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Abstract

Hausmann and Rodriguez classified spaces of isometry classes of
planar n-gons according to their genetic code which is a collection of
sets (called genes) containing n. Omitting the n yields what we call
gees. We prove that, for a set of gees with largest gee of size k > 0,

the topological complexity (TC) of the associated space of n-gons is
either 2n—-5 or 2n-6 if n > 2k +3. We present evidence that
suggests that it is very rare that the TC is not equal to 2n-5 or
2n - 6.

1. Introduction

The topological complexity, TC(X), of a topological space X is, roughly,
the number of rules required to specify how to move between any two points
of X. A “rule” must be such that the choice of path varies continuously with
the choice of endpoints (see [3, Section 4]). We continue our study, begun in
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[2], of TC(X), where X = M(/) is the space of equivalence classes of
oriented n-gons in the plane with consecutive sides of lengths /4, ..., /p,,

identified under trandation, rotation, and reflection (see, e.g., [5, Section 6]).
Here ¢ = (¢4, ..., {) isan n-tuple of positive real numbers. Thus

M(0) ={(z, ..., Z3) € (SH" 1 112 + -+ + Lz = 0}/ O(2).

We can think of the sides of the polygon as linked arms of a robot, and then
TC(X) is the number of rules required to program the robot to move from

any configuration to any other.

We assume that ¢ is generic, which means that there is no subset

Sc [n] with > ¢; = > ¢;. Here [n] = {1 ..., n}, notation that will be
ieS igS

used throughout the paper. When ¢ is generic, M (¢) is aconnected (n - 3)-
manifold [5, p. 314], and hence, by [3, Corollary 4.15], satisfies

TC(M(¢)) < 2n-5. (1.2)

The mod-2 cohomology ring H*(M(¢)) was determined in [5]. See
Theorem 1.5 for our interpretation. All of our cohomology groups have
coefficients in Z,, omitted from the notation. We shall prove that for most
length-n vectors ¢, there is a nonzero product in H*(M(¢)x M(¢)) of
2n -7 classes of the form z®1+1® z, which implies TC(M(¢)) > 2n
— 6 by [3, Corallary 4.40], within 1 of being optimal by (1.1). We say that
this lower bound for TC(M (¢)) is obtained by zcl (zero-divisor cup length)
consideration, or that zcl(M(¢)) > 2n—7. Wewrite Z=z® 1+1Q z

To formulate our result, we recall the concepts of genetic code and gees.
Since permuting the /;’s does not affect the space up to homeomorphism,

we may assume (1 < --- < (. Wealso assumethat /, < {1+ -+ (1, SO

that M (¢) is nonempty. It is well-understood (e.g., [5, Section 2]) that the
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homeomorphism type of M (¢) is determined by which subsets Sof [n] are

short, which means that )’ ¢; < > /;. Define a partial order on the power
ieS igS

setof [n by S<Tif S={s,..., s} and T o {ty, .., t,} with 5 <t for
al i. As introduced in [6], the genetic code of ¢ is the set of maximal
elements (called genes) in the set of short subsets of [n] which contain n.

The homeomorphism type of M (/) is determined by the genetic code of .
A list of al genetic codesfor n < 9 appearsin|[7]. For n = 6, 7 and 8, there
are 20, 134, and 2469 genetic codes, respectively.

In[2], we introduced the term “gee] to refer to a gene without listing the

n. Also, a subgee is any set which is < G for some gee G, under the partial
ordering just described. Thus the subgees are just the sets S < [n-1] for

which SU {n} is short. Our main theorem is as follows. Let Ig(-) =
Lloga(-)]-
Theorem 1.2. For a set of gees with largest gee of size k > 0, the

associated space of n-gons M (/) satisfies
2n-6<TC(M(¢))<2n-5 (1.3)

if n>k+ 290 ;3

Here we mean that ¢ is a length-n vector whose genetic code has the
given set asits gees, with n appended to form its genes.

The stipulation k > 0 excludes the n-gon space whose genetic code is
({n}). One length vector with this genetic code is (1”‘1, n—2). A polygon
space with this genetic code is homeomorphic to rea projective space
RP"3, and it is known that, except for RPY, RP3, and RP’, TC(RP"~3)
equals the immersion dimension plus 1, which is usualy much less than
2n -6 [4].

We will prove two results, Theorems 1.4 and 4.10, which suggest that
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(1.3) fails only very rarely. As noted above, it usualy fails if the genetic
code is ({n}). At the other extreme, it fails if the genetic code is
{{n,n=3,n-4, .., 1), inwhich case M () isatorus T3 of topological
complexity n— 2. We showed in [2] that, of the 132 equivalence classes of

7-gon spaces excluding RP* and T4, there are only two, namely those with

a single gene, 7321 or 7521, for which we cannot prove that they satisfy
(1.3). Here, we have begun the usual practice of writing genes or gees
consisting of single-digit numbers by concatenating. In Theorem 1.4, we
obtain asimilar result for 8-gon spaces, but this time with just two exceptions
out of 2467 equivalence classes.

Theorem 1.4. Excluding RP® and T°, the only spaces M (¢) withn =8
which might not satisfy (1.3) are those with a single gene, 84321 or 86321.

In Section 4, we specialize to monogenic codes and prove in Theorem
4.10 that the only genetic codes with a single gene of size 5 (for any n) which
do not necessarily satisfy (1.3) are those noted above.

Theorem 1.2 is an immediate consequence of Theorems 1.7 and 1.8. We
introduce those theorems by giving our interpretation [2, Theorem 2.1] of [5,
Corollary 9.2], the complete structure of the mod 2 cohomology ring of

M (©).

Theorem 1.5. If ¢ has length n, the ring H*(M(¢)) is generated by
classes

RV, ..y Vg € HY(M(0))
subject to only the following relations:

(2) All monomials of the same degree which are divisible by the same

Vi’s are equal. Hence, leiting Vs:=]]._V, monomials RA1Shg for

S < [n-1] span HY(M(¢)).
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(2) Vg = 0 unless Sisa subgee of /.

(3) For every subgee Swith | S| > n—2—d, thereisarelation Rg in

HY(M (¢)), which says

> RIT =0, (1.6)
7S
It is convenient to let m = n—-3, which we do throughout. Note that

M (¢) is an mrmanifold. The proof of Theorem 1.2 is split into two cases

depending upon whether or not R™ = 0.

Theorem 1.7. Suppose R™ = 0. Then there exists a positive integer r and
distinct integers iy, ..., i; such that R™'V, -V, = 0e HM(M (1)) = Z,,
but for all proper subsets S C {iq, ..., i }, R™ S‘1_[\4 =0. Assume m>r

ieS
+2197 andlet f =Ig(m—r)>Ig(r). Let A=2m-2r — 27+ 4+ 3. Then

r-1

73 A p2m+2-A-3 2m-1,xr 'Y
HVir VA RE F 2 0e H2YM(0)x M(2)),
J:

and hence TC(M (¢)) > 2m = 2n - 6.

Theorem 1.8. Suppose R™ = 0. If mis a 2-power, then R*™ L = 0. If
m is not a 2-power, then there exist positive integers t and A and distinct
integers iy, ..., iy;1 such that

Vi, -V

‘it\TitAlﬁZm—A—t—l #0e H2™YM(0)x M(2)).
+
Hencein either case TC(M (¢)) > 2m = 2n — 6.

In Theorem 1.8, any m large enough, with respect to the given gees, to
yield avalid genetic code works in the theorem.
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In Section 2, we prove Theorems 1.7, 1.8, and 1.4. In Section 3, we
discuss the effect on the length vectors and the cohomology ring of
increasing n while leaving the gees unchanged, and give some examples
regarding the sharpness of the bound on how large m must be in Theorem
1.7. In Section 4, we give several explicit families of gees of arbitrarily large
size to which Theorem 1.7 applies. We also prove in Theorem 4.10 that there
are only three size-5 genes for which we cannot prove (1.3).

2. Proofsof Theorems 1.7, 1.8, and 1.4

In this section, which we feel is the heart of the paper, we prove
Theorems 1.7, 1.8, and 1.4.

Proof of Theorem 1.7. We begin with the simple observation that if

R™ = O, thenr can be chosen as

. . .. . . . —t
r = min{t : 3 distinct iy, ..., i; with R™ Vi -V, # 0}

First observe that A > 3 and the exponent of R is 27"l —1-r >0,
since f > Ig(r). By minimality of r, in the expansion of the product, factors

Vﬁ ®1, 1®Vi:_”, \/iA ® 1, and 1®ViA will yield O in products. A product of
] ] r r

s of the \/Izs and (r —1-s) of the Vij ’s can be written as R°P, where
i

r-1
P = 1_[\/ij . Thus our product expandsin bidegree (m, m—1) as
j=1

-1 A-1
rZ: r—1 RSPZ A\/.j 2m+2 - A-3r RM-S-T-j+1
so\ S j=1 jJrm-s-r-j+1
® Rr—l—SPVirA T RMHl-A-2rest] 2.1)

Let ¢ : H™(M(¢)) - Z, be the Poincaré duality isomorphism. Let V,

denote any product of distinct classes V;. There is a homomorphism w :
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H™YM(¢)) - Z, satisfying that w(R™ Y1, )= 0 iff o(R™'hy;)
# 0. This follows from Theorem 1.5 since the relations in H™ (M (¢)) are

dsorelationsin H™(M(¢)) (with adimension shift). Thus ¢ ® y applied to
any summand of (2.1) which has a nonzero coefficient, mod 2, is nonzero,
and so ¢ ® y applied to (2.1) equals

1AZ_1 r-1\(A\(2m+2-A-3r
. s JJim—-s—r—-j+1

r_
s=0 j=1

_g r—1\(A\/2m+2- A-3r +r_1r—1 2m+2—- A-3r
&=l s ilm-s—r—j+1) &l s m-s—r+1
+r_1(r—1j(2m+2—A—3rj

=\ s m-s-r-A+1

By Vandermonde' sidentity, this equals

2m-2r +1 2m-2r +1- A 2m-2r +1- A
+ + . (2.2)

m-r+1 m-r+1 m-r+1-A
2m-2r +1- A

j, and so the sum of

The last binomial coefficient equals ( ot

2m-2r +2- A

the last two equals ( j Inserting now the value of A, wefind

m-r+1

that the image of our class equals
2m-2r +1 .\ of+l 4
m-r+1 m-r+1)
For 2f <m-r <2+t —1, this expression equals 1, coming from the first

termif m—-r = 2f *1 _ 1 and from the second term otherwise. O

The proof of Theorem 1.8 is a bit more elaborate. We will always be
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using the homomorphism v : H™ (M (¢)) — Z, which equals the Poincaré
duality isomorphism ¢ : H™(M(¢)) — Z, in the sense of the preceding

proof. We first observe that if $(R™) = 0 and w(R™ 1) % 0 and m = 22,
then Theorem 1.8 istrue since

pOWR™Y =" RMyR™) 0.

In the rest of this section, we assume mis not a 2-power.
The following key lemma rules out certain possibilities for ¢.

Lemma 2.3. It cannot happen that there isa subset S < [m+ 2] such
that

1 | cS
0 otherwise

BR™ 1) = {

Proof. We assume such a set S exists and will derive a contradiction.
Let k denote the size of the largest subgee. By [1, Corollary 1.6],

¢(Rm_kVil "'Vik) =1 whenever {ij, ..., i} is asubgee. Although the result

in [1] is apparently only referring to monogenic codes, the proof applies
more generally. By the assumption, we conclude that there can only be one
subgee of size k, and it must be [k]. The sum Ry + Rpg_q of relations

from Theorem 1.5 implies that the sum of <|>(Rm_‘ J ‘VJ) taken over all
subgees J for which J N[ k] = {k} must be 0. This sum includes the term

®(R™ N, ) =1, while all other terms in the sum have J ¢ [k] and hence
have <|>(Rm_‘ J ‘VJ) = 0, contradicting that the sum isO. O

The next two propositions are special cases of the theorem. If S < [[t],
let S = [t]-S. Werepest that w(R™ 1", ) = g(R™ 'V, ) is assumed.

Proposition 2.4. Let T < [m+ 2] with |[T|<m, and reindexas T =
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[t +1]. Suppose §(R™) =1, $(R™ Thyp)=1 and ¢(R™ '\, ) =0 for
all 1 ¢T suchthatt+21e l. Then
(4®y) (ViYW R™ = 1.
Proof. The expression expands as
m-t
m-—t m-1 . : : .
Z z [ i j [m ls|- i] ¢(VSVtI+1Rm7‘ S|-i )W(VthTIt" RS|+i-1),
Sc[[t] i=0
The only terms with ¢ - v = 0 arethose with (S, i) = ([t], m—t) or (&, 0),
and the coefficients of these are 1 and O, respectively. O
Proposition 2.5. Let T < [m+ 2] with |[T|<m, andreindexas T =
[t +1]. Suppose ¢(V;)=1for I C T, and ¢(Vy)=0.Let m= 2%+ A, 1<
A < 2% Then

A 2m-—t 2m- A-t
9 650 AR (27 (7).

2m-—t 2m- A-t
(2)( m j+( ) jisoddforthefollovvingvaluesofA:

@If1<t<2A, use A=2A+1-t.

R t-A-1).
(b)If 2A +1<t < 2% and A iseven, use A = A.
t—A
(c)If2A+1st£26and( R
-t
A
!
A

iseven, use A = A.

A
(d)If 2° <t <m-1and (m *
+

A

)

1) . 19(22)
isodd, use A = 2'9<2),

j isodd, use A= A — 2v(M-t),

(e1f 2° <t<m-1and (m
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Proof. (1) The expression expands as

A
Ay(2m-A-t-1 . : . .
_ N/ A- _t—
E (I][ m_i|s| ]<1>(v5vt'+1RrrH |S1) w(VaVy i Rm-A-t-14i+{S])
Sc[t]i=0

ty(2m-t-1
I it was the case that all ¢(-) =1, this would equal Z@( mm s jz

2m-1
[ o j = 0, since we assume mis not a 2-power. Our given values of ¢

differ fromthisonly for S=[t] andi >0, or S= & and i < A Thusthe
sum becomes

AR

i=1 i=0

[Zm—t—lj (Zm—A—t—lj (Zm—t—lJ (Zm—A—t—l)
= + + +
m-—t m-t m m- A
(Zm—tj (Zm— A—tJ
= —+ .
m m-t
(2) (8) The expression equals(

2e+1+2A—t+ 28+l _¢ 041
2° L A 2 _A+t-1

28+ L oA t] N (2€+1A —t

. The first of
2+ A 2¢

(b) The expression equals [

—(t-2A t-A-1
these is congruent to [ ( A )j E( A JE 0 by assumption, while

the secondis1since t < 2%,

(c) The first term is as in (b), except now it is 1 by assumption. Let
2514 25 - t}

A=2"+8 with 0< 8 < 2. The second term becomes
2°-2Y+8
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which is 0 since the top has a0 in the 2V** position, while the bottom has a 1
there.
(d) The expression is the same asin (b). Now the first term is of the form

. - . m+ A —t _
(2 +2?+A tj =0 since ( A jz 0 by assumption. The second
+ A

termis 1 sinceitstop is between 2° and 2° + A.

e W
(© Let m—t = 2" with o odd. The first term is (2 +2% +AJ

2V
_ (ZWOL + A

e w w
W ]zl by assumption. The second term is (2 t2lo+2 J
(0

2Ya

yielding 0 dueto the 2" position. O

We need one more lemma, in which P(S) denotes the power set of S.
Lemma2.6. IfUisaset,and C < P(U) with & e C, then either
(@ C =P(X) for some X < U, or

(b) thereexists T = U with | T| > 2 suchthat CNP(T) = P(T) - {T},
or

(c) there exists se Sc U such that {CeC:seC}NP(S)={S}
and | S| > 2.

Proof. Let X ={teU:{t}eC}. If P(X)&C, then a minimal
element T of P(X)—C is of type (b), and we are done. If C = P(X), we
aredone by (a).

Thus, we may assume that P(X) ¢ C. Choose S' € C — P(X) and s e
S — X. Note that {s} ¢ C. Let Sbe aminimal element in {C € C: se C}.
This Sis of type (c), so we are done. O
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Proof of Theorem 1.8. Let U denote the set of i’ssuch that \; isafactor

of some nonzero monomial in H™(M(¢)). Let C = {l c U : o(R™!",)
# 0}. By Lemma 2.3, either (b) or (c) of Lemma 2.6 istrue of C. If (b), then

the theorem is true by Proposition 2.5, and if (c), then the theorem is true by
Proposition 2.4. O

Proof of Theorem 1.4. By Theorem 1.8, (1.3) holds whenever R™ = 0,
and by Theorem 1.7, it holds for n =8 (hence m=5) whenever R™ =0
and there is some nonzero monomial R™ 'V, ---Vj with 1<r <3. The

only genetic code with n = 8 having a gee of length 5 is that of the 5-torus,
854321. The magjority of the genetic codes with n = 8 do not have any gees
of size 4, and the theorem follows immediately for these. However, there are
many genetic codes with n =8 having a 4-gee of the form 4321, 5321,
6321, 7321, 5421, 5431, or 5432, plus perhaps other, shorter, gees. This can
be seen in [7], or deduced from the definitions. We will show that, except in

the excluded cases, if al monomials Mg in H™(M(¢)) corresponding to
subgees S of size<3 ae 0, then so are the monomias in H™(-)

corresponding to the 4-gees, contradicting that H™(-) = Z.

If the 4-gee is 4321 and there are any other gees, then 5 is a subgee, and
Rs (see Theorem 1.5(3)) in H™(M(¢)) is a sum of the monomia M 4351
corresponding to 4321 plus monomials M g corresponding to certain subgees

of size < 3. If @l these Mg = 0O, then the relation implies that M 4357 =0
and hence H™(-) = 0.

If the only gees and subgees of size 4 are one or more of 5321, 5421,
5431, or 5432, let T denote any one of them, and let j denote the element of

[5] not contained in T. The relation R in H™(-) is a sum of the

monomial M+ corresponding to T plus monomials Mg corresponding to
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subgees Sof size < 3. If all Mg are 0, then so is My, and since this holds

for al T, we deduce H™(-) = 0.

If 6321 isthe 4-gee and there is another, shorter, gee, then the shorter gee
must contain 7. This can be seen at [7], or can be deduced as follows. [Any
gee of size < 3 which does not contain 7 and is not < 6321 would have to
be > 54. But if 86321 is short, then 754 islong and hence so is 854.] Thus 7
is a subgee. The gees and subgees of size 4 are 6321, 5321, and 4321. If all

monomials Mg in H™(-) corresponding to subgees S of size < 3 are 0,
then the relations R7, Rg, and Rg imply, respectively, Mgzo1 + Mgz
+Myzp1 =0, Msggpg + Mygpy =0, and Mggp + Mygp; = 0, and hence

H™(-) = 0.

If 6321 is the only gee, then we do not have R, to work with, and in
fact Mgz = Mggp1 = Mygpy # 0 with all monomials corresponding to
shorter gees being 0. Hence in this case, we cannot use Theorem 1.7 to
deduce (1.3) when n = 8.

If 7321 is a gee, there can be no other gees, as can be seen from [7] or
deduced similarly to the deduction involving 6321. If all monomials Mg
corresponding to subgees of size < 3 are 0, then the relations R,, Rg,

R5 and R4 Imply that M7321 = M6321 = M5321 = M4321 = 0 and hence

H™(-) =0. U
3. The Effect of Increasingn

In this section, we discuss the effect of increasing n, while leaving the
gees fixed, on the length vectors and the cohomol ogy ring.

The operation of increasing the number of edges by 1 while leaving the
gees unchanged has the following nice interpretation. Two length vectors are
said to be equivalent if they have the same genetic code, or equivaently their
moduli spaces M (/) are homeomorphic.
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Proposition 3.1. Any generic length-n vector is equivalent to one,
(1, w-y £1y) With ¢4 <--- < 7, in which all lengths are positive integers

with odd sum | 7|, and
lh+la 1S ly++lho+1 (3.2

For such an ¢, definea new vector ¢' of length n+1 by

/1+1 /1+1
(1t L2, 125) 69

Then ¢ and ¢' have the same gees.

Proof. It isshown in [6, Section 4] that any length vector is equivalent to
one with rational entries and hence to one with integral entries. In [7], it is
shown that this is equivalent to one with | /| odd. If it has ¢, + (,,_1 =

li+-+/lh_o+2d+1for d > 1, we can find an equivalent length vector
with smaller d, and hence eventually satisfy (3.2), as follows: (a) If /1
> (pn_o, then decrease ¢, and (,_y by 1. (D) If 0y >l g4 ==l >
ln_t_q forsome t > 2, decrease /y_q, ..., {n_t by 1, and decrease 7, by t.
(©If ty =1ln_q = ln_o, decrease each of them by 2.

We explain briefly why each of these changes does not affect the genetic
code. (@) The only short subsets containing n, either before or after the

change, are of the foom T = SU {n} with Sc[n-2], and ZieTfi -
Zi oT ¢; isinvariant under the change. (b) First we show that the new vector

has nondecreasing entries. We need /,, — /,_4 2t —1 for t > 3, and this
follows easily from /7, + /,_1 > (t —1)/,,_1 + 3. Because in either the old or
new vector, the sum of the last two components is greater than half the total,
the only short subsets containing n will be of the form T = SU {n} with
S < [n -t —1], and the change subtracts t from both T and its complement.

n-3
(c) The hypothesis implies that Zf j <{p—3, and so the new vector has
j=1
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nondecreasing entries, and both the old and new vectors have [ n — 3] asthe
only gee.

Now we compare the gees of ¢ satisfying (3.2) with those of (3.3),
which satisfies its own analogue of (3.2), in fact with equality.

If equality holds in (3.2), then for ¢ (resp. /'), the only short subsets
containing n (resp. n+1) are of the form T = SU {n} (resp. SU {n+1})
with S [[n— 2], and the change adds WT+1— /,, to both jZng and

S
Zéj , thus leaving the gees unaffected. If, on the other hand, ¢, + /,_1 <
jeT
l1+--+ (o —1 then ¢ has some short subsets of the form T; = S U
{n-1,n} with S < [n- 2], and others of the form T, = S, U {n} with
S, c[n-2]. The vector ¢ of (3.3) will have exactly the sets S U
{(n-1L,n+1 and S, U{n+1} asits short subsets containing n+1, since

| ¢]+1
2

—(,, toboth ijand Zf,—,s:],z. O
jeTe j£Te

again we add

Next we point out the effect on H*(-) of increasing n while leaving the
gees unchanged. Recall that m = n— 3. If s denotes the size of the largest

geeand m > 2s, thenfor d < m—s, HY9(M(¢)) hasabasis

(RA1Shg s isasubgee| S| < d},

so in this range increasing m leaves the cohomology groups unchanged,
while for m—-s<d <m, the relations among the subgees depend on

m — d, and soin thisrange increasing m acts like suspending.

For our strong TC results, we only use H™ (=) and H™(-). We
illustrate with a simple example: monogenic codes 7321 and 8321, so the

gee is 321 and m= 4 and 5. One can verify that in this case H™M(-) ~



16 Donad M. Davis
<Rm_3\/1V2V3> and

H™ () = (R™ ViV, R™3VVs, R™3VoV;, R™VVoVs3).
So r = 3 in Theorem 1.7, and the theorem applies for m > 5. Note that in
Theorem 1.7, we are only considering homomorphisms v : H m_1(—) — Z»y
which are essentiadly equal to ¢ : H™(-) - Z,, so that in this case the

theorem is only utilizing the class R™ \VjV,V3 in H™ (),
When m =5, (¢ ® y)(VyV5V5) = 0 in bidegree (5, 4) asit equals
HOAVAVE )W (VVN3) + 0V w(ViVEVs)
2,2 2
+ O(VIVEV3)w(VVoVs) = 0.

(Keep in mind part (1) of Theorem 1.5.)
When m = 4, we would need

VAVALYZ =Lt (3.4)
in bidegree (4, 3). The only way to get RV\V,V3 ® VoV would be with
none of i, j, or k being a 2-power, and this isimpossible with i + j + k < 7.
We could get RVjV,V3 ® RV, from i = j = 3, k =1, but thiswould have
even coefficient from

VAV ® VIVE + VA ® VAV,

We conclude that (3.4) is impossible, and so we cannot deduce TC(M (¢))

> 8 for this ¢ when m = 4 by cohomological considerations. Thus Theorem
1.7 isoptimal for the gee 321 in obtaining the strong lower bound for its TC
when m > 5,

If the only geeis [[r], we easily see, using Theorem 1.5, that the only

nonzero monomial in H™(M (¢)) is R™-"Vf, whilethosein H Mm-L(M(¢))
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are Rm—l—rvm and Rm—2—rv[[r]]_{i} for1<i < r.We can sometimes improve
upon Theorem 1.7 because of this explicit information about H™(-).

For example, if the only gee is [4], Theorem 1.7 said TC > 2m for
m > 8, but we can also deduce TC > 2m for m= 7 and m = 6 using
VAV = VoV @ VAVAVZ inbidegree (7, 6)  (35)
and
V2 = VALVVE ® VIVAVZ in bidegree (6, 5).
When m =5, we cannot deduce TC > 10 using zcl. When m = 4, so the

genetic code is 74321, M (¢) is homeomorphic to a 4-torus with TC = 5.

If theonly geeis [r] for r =5, 6, or 7, Theorem 1.7 says TC > 2m for
m > r + 4, and one can check that thisis all we can do, in the sense that, for

m<r +4, \71il LV R

4. Specific Resultsfor Monogenic Codes of Arbitrary Length

In this section, we discuss some families of monogenic genetic codes of
arbitrary length in which we can show that R™ = 0 and find the value of r
that worksin Theorem 1.7. At the end, we discuss evidence suggesting that it
is quite rare for a monogenic code to have zcl < 2n— 7 (and hence not be
able to deduce TC > 2n — 6 from zcl).

Definition 4.1. Let Sy denote the set of k-tuples of nonnegative integers
such that, for al j, the sum of thefirst j componentsis < j.

For B = (by, ..., by), let | B| = D_by. Thefollowing theorem is the main
result of [1].

Theorem 4.2. Suppose ¢ has a single gee, {gj, ..., Ok}, With g =
gy — Gi41 > 0. (ax = gi.) If Jisaset of distinct integers < gy, let 6(J) =



18 Donad M. Davis

(61, ..., 6), where 6; is the number of elements j e J satisfying gj 1 <

j £gj. Then, if ¢/ has length m+ 3, the Poincaré duality isomorphism

o : HM(M(¢)) > Z, satisfies

dR™ V), -V Z (a' +h - 2) (4.3

B

where B ranges over all (b, ..., b¢) for which |[B|=k-r and B+
01, - Jr}) € Sk

The following corollary is useful.

Corollary 4.4. In Theorem 4.2, (4.3) depends only on the reductions
a mod 2'92),

Proof. For a B-summand in (4.3) to be nonzero, it is necessary that each

b be <i. Binomial coefficients (:3 depend only on x mod 219(20) O

We often write 3 for the mod 2'9%)-reduction of a. In Theorems 4.8
and 4.9, we describe two infinite families of (&, ..., @) for which Theorem

1.7 applies, and so we can deduce the strong lower bound for TC(M (¢)).

Let wp = Vg (or any V; satisfying g 1 < j < g;). If I =(eg, ...y &)

with each gj € {0, 1}, welet

Y, = Riwjt - wik (4.5)

for any t. This notation for Y, could be extended to include products of
distinct Vj with j-values in the same subinterval (gj.q, gi], but the
consideration of such Y, seems not to be useful. The total grading of our

classes Y, will be implicit, usually mor m—1, and the value of t in (4.5) is
chosen to make the class have the desired grading. Then (4.3) could be
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restated as

L _
o) - ZH["’“ +2 2) 4)
B i=1

in grading m, where B ranges over al (by, ..., b) suchthat B+ | € S and
|B+1]=k
For monogenic codes as in Theorem 4.2, we can easily check whether
R™ =0, (or equivalently ¢(R™) = 0), since R™ isjust Y; with | consisting
a+b -2
b
(by, ..., by) satisfying | B| = k and B € Sy. For example, when k = 3,

a+l) (&), (&),
¢(Rm)=( 5 jJ{2j33+[2j(31+a2)+3132a3,

of al 0's. Thus $(R™) = ZB( J with the sum taken over all B =

where g = g — 1.

k .
For a given k, there are HZ'Q(Z') possibilities for (7, ..., @ ). Maple
i=1
determined the information in Table 4.7 regarding how many of these have

RM = 0.

Table4.7
k #a's #RM™=0
3 32 20
4 256 128
5 2048 1216
6 16384 9600

Our simplest result follows. Keep in mind that in the rest of this section

g refersto the reduction mod 219(2) of & = gj — 0j.1, Where 7 hasasingle

gene {Mm+ 3, gy, ..., Ok }-
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Theorem 4.8. If thereisaset Z < [k] with | Z| = r such that
- 1 ieZz,
70 ez

then the hypothesis of Theorem 1.7 holds for R™'[]w, and hence
ieZ

TC(M(£)) > 2m if m > r + 2'9("),

_ : g +b —2).
Proof. For 3@ e {0, 1}, the only times that , is odd are when

b =0 or (b =1 and & = 0). Thus anonzero term in (4.6) requires | B| <
k—r. For |I|<r, ¢(Y;) can have nonzero termsonly if |B| =k —r and

| 1| = r, and moreover only for the single B given by

1 igZ,
h_{o ieZ

If I has 1'sinthe positionsin Z, and 0’'s elsewhere, ¢(Y,) =1 from thesingle

termwith Basaboveand B+ | = (3, ..., 1). O

For example, the case (g, @, a3, a4) =(1, 1, 0,1) applies to any ¢
whose genetic code is ({n, g1, 9, 03, 94}) With n>g; > g, > g3 > g4
and g4 =1(8), g3 =1(4), 9, = 2(4), and g; = 1(2). Theorem 4.8 says that
TC(M(¢))=2n-6 if n—3>3+2, soif n>8. But the smallest values
that satisfy the conditionson nand g; are 87651, and so the condition in the
theorem that m > r + 2'9" covers al possibilities here. Moreover, there is

no ¢ having this as genetic code because 432 and its complement would
both be short. This suggests that the condition in Theorem 1.7 that m>r

+2!9" will usually cover al possible values of m, and so the “sufficiently
large” in our title will rarely need to be invoked. We will discuss thisin more
detail at the end of this section.
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A result similar to Theorem 4.8 holds if some of the O's in (g) are
immediately followed by a 2.

Theorem 4.9. If thereare digoint subsets T, Z < [k] such that

2, ieT,
q =11 i eZ,
0, ieC=[k]-(TUZ)
and §_; = 0 whenever i e T, then, with r = |T |+|Z|, the hypothesis of
Theorem 1.7 holds for R™" [ w - [ wi_1, and hence TC(M (¢)) > 2m if
ieZ ieT
m>r + 290"),
Proof. Let T'={t-1:teT}. Then T'c C.Let C'=C-T..
Let | = (g1, ..., &x) With & € {0, 1} be given. We will show that ¢(Y; )
=0if [l |<r,and ¢(Y;)=1if g =1if i e ZUT', and ¢; = O otherwise.

If U isak-tuple of nonnegative integers, define

1 if U ey,
U)=
) {o if U ¢ Sy.
Let B denote the set of k-tuples B = (by, ..., b ) suchthat |[B+ 1 | = k and
eN ieT,
<=0 ieZ,
e{0,} ieC.

Here N denotes the set of nonnegative integers. These by are the values for

which ("’“ +:: B 2} — 1mod2. By (4.6),

600) = Y uB+1) <2y

BeB
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Let
P={BeB:b_y+h >2for someteT}.
For an element B of P, choose the minimal t with b,_; + b, > 2, and pair B
with the element B’ which has by_; =1-b_;, bf =b +2b_;1 -1 with

other entries equal to those of B. We show in the next paragraph that
x(B+1)=y(B +1) foral Be P. Thus

> u(B+1)=0mod2
BeP

Assume, without loss of generality, that y_; = 0. The only value of h
for which

h h
DB+ = > (B +1)
i=1

i=1

is h =t —1. Theonly conceivable way to have (B + 1) # x(B' + 1) isif

t-2
D (B+1)y=t-2
i=1

and g_q1 =1, forthen, since bf_; =1, B' + | failsthe condition to bein Sy
at position t —1, but B + | does not. However, since by > 2, B+ | falsat

positiont. Thus (B + 1) = x(B"+ I).

Now let Q@ = B—-P. If B e Q, then

|Bl= D b+ b+>bh<|T|+[C|+0=|C|[=k-T.
Z

TUT c’

Since |1 |<r, we must have |[B|=k—r and |l |=r in order to get a

nonzero termin (4.6). Thus ¢(Y; ) = 0 whenever || | <.

TheY, being considered has ¢ =1for i e ZUT'". TheB'sin Q which
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might give a nonzero termin (4.6) must have (b_4, by) = (0, 1) or (1, 0) for
dlteT,andb =1ifieC.ThusB+ 1| haslsinZUC’, and (1, 1) or
(2, 0) in each position pair (t — 1, t). If any (2, 0) occurs, then B + | failsto
bein Sy, and so (4.6) has only one nonzero term, namely where (b_q, by)
=(0,1) foral t e T.Thus B+ | € Sy, and ¢(Y,) =1. O

A similar result and proof holds when (3) contains subsequences of the
form (0, O, 3) or (0, 1, 2). Moreover, al these can be combined, so that (1.3)

holds for m > r + 2'9")| where r is the number of 1's plus the number of
(0,2), (0,0,3), and (0, 1, 2) sequences in (3), provided that (g) contains
only O's and 1's and these sequences. However, there are many other
sequences (3;) not of this type for which the result holds.

In the remainder of the paper, we present more evidence that it is very
rare that we cannot prove (1.3). For genetic codes with a single gene of size

4, it was shown in [2] that zcl(M(¢)) > 2n— 7 unless the gene is 6321,
7321, or 7521. Here we prove atotally analogous result for genes of size 5.

Theorem 4.10. For a genetic code with a single gene of size 5,
zcl(M (¢)) > 2n — 7 except when the gene is 74321, 84321, or 86321.

The proof will use the following general lemma. Notationisasin (4.5).
Lemma 4.11. For a monogenic code with gene {m+ 3, gy, ..., gk} and
g = 0j — gj;1 > 0, all monomials Rm‘tw,l---vv,t for t <k are 0 if and

onlyif & = 1mod 2'9?) for all i.

Proof. Let \?J denote Y;, where | has 0's in the positions in J and 1's
elsewhere. Let & = g — 1. Using (4.6), ¢(\?j) = aj + - + &, and hence al
¢(Y;) are 0iff g isodd for all i. Similarly, ¢(Yj, j,) with j; < j, hasterms
with factors &, which are 0 by the above, plus termsin (4.6) with B = 2¢;
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- a; a
for j > j,. For ¢(Y; i) tobeO, we must have( é2j++(2k) = 0. For

i1 2
all these to be O, we must now have g =1mod4 for al i >1. Similarly,

~

a.
oYy, iy, i, i4) Will be asum of terms already shown to be O plus ( Z‘j +

+[a4kj For al these to be O, we must have g =1mod8 for i > 4.

Continuing in this way implies the resullt. O

Proof of Theorem 4.10. The theorem holds for those gees having
R™ = 0 by Theorem 1.8. For those with R™ = 0 and (&, &, a3, @) #
(4,11 1), theresult holdsfor m> 5 (hencefor n > 8) by Lemma4.11 and
Theorem 1.7. But the only length-5 gene with n < 8 is 74321.

It remains to consider codes with (3, @, a3, 34) = (1 1, 1, 1). Theorem
1.7 implies the result for m > 8, so for n > 11. We must consider the gees
with g; <9 (and al & =1). These are 4321, 6321, 8321, 8721, and 8761.
As noted at the end of the previous section, for the gee 4321, we have

H™ (M (¢)) = (R™VVaVaVy, R™AV,V3,
R™ ANV, RNV, RNV, (4.12)
and zcl(M(¢)) > 2n—7 for n> 9 but not for n =7 or 8.

We now study the case when the gee is 6321. From (4.12), we deduce
that there is a uniform homomorphism v : H™ (M (¢)) — Z, sending only
R™WVVoV,, R™HWV\V,Vs, and R™ V.V nontrivially. “Uniform? as
discussed in [2], means here that  treats Vg, Vs, and Vg identically because

of the interval from 4 to 6, inclusive, in the gee. This dependence of uniform
homomorphisms only on g was observed in [2], but can be seen in this case

directly asfollows. [The only relations R j corresponding to gees of size > 2
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which involve any of these three monomialsare R3 ; for | e {4, 5, 6}. Each

of these relations involves only two of the three monomials and so would be
sent to 0 by our y.] Using thisy, we havefor m = 7, similarly to (3.5),

(0 ® v)(GVVENE) = o(VVVsNe w(VAVAVE) = O,
and for m = 6,
(0 ® v) (WVVAE) = oAV VAV ) w(VIVAVE) # 0.

One easily checks that nothing works when m = 5. This establishes the claim
when the gee is 6321.

A similar analysis works for gees 8321, 8721, and 8761. For each, there
is a uniform homomorphism v : H™ (M (¢)) > Z, sending five classes
Rm“‘\/leVk nontrivially, where k ranges over the gap in the gee (for
example 3, 4, 5, 6, and 7 in the second), and j = 2, 2, and 7 in the three

cases. There are products similar to those of the previous paragraph mapped
nontrivially by ¢ ® w when m =7 or 6. For example, for 8721 and m =7,

(6 ® w) (V) = d(VVVVg ) w(VEAVAVA) = 0.
Thus zcl > 2m -1 for thesewhen m = 7 or 6. O

We have performed a similar analysis for single genes of size 6, and
found that again the only exceptionsto zcl > 2n— 7 occur when al g = 1.
However, this time there are twelve such exceptional genes: (using T for 10,
and E for 11), 854321, 954321, T54321, E54321, 974321, T74321, E74321,
T94321, E94321, T98321, E98321, E98721. Details are available from the
author upon request.
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