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Abstract 

The main purpose of this paper is to prove that there are fourteen 
classes of partially ordered semigroups, out of which a class consists 
of partially ordered semigroups with its two-sided ideals globally 
idempotent. The result obtained generalizes the result of Kuroki [8]. 
Moreover, it is shown that the result can be applied to characterize a 
partially ordered semigroup to be simple, which in turn, extends a 
result of Kuroki [9]. 

1. Preliminaries 

A semigroup (without order) S is said to be regular [4] if for any Sa ∈  
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there exists Sx ∈  such that .axaa =  In [7], Iséki proved that a commutative 
semigroup S is regular if and only if every ideal of the semigroup is globally 

idempotent (i.e., if and only if every ideal A of S, ).2AA =  A similar result 

for normal semigroups can be found in [10]. Both these results lead to study 
a semigroup whose proper two-sided ideals are globally idempotent. Results 
in this direction were obtained by Kuroki [8], Lajos [10], Venkatesan [11], 
and Courter [5, p. 418, Theorem 1.2]. 

The main purpose of this paper is to extend the results of Kuroki [8] to 
partially ordered semigroups. Moreover, as in [9], we apply the result to 
characterize simple partially ordered semigroups, and partially ordered 
semigroups having no two-sided ideals other than itself. 

A semigroup ( )⋅,S  together with a partial order that is compatible with 

the semigroup operation, meaning that 

yzxzzyzxyx ≤≤⇒≤ ,  

for all ,,, Szyx ∈  is called a partially ordered semigroup, or simply a po-

semigroup (cf. [1, 2, 6]). For non-empty subsets A and B of a partially 
ordered semigroup ( ),,, ≤⋅S  the set product AB and the subset ( ]A  of S are 

defined by: 

{ };,: ByAxxyAB ∈∈|=  

and 

( ] ( ){ }.: axAaSxA ≤∈∃|∈=  

It is observed that the following conditions hold: 

(1) ( ];AA ⊆  

(2) ( ] ( ];BABA ⊆⇒⊆  

(3) ( ] ( ] ( ];ABBA ⊆  

(4) ( ]( ] ( ];AA =  
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(5) ( ]( ]( ] ( ];ABBA =  

(6) ( ] ( ] ( ].BABA ∩∩ ⊆  

The following can be found in [3]. A non-empty subset A of a partially 
ordered semigroup ( )≤⋅,,S  is called a left (resp. right) ideal of S if 

 (i) ( ); resp. AASASA ⊆⊆  

(ii) ( ].AA =  

And A is called a two-sided ideal (or simply an ideal) of S if A is both a 
left and a right ideal of S. Note that 

(1) the condition ( ] AA =  is equivalent to for any Ax ∈  and ,Sy ∈  

xy ≤  implies ;Ay ∈  

(2) if R (resp. L) is a right (resp. a left) ideal of S, then ( ]LR  is an ideal 

of S; 

(3) if A and B are ideals of S, then ( ]AB  is an ideal of S. 

Let a be an element of a partially ordered semigroup ( ).,, ≤⋅S  Then the 

intersection of all left ideals of S containing a is a left ideal of S containing a; 
this will be denoted by ( )aL  and it is called the principal left ideal of S 

generated by a. It is observed that 

( ) ( ].SaaaL ∪=  

Similarly, the principal right (resp. two-sided) ideal of S generated by a is of 
the form 

( ) ( ] ( ) ( ]( ).resp. SaSSaaSaaISaaaR ∪∪∪∪ ==  

2. Po-semigroups with all Ideals are Idempotent 

We begin this section with the following definition: 

Definition 2.1. An ideal A of a partially ordered semigroup ( )≤⋅,,S  is 

said to be globally idempotent if ( ] .2 AA =  
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To prove our main theorem we need the following: for non-empty 
subsets X, Y of a partially ordered semigroup ( ),,, ≤⋅S  we let 

( ) { };:: YXsSsXY r ⊆|∈=  

( ) { }.:: YsXSsXY l ⊆|∈=  

Lemma 2.2. Let X, Y be two-sided ideals of a partially ordered 
semigroup ( ).,, ≤⋅S  Then 

(1) ( ) .: YXYX r ⊆  

(2) ( )rXY :  is a two-sided ideal of S containing Y. 

Proof. (1) If Xs∈  and ( ) ,: rXYt∈  then ;YXt ⊆  hence .YXtst ⊆∈  

(2) Since ,YXY ⊆  ( ) .: rXYY ⊆  Let Ss ∈  and ( ) .: rXYt ∈  Then 

,YXt ⊆  and so 

( ) ( ) YYssXttsX ⊆⊆=  

and 

( ) ( ) .YXttXsstX ⊆⊆=  

Assume .ts ≤  If ,Xsz ∈  then xsz =  for some .Xx ∈  Since 

,YXtxtxsz ⊆∈≤=  

we have ( ] .YYz =∈  Thus, ,YXs ⊆  and ( ) .: rXYs ∈  ~ 

We have the following theorem extended Theorem 1 in [8]: 

Theorem 2.3. The following statements are equivalent for a partially 
ordered semigroup ( ):,, ≤⋅S  

(1) ( ] XX =2  for every ideal X of S; 

(2) ( ]XYYX =∩  for every ideal X, Y of S; 

(3) ( ) YXXXY r ∩∩ =:  for every ideal X, Y of S; 
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(4) ( ) YXXXY l ∩∩ =:  for every ideal X, Y of S; 

(5) ( ) ZYZXY r ∩∩ =:  for every ideal X, Y, Z of S such that ;XZ ⊆  

(6) ( ) ZYZXY l ∩∩ =:  for every ideal X, Y, Z of S such that ;XZ ⊆  

(7) ( ]XRXR ⊆∩  for every right ideal R of S and every ideal X of S; 

(8) ( ]LXXL ⊆∩  for every left ideal L of S and every ideal X of S; 

(9) ( ]XRR ⊆  for every right ideal R of S and every ideal X of S such 

that ;XR ⊆  

(10) ( ]LXL ⊆  for every left ideal L of S and every ideal X of S such that 

;XL ⊆  

(11) ( ) RXXXR r ∩∩ ⊆:  for every right ideal R of S and every ideal 

X of S; 

(12) ( ) XLXXL l ∩∩ ⊆:  for every left ideal L of S and every ideal X 

of S; 

(13) ( ) RXXR r ⊆∩:  for every right ideal R of S and every ideal X of 

S such that ;XR ⊆  

(14) ( ) LXXL l ⊆∩:  for every left ideal L of S and every ideal X of S 

such that .XL ⊆  

Proof. (1) ⇔ (2) If (1) holds, then for any ideals X, Y of S, we have 

( ] YXXY ∩⊆  

( ) ( )( ]YXYX ∩∩=  

( ].XY⊆  

Hence (2) holds. That (2) ⇒ (1) follows by setting .YX =  

(2) ⇔ (3) Assume that (2) holds. Let X, Y be ideals of S. By Lemma 
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2.2(2), ( )rXY :  is an ideal of S. By assumption and Lemma 2.2(1), 

( ) ( ( ) ]rr XYXXYX :: =∩  

( ]YX ∩⊆  

( ] ( ]YX ∩⊆  

.YX ∩=  

The reverse inclusion is clear. Conversely, assume that (3) holds. Let X, Y be 
ideals of S. By assumption and ( ]( ) ,: rXXYY ⊆  

( ]( ) XXXYXY r ∩∩ :⊆  

( ] XXY ∩=  

( ].XY=  

Since ( ] ,YXXY ∩⊆  it follows that ( ];XYYX =∩  thus (2) holds. 

(3) ⇔ (5) Setting ,XZ =  we obtain (5) ⇒ (3). Assume (3) holds. If X, 

Y, Z are ideals of S such that ,XZ ⊆  then ;ZXZ =∩  hence 

( ) ( ) XZXYZXY rr ∩∩∩ :: =  

ZYX ∩∩=  

.ZY ∩=  

Thus (5) holds. 

By the left-right dual of (3) and (4), (5) and (6) we obtain that (1)-(6) are 
equivalent. 

Now, we prove (1) ⇔ (9). If (9) is true, then setting XR =  in (9) we 
obtain (1). Assume that (1) holds, and let R be a right ideal of S and X be an 
ideal of S such that .XR ⊆  Since ( ]XR  is an ideal of S, using (3) we have 

XRR ∩=  

( ]( ) XXXR r ∩:⊆  
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( ]XRX ∩=  

( ].XR⊆  

Hence (9) holds. 

Again, by the left-right dual of (7) and (8), (9) and (10) we obtain that 
(1)-(10) are equivalent. 

Finally, we shall prove (9) ⇔ (13). And by the left-right dual of (11) and 
(12), (13) and (14) we obtain that (1)-(14) are equivalent. Therefore, the 
theorem is proved. Now, assume that (13) holds true. Let R be a right ideal of 
S and X be an ideal of S such that .XR ⊆  Then ( ] .XXR ⊆  We have 

XRR ∩=  

( ]( ) XXXR r ∩:⊆  

( ].XR⊆  

Hence, (9) follows. Conversely, assume that (9) true; then (1)-(10) are true. 
Let R be a right ideal of S and X be an ideal of S such that .XR ⊆  By (7), 

( ]( ) ( ]( )rr XXRXXXRX :: ⊆∩  

.RX ∩⊆  

Hence, (11) follows. This implies (13). ~ 

Theorem 2.4. For a partially ordered semigroup ( ),,, ≤⋅S  the following 

statements are equivalent: 

(1) ( ( )( ) ] ( )xIxI =2  for all ;Sx ∈  

(2) ( ) ( ) ( ) ( )( ]yIxIyIxI =∩  for all ;, Syx ∈  

(3) ( ) ( )( ) ( ) ( ) ( )yIxIxIxIyI r ∩∩ =:  for all ;, Syx ∈  

(4) ( ) ( )( ) ( ) ( ) ( )yIxIxIxIyI l ∩∩ =:  for all ;, Syx ∈  

(5) ( ) ( )( ) ( ) ( ) ( )yIyIzIxIyI r ∩∩ =:  for all Szyx ∈,,  such that ∈z  

( );xI  
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(6) ( ) ( )( ) ( ) ( ) ( )zIyIzIxIyI l ∩∩ =:  for all Szyx ∈,,  such that ∈z  

( );xI  

(7) ( ) ( ) ( ) ( )( ]aRxIxIaR ⊆∩  for all ;, Sxa ∈  

(8) ( ) ( ) ( ) ( )( ]xIbLxIbL ⊆∩  for all ;, Sxb ∈  

(9) ( ) ( ) ( )( ]aRxIaR ⊆  for all Sxa ∈,  such that ( ) ( );xIaR ⊆  

(10) ( ) ( ) ( )( ]xIbLbL ⊆  for all Sxb ∈,  such that ( ) ( );xIbL ⊆  

(11) ( ) ( )( ) ( ) ( ) ( )aRxIxIxIaR ∩∩ ⊆:  for all ;, Sxa ∈  

(12) ( ) ( )( ) ( ) ( ) ( )xIbLxIxIbL l ∩∩ ⊆:  for all ;, Sxb ∈  

(13) ( ) ( )( ) ( ) ( )aRxIxIaR r ⊆∩:  for all Sxa ∈,  such that ( ) ( );xIaR ⊆  

(14) ( ) ( )( ) ( ) ( )aLxIxIbL l ⊆∩:  for all Sxb ∈,  such that ( ) ( ).xIbL ⊆  

Proof. This can be proved in the same manner as Theorem 2.3. ~ 

Theorem 2.5. For a partially ordered semigroup ( ),,; ≤⋅S  the statements 

in Theorem 2.3 and Theorem 2.4 are equivalent. 

Proof. We shall show that (1) in Theorem 2.3 and (1) in Theorem 2.4 are 

equivalent. Assume that ( ( )( ) ] xxI =2  for all .Sx ∈  Let X be an ideal of S. 

We have ( ] .2 XX ⊆  If ,Xx ∈  then by assumption, 

( ( )( ) ] ( ].22 XxIx ⊆=  

Hence ( ].2XX ⊆  The converse statement is clear. ~ 

A partially ordered semigroup ( )≤⋅,,S  is said to be regular if for any 

Sa ∈  there exists Sx ∈  such that .axaa ≤  The following theorem shows 
that Theorem 2.5 (also, Theorems 2.3-2.4) is useful. 

Theorem 2.6. A commutative partially ordered semigroup ( )≤⋅,,S  is 

regular if and only if ( ]2XX =  for any ideal X of S. 
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Proof. Assume that S is regular. Let X be an ideal of S. We have 

( ] ( ] .2 XXX =⊆  

If ,Xa ∈  then by assumption there exists Sx ∈  such that .axaa ≤  By 

2XXXXSXaxa =⊆∈  

it follows that ( ].2Xa ∈  Hence ( ].2XX =  

Conversely, assume that ( ]2XX =  for any ideal X of S. Let .Sa ∈  

Consider 

( )aIa ∈  

( ) ( )( ]aIaI=  

( ] ( ]( ]SaSSaaSaSaSSaaSa ∪∪∪∪∪∪=  

( ) ( )( ]SaSSaaSaSaSSaaSa ∪∪∪∪∪∪=  

( ].2 aSaa ∪⊆  

Hence S is regular. ~ 

3. On Simple Partially Ordered Semigroups 

Let ( )≤⋅,,S  be a partially ordered semigroup, and let ( )SP  be the set of 

all non-empty subsets of S. Under the inclusion for sets, it is observed that 
( )( )⊆,,SP  is a partially ordered semigroup with the multiplication defined 

by 

( ]ABBA =  

for any ( )., SPBA ∈  Moreover, let 

( )SI  denote the set of all two-sided ideals of S. 

It is easy to see that ( )SI  is a subsemigroup of ( ).SP  
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A partially ordered semigroup ( )≤⋅,,S  is said to be a left (resp. right) 

zero partially ordered semigroup if, for any ,, Syx ∈  xxy =  (resp. 

).yxy =  And S is said to be simple if it contains no two-sided ideals. 

Theorem 3.1. Let ( )≤⋅,,S  be a partially ordered semigroup. Then S is 

simple if and only if one of the following conditions holds: 

(1) ( )SI  is a left zero semigroup; 

(2) ( )SI  is a right zero semigroup. 

Proof. It is clear that S is simple implies ( )SI  is left zero. Assume that 

( )SI  is left zero. If X is an ideal of S, then ;XXX =  hence ( ] XX =2  

for every ideal X of S. By Theorem 2.3(2) and assumption, 

( ] YYXXYX ⊆== ∩  

for every ideal X, Y of S. This implies S is simple. The second assertion can 
be proved similarly. ~ 
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