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Abstract 

Hausmann and Rodriguez classified spaces of isometry classes of 
planar n-gons according to their genetic code which is a collection of 
sets (called genes) containing n. Omitting the n yields what we call 
gees. We prove that, for a set of gees with largest gee of size ,0>k  

the topological complexity (TC) of the associated space of n-gons is 
either 52 −n  or 62 −n  if .32 +≥ kn  We present evidence that 
suggests that it is very rare that the TC is not equal to 52 −n  or 

.62 −n  

1. Introduction 

The topological complexity, ( ),XTC  of a topological space X is, roughly, 

the number of rules required to specify how to move between any two points 
of X. A “rule” must be such that the choice of path varies continuously with 
the choice of endpoints (see [3, Section 4]). We continue our study, begun in 
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[2], of ( ),XTC  where ( )AMX =  is the space of equivalence classes of 

oriented n-gons in the plane with consecutive sides of lengths ,...,,1 nAA  

identified under translation, rotation, and reflection (see, e.g., [5, Section 6]). 
Here ( )nAAA ...,,1=  is an n-tuple of positive real numbers. Thus 

( ) {( ) ( ) } ( ).20:...,, 11
1

1 OzzSzzM nn
n

n =++∈= A"AA  

We can think of the sides of the polygon as linked arms of a robot, and then 
( )XTC  is the number of rules required to program the robot to move from 

any configuration to any other. 

We assume that A  is generic, which means that there is no subset 
⊂S a bn  with ∑ ∑

∈ ∉
=

Si Si
ii .AA  Here a bn { },...,,1 n=  notation that will be 

used throughout the paper. When A  is generic, ( )AM  is a connected ( )3−n -

manifold [5, p. 314], and hence, by [3, Corollary 4.15], satisfies 

 ( ( )) .52 −≤ nMTC A  (1.1) 

The mod-2 cohomology ring ( ( ))AMH∗  was determined in [5]. See 

Theorem 1.5 for our interpretation. All of our cohomology groups have 
coefficients in ,2Z  omitted from the notation. We shall prove that for most 

length-n vectors ,A  there is a nonzero product in ( ( ) ( ))AA MMH ×∗  of 

72 −n  classes of the form ,11 zz ⊗+⊗  which implies ( ( )) nMTC 2≥A  

6−  by [3, Corollary 4.40], within 1 of being optimal by (1.1). We say that 

this lower bound for ( ( ))AMTC  is obtained by zcl (zero-divisor cup length) 

consideration, or that ( ( )) .72 −≥ nMzcl A  We write ⊗= zz  .11 z⊗+  

To formulate our result, we recall the concepts of genetic code and gees. 
Since permuting the iA ’s does not affect the space up to homeomorphism, 

we may assume .1 nA"A ≤≤  We also assume that ,11 −++< nn A"AA  so 

that ( )AM  is nonempty. It is well-understood (e.g., [5, Section 2]) that the 
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homeomorphism type of ( )AM  is determined by which subsets S of a bn  are 

short, which means that ∑ ∑
∈ ∉

<
Si Si

ii .AA  Define a partial order on the power 

set of a bn  by TS ≤  if { }AssS ...,,1=  and { }AttT ...,,1⊃  with ii ts ≤  for 

all i. As introduced in [6], the genetic code of A  is the set of maximal 
elements (called genes) in the set of short subsets of a bn  which contain n. 

The homeomorphism type of ( )AM  is determined by the genetic code of .A  

A list of all genetic codes for 9≤n  appears in [7]. For 7,6=n  and 8, there 

are 20, 134, and 2469 genetic codes, respectively. 

In [2], we introduced the term “gee,” to refer to a gene without listing the 
n. Also, a subgee is any set which is G≤  for some gee G, under the partial 
ordering just described. Thus the subgees are just the sets ⊂S a b1n −  for 

which { }nS ∪  is short. Our main theorem is as follows. Let ( ) =−lg  

( )⎣ ⎦.log2 −  

Theorem 1.2. For a set of gees with largest gee of size ,0>k  the 

associated space of n-gons ( )AM  satisfies 

 ( ( )) 5262 −≤≤− nMTCn A  (1.3) 

if ( ) .32lg ++≥ kkn  

Here we mean that A  is a length-n vector whose genetic code has the 
given set as its gees, with n appended to form its genes. 

The stipulation 0>k  excludes the n-gon space whose genetic code is 

{ } .n  One length vector with this genetic code is ( ).2,1 1 −− nn  A polygon 

space with this genetic code is homeomorphic to real projective space 

,3−nRP  and it is known that, except for ,, 31 RPRP  and ( )37, −nRPTCRP  

equals the immersion dimension plus 1, which is usually much less than 
62 −n  [4]. 

We will prove two results, Theorems 1.4 and 4.10, which suggest that 
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(1.3) fails only very rarely. As noted above, it usually fails if the genetic       
code is { } .n  At the other extreme, it fails if the genetic code is 

{ } ,1...,,4,3, −− nnn  in which case ( )AM  is a torus 3−nT  of topological 

complexity .2−n  We showed in [2] that, of the 132 equivalence classes of 

7-gon spaces excluding 4RP  and ,4T  there are only two, namely those with 
a single gene, 7321 or 7521, for which we cannot prove that they satisfy 
(1.3). Here, we have begun the usual practice of writing genes or gees 
consisting of single-digit numbers by concatenating. In Theorem 1.4, we 
obtain a similar result for 8-gon spaces, but this time with just two exceptions 
out of 2467 equivalence classes. 

Theorem 1.4. Excluding 5RP  and ,5T  the only spaces ( )AM  with 8=n  

which might not satisfy (1.3) are those with a single gene, 84321 or 86321. 

In Section 4, we specialize to monogenic codes and prove in Theorem 
4.10 that the only genetic codes with a single gene of size 5 (for any n) which 
do not necessarily satisfy (1.3) are those noted above. 

Theorem 1.2 is an immediate consequence of Theorems 1.7 and 1.8. We 
introduce those theorems by giving our interpretation [2, Theorem 2.1] of [5, 
Corollary 9.2], the complete structure of the mod 2 cohomology ring of 

( ).AM  

Theorem 1.5. If A  has length n, the ring ( ( ))AMH∗  is generated by 

classes 

( ( ))AMHVVR n
1

11 ...,,, ∈−  

subject to only the following relations: 

(1) All monomials of the same degree which are divisible by the same 

iV ’s are equal. Hence, letting ∏∈= Si iS VV ,:  monomials S
Sd VR −  for 

⊂S a b1n −  span ( ( )).AMH d  
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(2) 0=SV  unless S is a subgee of .A  

(3) For every subgee S with ,2 dnS −−≥  there is a relation SR  in 

( ( )),AMH d  which says 

 0.d T T
T S

R V− =∑
∩

 (1.6) 

It is convenient to let ,3−= nm  which we do throughout. Note that 

( )AM  is an m-manifold. The proof of Theorem 1.2 is split into two cases 

depending upon whether or not .0=mR  

Theorem 1.7. Suppose .0=mR  Then there exists a positive integer r and 

distinct integers rii ...,,1  such that ( ( )) ,0 21 Z≈∈≠− A" MHVVR m
ii

rm
r  

but for all proper subsets { } ∏
∈

− =
Si

i
Sm

r VRiiS .0,...,,1⊊  Assume rm ≥  

,2lg r+  and let ( ) ( ).lglg rrmf ≥−=  Let .3222 1 +−−= +frmA  Then 

( ( ) ( ))∏
−

=

−−−+ ×∈≠⋅⋅
1

1

123223 ,0
r

j

mrAmA
ii MMHRVV
rr

AA  

and hence ( ( )) .622 −=≥ nmMTC A  

Theorem 1.8. Suppose .0≠mR  If m is a 2-power, then .012 ≠−mR  If 
m is not a 2-power, then there exist positive integers t and A and distinct 
integers 11 ...,, +tii  such that 

( ( ) ( )).0 1212
11 AA" MMHRVVV mtAmA

iii tt ×∈≠ −−−−
+

 

Hence in either case ( ( )) .622 −=≥ nmMTC A  

In Theorem 1.8, any m large enough, with respect to the given gees, to 
yield a valid genetic code works in the theorem. 
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In Section 2, we prove Theorems 1.7, 1.8, and 1.4. In Section 3, we 
discuss the effect on the length vectors and the cohomology ring of 
increasing n while leaving the gees unchanged, and give some examples 
regarding the sharpness of the bound on how large m must be in Theorem 
1.7. In Section 4, we give several explicit families of gees of arbitrarily large 
size to which Theorem 1.7 applies. We also prove in Theorem 4.10 that there 
are only three size-5 genes for which we cannot prove (1.3). 

2. Proofs of Theorems 1.7, 1.8, and 1.4 

In this section, which we feel is the heart of the paper, we prove 
Theorems 1.7, 1.8, and 1.4. 

Proof of Theorem 1.7. We begin with the simple observation that if 

,0=mR  then r can be chosen as 

{ }.0with...,,distinct:min 11 ≠∃= −
tii

tm
t VVRiitr "  

First observe that 3≥A  and the exponent of R  is ,012 1 ≥−−+ rf  

since ( ).lg rf ≥  By minimality of r, in the expansion of the product, factors 

,1,1,1 33 ⊗⊗⊗ A
iii rjj

VVV  and A
ir

V⊗1  will yield 0 in products. A product of 

s of the 2
jiV ’s and ( )sr −− 1  of the jiV ’s can be written as ,PRs  where 

∏
−

=
=

1

1
.:

r

j
i jVP  Thus our product expands in bidegree ( )1, −mm  as 

∑ ∑
−

=

−

=

+−−−⎟
⎠
⎞

⎜
⎝
⎛

+−−−
−−+

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −1

0

1

1

1
1

3221r

s

A

j

jrsmj
i

s R
jrsm

rAm
V

j
A

PR
s

r
r

 

 .211 jsrAmjA
i

sr RPVR
r

++−−+−−−⊗  (2.1) 

Let ( ( )) 2: Z→φ AMH m  be the Poincaré duality isomorphism. Let IV  

denote any product of distinct classes .iV  There is a homomorphism :ψ  
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( ( )) 2
1 Z→− AMH m  satisfying that ( ) 01 ≠ψ −−

I
Im VR  iff ( )I

Im VR −φ  

.0≠  This follows from Theorem 1.5 since the relations in ( ( ))AMH m 1−  are 

also relations in ( ( ))AMH m  (with a dimension shift). Thus ψ⊗φ  applied to 

any summand of (2.1) which has a nonzero coefficient, mod 2, is nonzero, 
and so ψ⊗φ  applied to (2.1) equals 

∑∑
−

=

−

=
⎟
⎠
⎞

⎜
⎝
⎛

+−−−
−−+

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ −1

0

1

1 1
3221r

s

A

j jrsm
rAm

j
A

s
r

 

∑∑ ∑
−

= =

−

=
⎟
⎠
⎞

⎜
⎝
⎛

+−−
−−+

⎟
⎠
⎞

⎜
⎝
⎛ −

+⎟
⎠
⎞

⎜
⎝
⎛

+−−−
−−+

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ −

=
1

0 0

1

0 1
3221

1
3221r

s

A

j

r

s rsm
rAm

s
r

jrsm
rAm

j
A

s
r

 

∑
−

=
⎟
⎠
⎞

⎜
⎝
⎛

+−−−
−−+

⎟
⎠
⎞

⎜
⎝
⎛ −

+
1

0
.

1
3221r

s Arsm
rAm

s
r

 

By Vandermonde’s identity, this equals 

 .
1

122
1

122
1

122
⎟
⎠
⎞

⎜
⎝
⎛

−+−
−+−

+⎟
⎠
⎞

⎜
⎝
⎛

+−
−+−

+⎟
⎠
⎞

⎜
⎝
⎛

+−
+−

Arm
Arm

rm
Arm

rm
rm

 (2.2) 

The last binomial coefficient equals ,
122

⎟
⎠
⎞

⎜
⎝
⎛

−
−+−

rm
Arm

 and so the sum of 

the last two equals .
1

222
⎟
⎠
⎞

⎜
⎝
⎛

+−
−+−

rm
Arm

 Inserting now the value of A, we find 

that the image of our class equals 

.
1
12

1
122 1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+−
−+⎟

⎠
⎞

⎜
⎝
⎛

+−
+− +

rmrm
rm f

 

For ,122 1 −≤−≤ +ff rm  this expression equals 1, coming from the first 

term if 12 1 −=− +frm  and from the second term otherwise. ~ 

The proof of Theorem 1.8 is a bit more elaborate. We will always be 
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using the homomorphism ( ( )) 2
1: Z→ψ − AMH m  which equals the Poincaré 

duality isomorphism ( ( )) 2: Z→φ AMH m  in the sense of the preceding 

proof. We first observe that if ( ) 0≠φ mR  and ( ) 01 ≠ψ −mR  and ,2em =  

then Theorem 1.8 is true since 

( ) ( ) ( ) ( ) .0
12 112 ≠ψφ⎟
⎠
⎞

⎜
⎝
⎛ −

=ψ⊗φ −− mmm RR
m

m
R  

In the rest of this section, we assume m is not a 2-power. 

The following key lemma rules out certain possibilities for φ. 

Lemma 2.3. It cannot happen that there is a subset ⊂S a b2m +  such 

that 

( )
⎩
⎨
⎧ ⊂

=φ −
.0

,1
otherwise

SI
VR I

Im  

Proof. We assume such a set S exists and will derive a contradiction.        
Let k denote the size of the largest subgee. By [1, Corollary 1.6], 

( ) 11 =φ −
kii

km VVR "  whenever { }kii ...,,1  is a subgee. Although the result 

in [1] is apparently only referring to monogenic codes, the proof applies 
more generally. By the assumption, we conclude that there can only be one 
subgee of size k, and it must be a b.k  The sum a b a b1k k−+R R  of relations 

from Theorem 1.5 implies that the sum of ( )J
Jm VR −φ  taken over all 

subgees J for which a b { }J k k=∩  must be 0. This sum includes the term 

( ) ,11 =φ −
k

m VR  while all other terms in the sum have a bJ k⊂/  and hence 

have ( ) ,0=φ −
J

Jm VR  contradicting that the sum is 0. ~ 

The next two propositions are special cases of the theorem. If a b,S t⊂  

let =S~ a b .t S−  We repeat that ( ) ( )I
Im

I
Im VRVR −−− φ=ψ 1  is assumed. 

Proposition 2.4. Let a b2T m⊂ +  with ,mT ≤  and reindex as =T  
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a b1 .t +  Suppose ( ) ,1=φ mR  ( ) ,1=φ −
T

Tm VR  and ( ) 0=φ −
I

Im VR  for 

all TI ⊊  such that .1 It ∈+  Then 

( ) ( ) .11
11 =ψ⊗φ −−
+

mtm
tt RVVV "  

Proof. The expression expands as 

( ) ( )
a b

1
1 1

0

1
.

m t
i m t im S i S iS t tS

S t i

m t m
V V R V V R

i m S i

−
− −− − + −

+ +
⊂ =

− −⎛ ⎞⎛ ⎞ φ ψ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠− −∑ ∑ �  

The only terms with 0≠ψ⋅φ  are those with ( ) a b( ), ,S i t m t= −  or ( ),0,∅  

and the coefficients of these are 1 and 0, respectively. ~ 

Proposition 2.5. Let a b2T m⊂ +  with ,mT ≤  and reindex as =T  

a b1 .t +  Suppose ( ) 1=φ IV  for ,TI ⊊  and ( ) .0=φ TV  Let ,2 Δ+= em  ≤1  

.2e<Δ  Then 

(1) ( ) ( ) .
2212

11 ⎟
⎠
⎞

⎜
⎝
⎛

−
−−

+⎟
⎠
⎞

⎜
⎝
⎛ −

=ψ⊗φ −−−
+ tm

tAm
m

tm
RVVV tAmA

tt"  

(2) ⎟
⎠
⎞

⎜
⎝
⎛

−
−−

+⎟
⎠
⎞

⎜
⎝
⎛ −

tm
tAm

m
tm 22

 is odd for the following values of A: 

(a) If ,21 Δ≤≤ t  use .12 tA −+Δ=  

(b) If et 212 ≤≤+Δ  and ⎟
⎠
⎞

⎜
⎝
⎛

Δ
−Δ− 1t

 is even, use .Δ=A  

(c) If et 212 ≤≤+Δ  and ⎟
⎠
⎞

⎜
⎝
⎛

Δ
−Δ− 1t

 is odd, use ( ).2 2lg Δ=A  

(d) If 12 −≤< mte  and ⎟
⎠
⎞

⎜
⎝
⎛

Δ
Δ+− tm

 is even, use .Δ=A  

(e) If 12 −≤< mte  and ⎟
⎠
⎞

⎜
⎝
⎛

Δ
Δ+− tm

 is odd, use ( ).2 tmA −ν−Δ=  
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Proof. (1) The expression expands as 

( ) ( )
a b

1
1 1

0

2 1
.

A
i A im i S m A t i SS t tS

S t i

A m A t
V V R V V R

i m i S
−− − − − − + +

+ +
⊂ =

− − −⎛ ⎞⎛ ⎞ φ ψ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠− −∑ ∑ �  

If it was the case that all ( ) ,1=−φ  this would equal =⎟
⎠
⎞

⎜
⎝
⎛

−
−−

⎟
⎠
⎞

⎜
⎝
⎛∑ sm

tm
s
t 12

 

,0
12

≡⎟
⎠
⎞

⎜
⎝
⎛ −

m
m

 since we assume m is not a 2-power. Our given values of φ  

differ from this only for a bS t=  and ,0>i  or ∅=S  and .Ai <  Thus the 

sum becomes 

∑ ∑
=

−

=

⎟
⎠
⎞

⎜
⎝
⎛

−
−−−

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

−−
−−−

⎟
⎠
⎞

⎜
⎝
⎛

A

i

A

i
im
tAm

i
A

tim
tAm

i
A

1

1

0

1212
 

⎟
⎠
⎞

⎜
⎝
⎛

−
−−−

+⎟
⎠
⎞

⎜
⎝
⎛ −−

+⎟
⎠
⎞

⎜
⎝
⎛

−
−−−

+⎟
⎠
⎞

⎜
⎝
⎛

−
−−

=
Am

tAm
m

tm
tm
tAm

tm
tm 12121212

 

.
22

⎟
⎠
⎞

⎜
⎝
⎛

−
−−

+⎟
⎠
⎞

⎜
⎝
⎛ −

=
tm

tAm
m

tm
 

(2) (a) The expression equals .10
12

2
2

22 11
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−+Δ−
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

Δ+
−Δ+ ++

t
tt

e

e

e

e
 

(b) The expression equals .
2

2
2

22 11

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −Δ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Δ+
−Δ+ ++

e

e

e

e tt  The first of 

these is congruent to 
( )

0
12

≡⎟
⎠
⎞

⎜
⎝
⎛

Δ
−Δ−

≡⎟
⎠
⎞

⎜
⎝
⎛

Δ
Δ−− tt

 by assumption, while 

the second is 1 since .2et ≤  

(c) The first term is as in (b), except now it is 1 by assumption. Let 

δ+=Δ v2  with .20 v<δ≤  The second term becomes ,
22

22 1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

δ+−
−δ++

ve

e t  
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which is 0 since the top has a 0 in the 12 +v  position, while the bottom has a 1 
there. 

(d) The expression is the same as in (b). Now the first term is of the form 

0
2

2 ≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Δ+
−Δ++

e

e tm  since 0≡⎟
⎠
⎞

⎜
⎝
⎛

Δ
−Δ+ tm

 by assumption. The second 

term is 1 since its top is between e2  and .2 Δ+e  

(e) Let α=− wtm 2  with α odd. The first term is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

α
Δ+α+

w

we

2
22  

1
2

2 ≡⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

α
Δ+α≡ w

w
 by assumption. The second term is ,

2
222

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

α
+α+

w

wwe
 

yielding 0 due to the w2  position. ~ 

We need one more lemma, in which ( )SP  denotes the power set of S. 

Lemma 2.6. If U is a set, and ( )UPC ⊂  with ,C∈∅  then either 

(a) ( )XPC =  for some ,UX ⊂  or 

(b) there exists UT ⊂  with 2≥T  such that ( ) ( ) { },TTT −= PPC ∩  

or 

(c) there exists USs ⊂∈  such that { } ( ) { },: SSCsC =∈∈ PC ∩  

and .2≥S  

Proof. Let { }{ }.: C∈∈= tUtX  If ( ) ,CP ⊂/X  then a minimal 

element T of ( ) CP −X  is of type (b), and we are done. If ( ),XPC =  we 

are done by (a). 

Thus, we may assume that ( ) .CP ⊊X  Choose ( )XS PC −∈′  and ∈s  

.XS −′  Note that { } .C∉s  Let S be a minimal element in { }.: CC ∈∈ sC  

This S is of type (c), so we are done. ~ 
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Proof of Theorem 1.8. Let U denote the set of i’s such that iV  is a factor 

of some nonzero monomial in ( ( )).AMH m  Let { ( )I
Im VRUI −φ⊂= :C  

}.0≠  By Lemma 2.3, either (b) or (c) of Lemma 2.6 is true of .C  If (b), then 

the theorem is true by Proposition 2.5, and if (c), then the theorem is true by 
Proposition 2.4. ~ 

Proof of Theorem 1.4. By Theorem 1.8, (1.3) holds whenever ,0≠mR  

and by Theorem 1.7, it holds for 8=n  (hence )5=m  whenever 0=mR  

and there is some nonzero monomial rii
rm VVR "1

−  with .31 ≤≤ r  The 

only genetic code with 8=n  having a gee of length 5 is that of the 5-torus, 
854321. The majority of the genetic codes with 8=n  do not have any gees 
of size 4, and the theorem follows immediately for these. However, there are 
many genetic codes with 8=n  having a 4-gee of the form 4321, 5321, 
6321, 7321, 5421, 5431, or 5432, plus perhaps other, shorter, gees. This can 
be seen in [7], or deduced from the definitions. We will show that, except in 

the excluded cases, if all monomials SM  in ( ( ))AMH m  corresponding to 

subgees S of size 3≤  are 0, then so are the monomials in ( )−mH  

corresponding to the 4-gees, contradicting that ( ) .2Z≈−mH  

If the 4-gee is 4321 and there are any other gees, then 5 is a subgee, and 

5R  (see Theorem 1.5(3)) in ( ( ))AMH m  is a sum of the monomial 4321M  

corresponding to 4321 plus monomials SM  corresponding to certain subgees 

of size .3≤  If all these ,0=SM  then the relation implies that 04321 =M  

and hence ( ) .0=−mH  

If the only gees and subgees of size 4 are one or more of 5321, 5421, 
5431, or 5432, let T denote any one of them, and let j denote the element of 

a b5  not contained in T. The relation jR  in ( )−mH  is a sum of the 

monomial TM  corresponding to T plus monomials SM  corresponding to 
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subgees S of size .3≤  If all SM  are 0, then so is ,TM  and since this holds 

for all T, we deduce ( ) .0=−mH  

If 6321 is the 4-gee and there is another, shorter, gee, then the shorter gee 
must contain 7. This can be seen at [7], or can be deduced as follows. [Any 
gee of size 3≤  which does not contain 7 and is not 6321≤  would have to 
be .54≥  But if 86321 is short, then 754 is long and hence so is 854.] Thus 7 
is a subgee. The gees and subgees of size 4 are 6321, 5321, and 4321. If all 

monomials SM  in ( )−mH  corresponding to subgees S of size 3≤  are 0, 

then the relations ,7R  ,6R  and 5R  imply, respectively, 53216321 MM +  

,04321 =+ M  ,043215321 =+ MM  and ,043216321 =+ MM  and hence 

( ) .0=−mH  

If 6321 is the only gee, then we do not have 7R  to work with, and in 

fact 0432153216321 ≠== MMM  with all monomials corresponding to 

shorter gees being 0. Hence in this case, we cannot use Theorem 1.7 to 
deduce (1.3) when .8=n  

If 7321 is a gee, there can be no other gees, as can be seen from [7] or 
deduced similarly to the deduction involving 6321. If all monomials SM  

corresponding to subgees of size 3≤  are 0, then the relations ,7R  ,6R       

5R  and 4R  imply that 04321532163217321 ==== MMMM  and hence 

( ) .0=−mH  ~ 

3. The Effect of Increasing n 

In this section, we discuss the effect of increasing n, while leaving the 
gees fixed, on the length vectors and the cohomology ring. 

The operation of increasing the number of edges by 1 while leaving the 
gees unchanged has the following nice interpretation. Two length vectors are 
said to be equivalent if they have the same genetic code, or equivalently their 
moduli spaces ( )AM  are homeomorphic. 
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Proposition 3.1. Any generic length-n vector is equivalent to one, 
( )nAA ...,,1  with ,1 nA"A ≤≤  in which all lengths are positive integers 

with odd sum ,A  and 

 .1211 +++≤+ −− nnn A"AAA  (3.2) 

For such an ,A  define a new vector A′  of length 1+n  by 

 .2
1,2

1,...,, 11 ⎟
⎠
⎞

⎜
⎝
⎛ +

−
+

−
AAAAA nn  (3.3) 

Then A  and A′  have the same gees. 

Proof. It is shown in [6, Section 4] that any length vector is equivalent to 
one with rational entries and hence to one with integral entries. In [7], it is 
shown that this is equivalent to one with A  odd. If it has =+ −1nn AA  

1221 ++++ − dnA"A  for ,1≥d  we can find an equivalent length vector 

with smaller d, and hence eventually satisfy (3.2), as follows: (a) If 1−nA  

,2−> nA  then decrease nA  and 1−nA  by 1. (b) If >==> −− tnnn A"AA 1  

1−−tnA  for some ,2≥t  decrease tnn −− AA ...,,1  by 1, and decrease nA  by t. 

(c) If ,21 −− == nnn AAA  decrease each of them by 2. 

We explain briefly why each of these changes does not affect the genetic 
code. (a) The only short subsets containing n, either before or after the 
change, are of the form { }nST ∪=  with a b2 ,S n⊂ −  and ∑∈ −Ti iA  

∑∉Ti iA  is invariant under the change. (b) First we show that the new vector 

has nondecreasing entries. We need 11 −≥− − tnn AA  for ,3≥t  and this 

follows easily from ( ) .31 11 +−≥+ −− nnn t AAA  Because in either the old or 

new vector, the sum of the last two components is greater than half the total, 
the only short subsets containing n will be of the form { }nST ∪=  with 

a b1 ,S n t⊂ − −  and the change subtracts t from both T and its complement. 

(c) The hypothesis implies that ∑
−

=
−≤

3

1
,3

n

j
nj AA  and so the new vector has 
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nondecreasing entries, and both the old and new vectors have a b3n −  as the 

only gee. 

Now we compare the gees of A  satisfying (3.2) with those of (3.3), 
which satisfies its own analogue of (3.2), in fact with equality. 

If equality holds in (3.2), then for A  (resp. ),A′  the only short subsets 

containing n (resp. )1+n  are of the form { }nST ∪=  (resp. { })1+nS ∪  

with a b2 ,S n⊂ −  and the change adds nA
A

−
+

2
1  to both ∑

∈Tj
jA  and 

∑
∉Tj

j ,A  thus leaving the gees unaffected. If, on the other hand, ≤+ −1nn AA  

,121 −++ −nA"A  then A  has some short subsets of the form ∪11 ST =  

{ }nn ,1−  with a b1 2 ,S n⊂ −  and others of the form { }nST ∪22 =  with 

a b2 2 .S n⊂ −  The vector A′  of (3.3) will have exactly the sets ∪1S  

{ }1,1 +− nn  and { }12 +nS ∪  as its short subsets containing ,1+n  since 

again we add nA
A

−
+

2
1  to both ∑

ε∈Tj
jA  and ∑

ε∉
=ε

Tj
j .2,1,A  ~ 

Next we point out the effect on ( )−∗H  of increasing n while leaving the 

gees unchanged. Recall that .3−= nm  If s denotes the size of the largest 

gee and ,2sm ≥  then for ( ( ))AMHsmd d,−≤  has a basis 

{ },subgeeais: dSSVR S
Sd ≤−  

so in this range increasing m leaves the cohomology groups unchanged, 
while for ,mdsm ≤<−  the relations among the subgees depend on 

,dm −  and so in this range increasing m acts like suspending. 

For our strong TC results, we only use ( )−−1mH  and ( ).−mH  We 

illustrate with a simple example: monogenic codes 7321 and 8321, so the      

gee is 321 and 4=m  and 5. One can verify that in this case ( ) ≈−mH  
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321
3 VVVRm−  and 

( ) .,,, 321
4

32
3

31
3

21
31 VVVRVVRVVRVVRH mmmmm −−−−− ≈−  

So 3=r  in Theorem 1.7, and the theorem applies for .5≥m  Note that in 

Theorem 1.7, we are only considering homomorphisms ( ) 2
1: Z→−ψ −mH  

which are essentially equal to ( ) ,: 2Z→−φ mH  so that in this case the 

theorem is only utilizing the class 321
4 VVVRm−  in ( ).1 −−mH  

When ( ) ( ) 0,5 3
3

3
2

3
1 ≠ψ⊗φ= VVVm  in bidegree ( )4,5  as it equals 

( ) ( ) ( ) ( )3
2

21
2

32
2

132
2

1
2

3
2

21 VVVVVVVVVVVV ψφ+ψφ  

( ) ( ) .02
3213

2
2

2
1 ≠ψφ+ VVVVVV  

(Keep in mind part (1) of Theorem 1.5.) 

When ,4=m  we would need 

 07
321 ≠−−− kjikji RVVV  (3.4) 

in bidegree ( ).3,4  The only way to get 321321 VVVVVRV ⊗  would be with 

none of i, j, or k being a 2-power, and this is impossible with .7≤++ kji  

We could get 21321 VRVVVRV ⊗  from ,1,3 === kji  but this would have 

even coefficient from 

.2
2

13
2

21
2

2132
2

1 VVVVVVVVVV ⊗+⊗  

We conclude that (3.4) is impossible, and so we cannot deduce ( ( ))AMTC  

8≥  for this A  when 4=m  by cohomological considerations. Thus Theorem 
1.7 is optimal for the gee 321 in obtaining the strong lower bound for its TC 
when .5≥m  

If the only gee is a b,r  we easily see, using Theorem 1.5, that the only 

nonzero monomial in ( ( ))AMH m  is a b,m r rR V−  while those in ( ( ))AMH m 1−  
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are a b1m r rR V− −  and a b { }2m r r iR V− −
−  for .1 ri ≤≤  We can sometimes improve 

upon Theorem 1.7 because of this explicit information about ( ).1 −−mH  

For example, if the only gee is a b4 ,  Theorem 1.7 said mTC 2≥  for 

,8≥m  but we can also deduce mTC 2≥  for 7=m  and 6=m  using 

 2
3

2
2

2
1

4
4321

4
4

3
3

3
2

3
1 VVVVVVVVVVV ⊗=  in bidegree ( )6,7  (3.5) 

and 

2
3

2
21

2
432

2
1

2
4

3
3

3
2

3
1 VVVVVVVVVVV ⊗=  in bidegree ( ).5,6  

When ,5=m  we cannot deduce 10≥TC  using zcl. When ,4=m  so the 

genetic code is 74321, ( )AM  is homeomorphic to a 4-torus with .5=TC  

If the only gee is a br  for ,6,5=r  or 7, Theorem 1.7 says mTC 2≥  for 

,4+≥ rm  and one can check that this is all we can do, in the sense that, for 

.0,4 11 12
1 =+< −−−− rr iimi

r
i RVVrm ""  

4. Specific Results for Monogenic Codes of Arbitrary Length 

In this section, we discuss some families of monogenic genetic codes of 

arbitrary length in which we can show that 0=mR  and find the value of r 
that works in Theorem 1.7. At the end, we discuss evidence suggesting that it 
is quite rare for a monogenic code to have 72 −< nzcl  (and hence not be 
able to deduce 62 −≥ nTC  from zcl). 

Definition 4.1. Let kS  denote the set of k-tuples of nonnegative integers 

such that, for all j, the sum of the first j components is .j≤  

For ( ),...,,1 kbbB =  let ∑= .ibB  The following theorem is the main 

result of [1]. 

Theorem 4.2. Suppose A  has a single gee, { },...,,1 kgg  with =ia  

.01 >− +ii gg  ( ).kk ga =  If J is a set of distinct integers ,1g≤  let ( ) =θ J  
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( ),...,,1 kθθ  where iθ  is the number of elements Jj ∈  satisfying <+1ig  

.igj ≤  Then, if A  has length ,3+m  the Poincaré duality isomorphism 

( ( )) 2: Z→φ AMH m  satisfies 

 ( ) ∑∏
=

− ⎟
⎠
⎞

⎜
⎝
⎛ −+

=φ
B

k

i i

ii
jj

rm
b
ba

VVR r
1

,
2

1"  (4.3) 

where B ranges over all ( )kbb ...,,1  for which rkB −=  and +B  

{ }( ) ....,,1 krjj S∈θ  

The following corollary is useful. 

Corollary 4.4. In Theorem 4.2, (4.3) depends only on the reductions 
( ).2mod 2lg i

ia  

Proof. For a B-summand in (4.3) to be nonzero, it is necessary that each 

ib  be .i≤  Binomial coefficients ⎟
⎠
⎞

⎜
⎝
⎛
b
x

 depend only on ( ).2mod 2lg bx  ~ 

We often write ia  for the ( )i2lg2mod -reduction of .ia  In Theorems 4.8 

and 4.9, we describe two infinite families of ( )kaa ...,,1  for which Theorem 

1.7 applies, and so we can deduce the strong lower bound for ( ( )).AMTC  

Let igi Vw =  (or any jV  satisfying ).1 ii gjg ≤<+  If ( )kI εε= ...,,1  

with each { },1,0∈ε j  we let 

 k
k

t
I wwRY εε= "1

1  (4.5) 

for any t. This notation for IY  could be extended to include products of 

distinct jV  with j-values in the same subinterval ( ],,1 ii gg +  but the 

consideration of such IY  seems not to be useful. The total grading of our 

classes IY  will be implicit, usually m or ,1−m  and the value of t in (4.5) is 

chosen to make the class have the desired grading. Then (4.3) could be 
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restated as 

 ( ) ∑∏
=

⎟
⎠
⎞

⎜
⎝
⎛ −+

=φ
B

k

i i

ii
I b

ba
Y

1

2
 (4.6) 

in grading m, where B ranges over all ( )kbb ...,,1  such that kIB S∈+  and 

.kIB =+  

For monogenic codes as in Theorem 4.2, we can easily check whether 

,0=mR  (or equivalently ( ) ),0=φ mR  since mR  is just IY  with I consisting 

of all 0’s. Thus ( ) ∑ ⎟
⎠

⎞
⎜
⎝

⎛ −+
=φ B

i

iim
b
ba

R
2

 with the sum taken over all =B  

( )kbb ...,,1  satisfying kB =  and .kB S∈  For example, when ,3=k  

( ) ( ) ,
222

1
32121

3
3

23 aaaaa
a

a
aa

Rm ′′′+′+′⎟
⎠
⎞

⎜
⎝
⎛+′⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛ +

=φ  

where .1−=′ ii aa  

For a given k, there are ( )∏
=

k

i

i

1

2lg2  possibilities for ( )....,, ki aa  Maple 

determined the information in Table 4.7 regarding how many of these have 

.0=mR  

Table 4.7 

k # a ’s # 0=mR  

3 32 20 
4 256 128 
5 2048 1216 
6 16384 9600 

Our simplest result follows. Keep in mind that in the rest of this section 

ia  refers to the reduction ( )i2lg2mod  of ,1+−= iii gga  where A  has a single 

gene { }....,,,3 1 kggm +  
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Theorem 4.8. If there is a set a bZ k⊂  with rZ =  such that 

⎩
⎨
⎧

∉
∈

=
,0
,1

Zi
Zi

ai  

then the hypothesis of Theorem 1.7 holds for ∏
∈

−

Zi
i

rm wR ,  and hence 

( ( )) mMTC 2≥A  if ( ).2lg rrm +≥  

Proof. For { },1,0∈ia  the only times that ⎟
⎠

⎞
⎜
⎝

⎛ −+

i

ii
b
ba 2

 is odd are when 

0=ib  or 1( =ib  and ).0=ia  Thus a nonzero term in (4.6) requires ≤B  

.rk −  For ,rI ≤  ( )IYφ  can have nonzero terms only if rkB −=  and 

,rI =  and moreover only for the single B given by 

⎩
⎨
⎧

∈
∉

=
.0
,1

Zi
Zi

bi  

If I has 1’s in the positions in Z, and 0’s elsewhere, ( ) 1=φ IY  from the single 

term with B as above and ( ).1...,,1=+ IB  ~ 

For example, the case ( ) ( )1,0,1,1,,, 4321 =aaaa  applies to any A  

whose genetic code is { }4321 ,,,, ggggn  with 4321 ggggn >>>>  

and ( ) ( ) ( ),42,41,81 234 ≡≡≡ ggg  and ( ).211 ≡g  Theorem 4.8 says that 

( ( )) 62 −≥ nMTC A  if ,233 +≥−n  so if .8≥n  But the smallest values 

that satisfy the conditions on n and ig  are 87651, and so the condition in the 

theorem that rrm lg2+≥  covers all possibilities here. Moreover, there is 
no A  having this as genetic code because 432 and its complement would 
both be short. This suggests that the condition in Theorem 1.7 that rm ≥  

rlg2+  will usually cover all possible values of m, and so the “sufficiently 
large” in our title will rarely need to be invoked. We will discuss this in more 
detail at the end of this section. 
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A result similar to Theorem 4.8 holds if some of the 0’s in ia  are 

immediately followed by a 2. 

Theorem 4.9. If there are disjoint subsets a b,T Z k⊂  such that 

a b ( )

2, ,
1, ,
0, :

i

i T
a i Z

i C k T Z

∈⎧
⎪= ∈⎨
⎪ ∈ = −⎩ ∪

 

and 01 =−ia  whenever ,Ti ∈  then, with ,ZTr +=  the hypothesis of 

Theorem 1.7 holds for ∏ ∏
∈ ∈

−
− ⋅

Zi Ti
ii

rm wwR ,1  and hence ( ( )) mMTC 2≥A  if 

( ).2lg rrm +≥  

Proof. Let { }.:1 TttT ∈−=′  Then .CT ⊂′  Let .TCC ′−=′  

Let ( )kI εε= ...,,1  with { }1,0∈ε j  be given. We will show that ( )IYφ  

0=  if ,rI <  and ( ) 1=φ IY  if 1=εi  if ,TZi ′∈ ∪  and 0=εi  otherwise. 

If U is a k-tuple of nonnegative integers, define 

( )
⎩
⎨
⎧

∉
∈

=χ
.if0
,if1

k

k
U
U

U
S
S

 

Let B  denote the set of k-tuples ( )kbbB ...,,1=  such that kIB =+  and 

{ }⎪⎩

⎪
⎨
⎧

∈∈
∈=
∈∈

.1,0
,0
,

Ci
Zi
Ti

bi

N
 

Here N  denotes the set of nonnegative integers. These ib  are the values for 

which .2mod1
2

≡⎟
⎠
⎞

⎜
⎝
⎛ −+

i

ii
b
ba

 By (4.6), 

( ) ( )∑
∈

∈+χ=φ
BB

I IBY .2Z  
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Let 

{ }.somefor2: 1 TtbbB tt ∈≥+∈= −BP  

For an element B of ,P  choose the minimal t with ,21 ≥+− tt bb  and pair B 

with the element B′  which has ,1 11 −− −=′ tt bb  ,12 1 −+=′ −ttt bbb  with 

other entries equal to those of B. We show in the next paragraph that 
( ) ( )IBIB +′χ=+χ  for all .P∈B  Thus 

( )∑
∈

≡+χ
PB

IB .2mod0  

Assume, without loss of generality, that .01 =−tb  The only value of h 

for which 

( ) ( )∑ ∑
= =

+′≠+
h

i

h

i
ii IBIB

1 1
 

is .1−= th  The only conceivable way to have ( ) ( )IBIB +′χ≠+χ  is if 

( )∑
−

=
−=+

2

1
2

t

i
i tIB  

and ,11 =ε −t  for then, since IBbt +′=′− ,11  fails the condition to be in kS  

at position ,1−t  but IB +  does not. However, since IBbt +≥ ,2  fails at 

position t. Thus ( ) ( ).IBIB +′χ=+χ  

Now let .PBQ −=  If ,Q∈B  then 

∑ ∑ ∑
′ ′

−==+′+≤++=
TT C Z

iii rkCCTbbbB
∪

.0  

Since ,rI ≤  we must have rkB −=  and rI =  in order to get a 

nonzero term in (4.6). Thus ( ) 0=φ IY  whenever .rI <  

The IY  being considered has 1=εi  for .TZi ′∈ ∪  The B’s in Q  which 



Topological Complexity of the Space of Planar n-gons 23 

might give a nonzero term in (4.6) must have ( ) ( )1,0,1 =− tt bb  or ( )0,1  for 

all ,Tt ∈  and 1=ib  if .Ci ′∈  Thus IB +  has 1’s in ,CZ ′∪  and ( )1,1  or 

( )0,2  in each position pair ( ).,1 tt −  If any ( )0,2  occurs, then IB +  fails to 

be in ,kS  and so (4.6) has only one nonzero term, namely where ( )tt bb ,1−  

( )1,0=  for all .Tt ∈  Thus ,kIB S∈+  and ( ) .1=φ IY  ~ 

A similar result and proof holds when ia  contains subsequences of the 

form ( )3,0,0  or ( ).2,1,0  Moreover, all these can be combined, so that (1.3) 

holds for ( ),2lg rrm +≥  where r is the number of 1’s plus the number of 

( ),2,0  ( ),3,0,0  and ( )2,1,0  sequences in ,ia  provided that ia  contains 

only 0’s and 1’s and these sequences. However, there are many other 
sequences ia  not of this type for which the result holds. 

In the remainder of the paper, we present more evidence that it is very 
rare that we cannot prove (1.3). For genetic codes with a single gene of size 
4, it was shown in [2] that ( ( )) 72 −≥ nMzcl A  unless the gene is 6321, 

7321, or 7521. Here we prove a totally analogous result for genes of size 5. 

Theorem 4.10. For a genetic code with a single gene of size 5, 
( ( )) 72 −≥ nMzcl A  except when the gene is 74321, 84321, or 86321. 

The proof will use the following general lemma. Notation is as in (4.5). 

Lemma 4.11. For a monogenic code with gene { }kggm ...,,,3 1+  and 

,01 >−= +iii gga  all monomials tii
tm wwR "1

−  for kt <  are 0 if and 

only if ( )i
ia 2lg2mod1≡  for all i. 

Proof. Let JŶ  denote ,IY  where I has 0’s in the positions in J and 1’s 

elsewhere. Let .1−=′ ii aa  Using (4.6), ( ) ,ˆ kjj aaY ′++′=φ "  and hence all 

( )jŶφ  are 0 iff ia  is odd for all i. Similarly, ( )21,ˆ jjYφ  with 21 jj <  has terms 

with factors ,ia′  which are 0 by the above, plus terms in (4.6) with jB ε= 2  



Donald M. Davis 24 

for .2jj ≥  For ( )21,ˆ jjYφ  to be 0, we must have .0
22

2 =⎟
⎠
⎞

⎜
⎝
⎛++⎟

⎠
⎞

⎜
⎝
⎛ kj aa

"  For 

all these to be 0, we must now have 4mod1≡ia  for all .1>i  Similarly, 

( )4321 ,,,ˆ jjjjYφ  will be a sum of terms already shown to be 0 plus +⎟
⎠
⎞

⎜
⎝
⎛

4
4ja

 

.
4
⎟
⎠
⎞

⎜
⎝
⎛+ ka

"  For all these to be 0, we must have 8mod1≡ia  for .4≥i  

Continuing in this way implies the result. ~ 

Proof of Theorem 4.10. The theorem holds for those gees having 

0≠mR  by Theorem 1.8. For those with 0=mR  and ( ) ≠4321 ,,, aaaa  

( ),1,1,1,1  the result holds for 5≥m  (hence for )8≥n  by Lemma 4.11 and 

Theorem 1.7. But the only length-5 gene with 8<n  is 74321. 

It remains to consider codes with ( ) ( ).1,1,1,1,,, 4321 =aaaa  Theorem 

1.7 implies the result for ,8≥m  so for .11≥n  We must consider the gees 

with 91 ≤g  (and all ).1=ia  These are 4321, 6321, 8321, 8721, and 8761. 

As noted at the end of the previous section, for the gee 4321, we have 

( ( )) ,, 321
4

4321
51 VVVRVVVVRMH mmm −−− =A  

432
4

431
4

421
4 ,, VVVRVVVRVVVR mmm −−−  (4.12) 

and ( ( )) 72 −≥ nMzcl A  for 9≥n  but not for 7=n  or 8. 

We now study the case when the gee is 6321. From (4.12), we deduce 

that there is a uniform homomorphism ( ( )) 2
1: Z→ψ − AMH m  sending only 

,421
4 VVVRm−  ,521

4 VVVRm−  and 621
4 VVVRm−  nontrivially. “Uniform,” as 

discussed in [2], means here that ψ treats ,, 54 VV  and 6V  identically because 

of the interval from 4 to 6, inclusive, in the gee. This dependence of uniform 
homomorphisms only on ia  was observed in [2], but can be seen in this case 

directly as follows. [The only relations JR  corresponding to gees of size 2≥  
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which involve any of these three monomials are j,3R  for { }.6,5,4∈j  Each 

of these relations involves only two of the three monomials and so would be 
sent to 0 by our ψ.] Using this ψ, we have for ,7=m  similarly to (3.5), 

( ) ( ) ( ) ( ) ,02
6

2
2

2
16

4
321

3
6

4
3

3
2

3
1 ≠ψφ=ψ⊗φ VVVVVVVVVVV  

and for ,6=m  

( ) ( ) ( ) ( ) .02
6

2
216

2
32

2
1

3
6

2
3

3
2

3
1 ≠ψφ=ψ⊗φ VVVVVVVVVVV  

One easily checks that nothing works when .5=m  This establishes the claim 
when the gee is 6321. 

A similar analysis works for gees 8321, 8721, and 8761. For each, there 

is a uniform homomorphism ( ( )) 2
1: Z→ψ − AMH m  sending five classes 

kj
m VVVR 1

4−  nontrivially, where k ranges over the gap in the gee (for 

example 3, 4, 5, 6, and 7 in the second), and ,2,2=j  and 7 in the three 

cases. There are products similar to those of the previous paragraph mapped 
nontrivially by ψ⊗φ  when 7=m  or 6. For example, for 8721 and ,7=m  

( ) ( ) ( ) ( ) .02
7

2
2

2
1

4
8721

4
8

3
7

3
2

3
1 ≠ψφ=ψ⊗φ VVVVVVVVVVV  

Thus 12 −≥ mzcl  for these when 7=m  or 6. ~ 

We have performed a similar analysis for single genes of size 6, and 
found that again the only exceptions to 72 −≥ nzcl  occur when all .1=ia  

However, this time there are twelve such exceptional genes: (using T for 10, 
and E for 11), 854321, 954321, T54321, E54321, 974321, T74321, E74321, 
T94321, E94321, T98321, E98321, E98721. Details are available from the 
author upon request. 
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