tau_{j i}(Y) h_{j}^{\ell}(X, Z)\right\} \\
& +\sum_{a=r+1}^{n}\left\{\phi_{a i}(X) h_{a}^{S}(Y, Z)-\phi_{a i}(Y) h_{a}^{S}(X, Z)\right\} \\
= & f_{2}\left\{u_{i}(Y) \bar{g}(X, J Z)-u_{i}(X) \bar{g}(Y, J Z)+2 u_{i}(Z) \bar{g}(X, J Y)\right\} . \tag{4.2}
\end{align*}
$$

Taking the scalar product with N_{i} to (2.15), and then, substituting (4.1) into the resulting equation and using $(2.13)_{4}$, we obtain

$$
\begin{align*}
& \left(\nabla_{X} h_{i}^{*}\right)(Y, P Z)-\left(\nabla_{Y} h_{i}^{*}\right)(X, P Z) \\
& +\sum_{j=1}^{r}\left\{\tau_{i j}(Y) h_{j}^{*}(X, P Z)-\tau_{i j}(X) h_{j}^{*}(Y, P Z)\right\} \\
& +\sum_{a=r+1}^{n} \varepsilon_{a}\left\{\rho_{i a}(Y) h_{a}^{S}(X, P Z)-\rho_{i a}(X) h_{a}^{S}(Y, P Z)\right\} \\
& \quad+\sum_{j=1}^{r}\left\{h_{j}^{\ell}(X, P Z) \eta_{i}\left(A_{N_{j}} Y\right)-h_{j}^{\ell}(Y, P Z) \eta_{i}\left(A_{N_{j}} X\right)\right\} \\
& =f_{1}\left\{g(Y, P Z) \eta_{i}(X)-g(X, P Z) \eta_{i}(Y)\right\} \\
& +f_{2}\left\{v_{i}(Y) \bar{g}(X, J P Z)-v_{i}(X) \bar{g}(Y, J P Z)+2 v_{i}(P Z) \bar{g}(X, J Y)\right\} \\
& +f_{3}\left\{\theta(X) \eta_{i}(Y)-\theta(Y) \eta_{i}(X)\right\} \theta(P Z) \tag{4.3}
\end{align*}
$$

Applying ∇_{Y} to (3.5) $)_{1}$ and using (2.10), (2.12), (3.4) and (3.5), we obtain

$$
\begin{aligned}
\left(\nabla_{X} h_{j}^{\ell}\right)\left(Y, U_{i}\right)= & \left(\nabla_{X} h_{i}^{*}\right)\left(Y, V_{j}\right)+g\left(A_{N_{i}} Y, \nabla_{X} V_{j}\right)-g\left(A_{\xi_{j}}^{*} Y, \nabla_{X} U_{i}\right) \\
& +\sum_{k=1}^{r} h_{i}^{*}\left(X, U_{k}\right) h_{k}^{\ell}\left(Y, \xi_{j}\right)
\end{aligned}
$$

Using (2.1), (3.2)~(3.7) and (3.12), we have
$\left(\nabla_{X} h_{j}^{\ell}\right)\left(Y, U_{i}\right)=\left(\nabla_{X} h_{i}^{*}\right)\left(Y, V_{j}\right)$

$$
\begin{aligned}
& -\sum_{k=1}^{r}\left\{\tau_{k j}(X) h_{k}^{\ell}\left(Y, U_{i}\right)+\tau_{i k}(X) h_{k}^{*}\left(Y, V_{j}\right)\right\} \\
& -\sum_{a=r+1}^{n}\left\{\phi_{a j}(X) h_{a}^{S}\left(Y, U_{i}\right)+\varepsilon_{a} \rho_{i a}(X) h_{a}^{S}\left(Y, V_{j}\right)\right\}
\end{aligned}
$$

$$
-g\left(A_{\xi_{j}}^{*} X, F\left(A_{N_{i}} Y\right)\right)-g\left(A_{\xi_{j}}^{*} Y, F\left(A_{N_{i}} X\right)\right)
$$

$$
+\sum_{k=1}^{r}\left\{h_{i}^{*}\left(Y, U_{k}\right) h_{k}^{\ell}\left(X, \xi_{j}\right)+h_{i}^{*}\left(X, U_{k}\right) h_{k}^{\ell}\left(Y, \xi_{j}\right)\right\}
$$

$$
-\sum_{k=1}^{r} h_{j}^{\ell}\left(X, V_{k}\right) \eta_{k}\left(A_{N_{i}} Y\right)-\alpha^{2} u_{j}(Y) \eta_{i}(X)
$$

$$
-\beta^{2} u_{j}(X) \eta_{i}(Y)+\alpha \beta\left\{u_{j}(X) v_{i}(Y)-u_{j}(Y) v_{i}(X)\right\} .
$$

Substituting this into (4.2) such that replace i by j and take $Z=U_{i}$, we have

$$
\begin{aligned}
& \left(\nabla_{X} h_{i}^{*}\right)\left(Y, V_{j}\right)-\left(\nabla_{Y} h_{i}^{*}\right)\left(X, V_{j}\right) \\
& -\sum_{k=1}^{r}\left\{\tau_{i k}(X) h_{k}^{*}\left(Y, V_{j}\right)-\tau_{i k}(Y) h_{k}^{*}\left(X, V_{j}\right)\right\} \\
& -\sum_{a=r+1}^{n} \varepsilon_{a}\left\{h_{a}^{s}\left(Y, V_{j}\right) \rho_{i a}(X)-h_{a}^{s}\left(X, V_{j}\right) \rho_{i a}(Y)\right\} \\
& -\sum_{k=1}^{r}\left\{h_{k}^{\ell}\left(Y, V_{j}\right) \eta_{i}\left(A_{N_{k}} X\right)-h_{k}^{\ell}\left(X, V_{j}\right) \eta_{i}\left(A_{N_{k}} Y\right)\right\} \\
& +\left(\alpha^{2}-\beta^{2}\right)\left\{u_{j}(X) \eta_{i}(Y)-u_{j}(Y) \eta_{i}(X)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +2 \alpha \beta\left\{u_{j}(X) v_{i}(Y)-u_{j}(Y) v_{i}(X)\right\} \\
= & f_{2}\left\{u_{j}(Y) \eta_{i}(X)-u_{j}(X) \eta_{i}(Y)+2 \delta_{i j} \bar{g}(X, J Y)\right\} .
\end{aligned}
$$

Comparing this equation with (4.3) such that $P Z=V_{j}$ and using the facts that $h_{i}^{\ell}\left(X, V_{j}\right)$ are symmetric and $\eta_{i}\left(A_{N_{j}} X\right)$ are skew-symmetric with respect to i and j due to $(2.13)_{3}$ and $(3.5)_{3}$, we get

$$
\begin{aligned}
& \left\{f_{1}-f_{2}-\left(\alpha^{2}-\beta^{2}\right)\right\}\left[u_{j}(Y) \eta_{i}(X)-u_{j}(X) \eta_{i}(Y)\right] \\
= & 2 \alpha \beta\left\{u_{j}(Y) v_{i}(X)-u_{j}(X) v_{i}(Y)\right\} .
\end{aligned}
$$

Taking $X=\xi_{i}, Y=U_{j}$ and $X=V_{i}, Y=U_{j}$, respectively, we have

$$
f_{1}-f_{2}=\alpha^{2}-\beta^{2}, \quad \alpha \beta=0
$$

Applying $\bar{\nabla}_{X}$ to $\eta_{i}(Y)=\bar{g}\left(Y, N_{i}\right)$ and using (2.5) and (2.6), we have

$$
\left(\nabla_{X} \eta_{i}\right) Y=-g\left(A_{N_{i}} X, Y\right)+\sum_{j=1}^{r} \tau_{i j}(X) \eta_{j}(Y) .
$$

Applying ∇_{Y} to (3.12) $)_{3}$ and using (3.10), (3.14) and the last equation, we have

$$
\begin{aligned}
\left(\nabla_{X} h_{i}^{*}\right)(Y, \zeta)= & -(X \alpha) v_{i}(Y)+(X \beta) \eta_{i}(Y) \\
& +\alpha^{2} \theta(Y) \eta_{i}(X)+\beta^{2} \theta(X) \eta_{i}(Y) \\
& +\alpha\left\{g\left(A_{N_{i}} X, F Y\right)+g\left(A_{N_{i}} Y, F X\right)-\sum_{j=1}^{r} v_{j}(Y) \tau_{i j}(X)\right. \\
& \left.-\sum_{a=r+1}^{n} \varepsilon_{a} w_{a}(Y) \rho_{i a}(X)-\sum_{j=1}^{r} u_{j}(Y) \eta_{i}\left(A_{N_{j}} X\right)\right\} \\
& -\beta\left\{g\left(A_{N_{i}} X, Y\right)+g\left(A_{N_{i}} Y, X\right)-\sum_{j=1}^{r} \tau_{i j}(X) \eta_{j}(Y)\right\} .
\end{aligned}
$$

Substituting this and (3.12) into (4.3) such that $P Z=\zeta$, we get

$$
\begin{aligned}
& \left\{X \beta+\left[f_{1}-f_{3}-\left(\alpha^{2}-\beta^{2}\right)\right] \theta(X)\right\} \eta_{i}(Y) \\
& -\left\{Y \beta+\left[f_{1}-f_{3}-\left(\alpha^{2}-\beta^{2}\right)\right] \theta(Y)\right\} \eta_{i}(X) \\
= & (X \alpha) v_{i}(Y)-(Y \alpha) v_{i}(X) .
\end{aligned}
$$

Taking $X=\zeta$ and $Y=\xi_{i}$, and taking $X=U_{k}$ and $Y=V_{i}$ by turns, we get

$$
f_{1}-f_{3}=\alpha^{2}-\beta^{2}-\zeta \beta, \quad U_{i} \alpha=0, \quad \forall i .
$$

Applying ∇_{X} to $h_{i}^{\ell}(Y, \zeta)=-\alpha u_{i}(Y)$ and using (3.9) and (3.13), we get

$$
\begin{aligned}
\left(\nabla_{X} h_{i}^{\ell}\right)(Y, \zeta)= & -(X \alpha) u_{i}(Y)-\beta h_{i}^{\ell}(X, Y) \\
& +\alpha\left\{\sum_{j=1}^{r} u_{j}(Y) \tau_{j i}(X)+\sum_{a=r+1}^{n} w_{a}(Y) \phi_{a i}(X)\right. \\
& \left.+h_{i}^{\ell}(X, F Y)+h_{i}^{\ell}(Y, F X)\right\} .
\end{aligned}
$$

Substituting this and (3.12) into (4.2) such that $Z=\zeta$, we obtain

$$
(X \alpha) u_{i}(Y)=(Y \alpha) u_{i}(X) .
$$

Replacing Y by U_{i} to this, we obtain $X \alpha=0$. Thus, α is a constant.
Theorem 4.2. Let M be a generic lightlike submanifold of an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$. If one of $\left\{F, U_{i}, V_{i}\right\}$ is parallel with respect to the induced connection ∇, then $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is flat.

Proof. (1) If F is parallel with respect to ∇, then, by Theorem 3.1, we get (3.19) and the results: $\alpha=\beta=0$ and $\phi_{i a}=\rho_{a i}=\eta_{i}\left(A_{N_{j}} X\right)=0$. As $\alpha=0$, we see that $f_{1}=f_{2}=f_{3}$ by Theorem 4.1.

Taking the scalar product with U_{j} to (3.19), we get

$$
h_{i}^{*}\left(X, U_{j}\right)=0 .
$$

Using this result, (3.6), (3.19) and the facts that $\rho_{a i}=0$ and $F U_{i}=0$, we get

$$
\left(\nabla_{X} h_{i}^{*}\right)\left(Y, U_{j}\right)=0 .
$$

Substituting the last two equations into (4.3) with $P Z=U_{j}$, we have

$$
f_{1}\left\{v_{j}(Y) \eta_{i}(X)-v_{j}(X) \eta_{i}(Y)\right\}+f_{2}\left\{v_{i}(Y) \eta_{j}(X)-v_{i}(X) \eta_{j}(Y)\right\}=0,
$$

due to $\rho_{a i}=\eta_{i}\left(A_{N_{j}} X\right)=0$. Taking $X=\xi_{i}$ and $Y=V_{j}$ to this equation, we obtain $f_{1}=0$. Therefore, $f_{1}=f_{2}=f_{3}=0$ and $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is flat.
(2) If U_{i} is parallel with respect to ∇, then we get (3.22), $\alpha=\beta=0$ and $\tau_{i j}=\rho_{i a}=\eta_{j}\left(A_{N_{i}} X\right)=0$ by (1) of Theorem 3.2. As $\alpha=0$, by Theorem 4.1, we have $f_{1}=f_{2}=f_{3}$. Taking the scalar product with U_{j} to (3.22), we get

$$
h_{i}^{*}\left(X, U_{j}\right)=0 .
$$

Applying F to (3.22) and using the facts that $F U_{i}=F W_{a}=0$, we see that $F\left(A_{N_{i}} X\right)=0$. Applying ∇_{X} to $h_{i}^{*}\left(Y, U_{j}\right)=0$ and using (3.6), we obtain

$$
\left(\nabla_{X} h_{i}^{*}\right)\left(Y, U_{j}\right)=0 .
$$

Substituting the last two equations into (4.3) with $P Z=U_{j}$, we have

$$
f_{1}\left\{v_{j}(Y) \eta_{i}(X)-v_{j}(X) \eta_{i}(Y)\right\}+f_{2}\left\{v_{i}(Y) \eta_{j}(X)-v_{i}(X) \eta_{j}(Y)\right\}=0
$$ due to $\tau_{i j}=\rho_{i a}=\eta_{j}\left(A_{N_{i}} X\right)=0$. Taking $X=\xi_{i}$ and $Y=V_{j}$ to this equation, we obtain $f_{1}=0$. Therefore, $f_{1}=f_{2}=f_{3}=0$ and $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is flat.

(3) If V_{i} is parallel with respect to ∇, then we get (3.23), $\alpha=\beta=0$ and $\tau_{i j}=\phi_{i a}=h_{j}^{\ell}\left(X, \xi_{i}\right)=0$ by (2) of Theorem 3.2. As $\alpha=\beta=0$ by Theorem 4.1, $f_{1}=f_{2}=f_{3}$. Taking the scalar product with U_{k} to (3.23), we get

$$
h_{i}^{\ell}\left(Y, U_{j}\right)=0 .
$$

Applying ∇_{X} to this equation and using (3.6) and (3.12), we have

$$
\left(\nabla_{X} h_{i}^{\ell}\right)\left(Y, U_{j}\right)=-g\left(A_{\xi_{i}}^{*} Y, F\left(A_{N_{j}} X\right)\right)-\sum_{a=r+1}^{n} \rho_{j a}(X) h_{i}^{\ell}\left(Y, W_{a}\right)
$$

Substituting the last two equations into (4.2) with $Z=U_{j}$, we obtain

$$
\begin{align*}
& g\left(A_{\xi_{j}}^{*} X, F\left(A_{N_{j}} Y\right)\right)-g\left(A_{\xi_{i}}^{*} Y, F\left(A_{N_{j}} X\right)\right) \\
& +\sum_{a=r+1}^{n}\left\{\rho_{j a}(Y) h_{i}^{\ell}\left(X, W_{a}\right)-\rho_{j a}(X) h_{i}^{\ell}\left(Y, W_{a}\right)\right\} \\
= & f_{2}\left\{u_{i}(Y) \eta_{j}(X)-u_{i}(X) \eta_{j}(Y)+2 \delta_{i j} \bar{g}(X, J Y)\right\} . \tag{4.4}
\end{align*}
$$

As $h_{i}^{\ell}\left(\xi_{j}, X\right)=0$ and $h_{i}^{\ell}\left(U_{j}, X\right)=0$, we have $A_{\xi_{i}}^{*} \xi_{j}=0$ and $A_{\xi_{i}}^{*} U_{j}=0$. Taking $X=\xi_{j}$ and $Y=U_{i}$ to (4.4), we obtain $f_{2}=0$. Therefore $f_{1}=f_{2}$ $=f_{3}=0$.

References

[1] L. Carlitz, Gauss sums over finite fields of order 2^{n}, Acta Arith. 15 (1969), 247-265.
[2] P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian space form, Israel J. Math. 141 (2004), 157-183.
[3] C. Călin, Contributions to geometry of CR-submanifold, Thesis, University of Iasi, Romania, 1998.
[4] G. de Rham, Sur la réductibilité d'un espace de Riemannian, Comment. Math. Helv. 26 (1952), 328-344.
[5] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[6] K. L. Duggal and D. H. Jin, Generic lightlike submanifolds of an indefinite Sasakian manifold, Inter. Electronic J. Geometry 5(1) (2012), 108-119.
[7] D. H. Jin, Indefinite generalized Sasakian space form admitting a generic lightlike submanifold, Bull. Korean Math. Soc. 51(6) (2014), 1711-1726.
[8] D. H. Jin and J. W. Lee, Generic lightlike submanifolds of an indefinite cosymplectic manifold, Math. Prob. Engin. 2011, Art ID 610986, 1-16.
[9] D. H. Jin and J. W. Lee, A semi-Riemannian manifold of quasi-constant curvature admits lightlike submanifolds, Inter. J. of Math. Analysis 9(25) (2015), 1215-1229.
[10] D. N. Kupeli, Singular Semi-Riemannian Geometry, Mathematics and its Applications, Vol. 366, Kluwer Acad. Publishers, Dordrecht, 1996.
[11] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), 187-193.
[12] K. Yano and M. Kon, Generic submanifolds, Ann. di Math. Pura Appl. 123 (1980), 59-92.
[13] K. Yano and M. Kon, Generic submanifolds of Sasakian manifolds, Kodai Math. J. 3 (1980), 163-196.

[^0]: Received: February 7, 2017; Accepted: April 4, 2017
 2010 Mathematics Subject Classification: 53C25, 53C40, 53C50.
 Keywords and phrases: generic lightlike submanifold, indefinite trans-Sasakian manifold, indefinite generalized Sasakian space form.

 Communicated by Giovanni Calvaruso

