Far East Journal of Mathematical Sciences (FJMS)
© 2017 Pushpa Publishing House, Allahabad, India http://www.pphmj.com

NOTE ON APOSTOL-DAEHEE POLYNOMIALS AND NUMBERS

Junesang Choi
Department of Mathematics
Dongguk University
Gyeongju 38066
Republic of Korea

Abstract

A variety of polynomials, including their diverse generalizations, have been investigated. In this paper, we aim to present some (presumably) new identities and relations for the λ-Apostol-Daehee polynomials $\mathfrak{D}_{n}(x ; \lambda)$ and the λ-Apostol-Daehee polynomials $\mathfrak{D}_{n}^{(k)}(x ; \lambda)$ of order k, which have been very recently introduced, with (possibly) other polynomials and numbers.

1. Introduction and Preliminaries

Special polynomials and numbers such as Bernoulli polynomials and numbers, Euler polynomials and numbers, Genocchi polynomials and numbers, Apostol-Bernoulli polynomials and numbers, Stirling numbers of the first and second kinds, Daehee polynomials and numbers, ApostolDaehee polynomials and numbers with their generalizations have applied in a wide range of areas including mathematics, mathematical physics, Received: January 23, 2017; Revised: February 8, 2017; Accepted: March 20, 2017 2010 Mathematics Subject Classification: 12D19, 11B68, 11S40, 11S80, 26C05, 26C10.

Keywords and phrases: Apostol-Bernoulli polynomials and numbers, Apostol-Daehee polynomials and numbers, Stirling numbers of the first and second kinds.
probability, statistics and engineering. Very recently, Simsek [2, 4] introduced Apostol-Daehee numbers and polynomials and their extensions to give certain interesting identities and relations among them and some other polynomials and numbers (see also [3, 5]).

In this sequel, we also aim to present certain (presumably) new identities and relations among Apostol-Daehee polynomials and numbers and some other polynomials and numbers.

For our purpose, we choose to recall some known polynomials and numbers. The Bernoulli polynomials $B_{n}(x)$ are defined by the generating function:

$$
\begin{equation*}
\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!} \quad(|t|<2 \pi) \tag{1.1}
\end{equation*}
$$

The numbers $B_{n}:=B_{n}(0)$ are called the Bernoulli numbers generated by

$$
\begin{equation*}
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!} \quad(|t|<2 \pi) . \tag{1.2}
\end{equation*}
$$

The generalized Bernoulli polynomials $B_{n}^{(\alpha)}(x)$ of degree α in x are defined by the generating function:

$$
\begin{equation*}
\left(\frac{t}{e^{t}-1}\right)^{\alpha} e^{x t}=\sum_{n=0}^{\infty} B_{n}^{(\alpha)}(x) \frac{t^{n}}{n!} \quad\left(|t|<2 \pi ; 1^{\alpha}:=1\right) \tag{1.3}
\end{equation*}
$$

for arbitrary (real or complex) parameter α. Clearly, we have

$$
\begin{equation*}
B_{n}^{(\alpha)}(x)=(-1)^{n} B_{n}^{(\alpha)}(\alpha-x), \tag{1.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
B_{n}^{(\alpha)}(x)=(-1)^{n} B_{n}^{(\alpha)}(0)=:(-1)^{n} B_{n}^{(\alpha)} \tag{1.5}
\end{equation*}
$$

in terms of the generalized Bernoulli numbers $B_{n}^{(\alpha)}$ defined by the generating function:

$$
\begin{equation*}
\left(\frac{t}{e^{t}-1}\right)^{\alpha}=\sum_{n=0}^{\infty} B_{n}^{(\alpha)} \frac{t^{n}}{n!} \quad\left(|t|<2 \pi ; 1^{\alpha}:=1\right) \tag{1.6}
\end{equation*}
$$

The Apostol-Bernoulli polynomials $\mathcal{B}_{n}(x ; \lambda)$ are defined by means of the generating function (see $[1,6]$):

$$
\begin{gather*}
\frac{t e^{x t}}{\lambda e^{t}-1}=\sum_{n=0}^{\infty} \mathcal{B}_{n}(x ; \lambda) \frac{t^{n}}{n!} \tag{1.7}\\
(|t|<2 \pi \text { when } \lambda=1 ;|t|<|\log \lambda| \text { when } \lambda \neq 1)
\end{gather*}
$$

with, of course,

$$
\begin{equation*}
B_{n}(x)=\mathcal{B}_{n}(x ; 1) \text { and } \mathcal{B}_{n}(\lambda):=\mathcal{B}_{n}(0 ; \lambda) \tag{1.8}
\end{equation*}
$$

where $\mathcal{B}_{n}(\lambda)$ denotes the so-called Apostol-Bernoulli numbers. The ApostolBernoulli polynomials $\mathcal{B}_{n}^{(\alpha)}(x ; \lambda)$ of (real or complex) order α are defined by means of the following generating function:

$$
\begin{equation*}
\left(\frac{t}{\lambda e^{t}-1}\right)^{\alpha} \cdot e^{x t}=\sum_{n=0}^{\infty} \mathcal{B}_{n}^{(\alpha)}(x ; \lambda) \frac{t^{n}}{n!} \tag{1.9}
\end{equation*}
$$

$$
\left(|t|<2 \pi \text { when } \lambda=1 ;|t|<|\log \lambda| \text { when } \lambda \neq 1 ; 1^{\alpha}:=1\right)
$$

with, of course,

$$
\begin{equation*}
B_{n}^{(\alpha)}(x)=\mathcal{B}_{n}^{(\alpha)}(x ; 1) \text { and } \mathcal{B}_{n}^{(\alpha)}(\lambda):=\mathcal{B}_{n}^{(\alpha)}(0 ; \lambda) \tag{1.10}
\end{equation*}
$$

where $\mathcal{B}_{n}^{(\alpha)}(\lambda)$ denotes the so-called Apostol-Bernoulli numbers of order α.

The Stirling numbers $s(n, k)$ of the first kind are defined by the
generating functions:

$$
\begin{equation*}
z(z-1) \cdots(z-n+1)=\sum_{k=0}^{n} s(n, k) z^{k} \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\{\log (1+z)\}^{k}=k!\sum_{n=k}^{\infty} s(n, k) \frac{z^{n}}{n!} \quad(|z|<1) . \tag{1.1.1}
\end{equation*}
$$

The Stirling numbers $S(n, k)$ of the second kind are defined by the generating functions:

$$
\begin{align*}
& z^{n}=\sum_{k=0}^{n} S(n, k) z(z-1) \cdots(z-k+1), \tag{1.13}\\
& \left(e^{z}-1\right)^{k}=k!\sum_{n=k}^{\infty} S(n, k) \frac{z^{n}}{n!}, \tag{1.14}
\end{align*}
$$

and

$$
\begin{equation*}
(1-z)^{-1}(1-2 z)^{-1} \cdots(1-k z)^{-1}=\sum_{n=k}^{\infty} S(n, k) z^{n-k} \quad\left(|z|<k^{-1}\right) \tag{1.15}
\end{equation*}
$$

where $S(n, k)$ denotes the number of ways of partitioning a set of n elements into k non-empty subsets.

For more details of the above-recalled polynomials and numbers and other ones, one may refer to [7, Sections 1.6-1.8].

Simsek [2, 4] introduced to investigate the λ-Apostol-Daehee polynomials $\mathfrak{D}_{n}(x ; \lambda)$ by means of the following generating function:

$$
\begin{equation*}
G(t, x ; \lambda)=\frac{\log \lambda+\log (1+\lambda t)}{\lambda(1+\lambda t)-1}(1+\lambda t)^{x}:=\sum_{n=0}^{\infty} \mathfrak{D}_{n}(x ; \lambda) \frac{t^{n}}{n!} . \tag{1.16}
\end{equation*}
$$

Simsek [4] defined the λ-Apostol-Daehee polynomials $\mathfrak{D}_{n}^{(k)}(x ; \lambda)$ of order k
by means of the following generating function:

$$
\begin{equation*}
F_{\mathfrak{D}}(t, x ; \lambda, k)=\left(\frac{\log \lambda+\log (1+\lambda t)}{\lambda(1+\lambda t)-1}\right)^{k}(1+\lambda t)^{x}:=\sum_{n=0}^{\infty} \mathfrak{D}_{n}^{(k)}(x ; \lambda) \frac{t^{n}}{n!} . \tag{1.17}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\mathfrak{D}_{n}^{(1)}(x ; \lambda)=\mathfrak{D}_{n}(x ; \lambda) . \tag{1.18}
\end{equation*}
$$

Remark 1. It is easy to see that

$$
\begin{equation*}
\mathfrak{D}_{n}^{(1)}(x ; \lambda)=\mathfrak{D}_{n}(x ; \lambda) . \tag{1.19}
\end{equation*}
$$

Define a function $f(t)$ as follows:

$$
f(t):= \begin{cases}1 & (t=0) \tag{1.20}\\ \frac{t}{\log (1+t)} & (t \neq 0)\end{cases}
$$

where $\log (1+t)$ is assumed to have the principal branch. Since $\lim _{t \rightarrow 0} f(t)$ $=1=f(0), f$ is analytic at $t=0$. So we have

$$
\begin{equation*}
f(t):=\sum_{n=0}^{\infty} p_{n} t^{n} \quad(|t|<1) \tag{1.21}
\end{equation*}
$$

Then we obtain

$$
\begin{aligned}
t=\log (1+t) \sum_{n=0}^{\infty} p_{n} t^{n} & =\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} t^{n+1}\right)\left(\sum_{n=0}^{\infty} p_{n} t^{n}\right) \\
& =t \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{(-1)^{n-k}}{n-k+1} p_{k}\right) t^{n} .
\end{aligned}
$$

Equating the coefficients of t^{n}, we get a recurrence formula for the p_{n} as
follows:

$$
\begin{equation*}
p_{0}=1 \text { and } p_{n}=\sum_{k=0}^{n-1} \frac{(-1)^{n-k+1}}{n-k+1} p_{k} \quad(n \in \mathbb{N}) . \tag{1.22}
\end{equation*}
$$

The first few of p_{n} are

$$
\begin{gathered}
p_{0}=1, p_{1}=\frac{1}{2}, p_{2}=-\frac{1}{12}, p_{3}=\frac{1}{24}, p_{4}=-\frac{19}{720}, \\
p_{5}=\frac{3}{160}, p_{6}=-\frac{863}{60480}, \cdots .
\end{gathered}
$$

Define a function $g(t ; \alpha)(\alpha \neq 0)$ as follows:

$$
g(t ; \alpha):= \begin{cases}\frac{1}{\alpha} & (t=0) \tag{1.23}\\ \frac{t}{(1+t)^{\alpha}-1} & (t \neq 0)\end{cases}
$$

It is easy to see that $g(t ; \alpha)$ is analytic at $t=0$. Let

$$
\begin{equation*}
g(t ; \alpha):=\sum_{n=0}^{\infty} q_{n}(\alpha) t^{n} \quad(|t|<1) . \tag{1.24}
\end{equation*}
$$

Likewise as in getting (1.22), we obtain a recurrence formula for the $q_{n}(\alpha)$:

$$
\begin{equation*}
q_{0}(\alpha)=\frac{1}{\alpha} \text { and } q_{n}(\alpha)=-\frac{1}{\alpha} \sum_{j=0}^{n-1}\binom{\alpha}{n-j+1} q_{j}(\alpha) \quad(n \in \mathbb{N}) . \tag{1.25}
\end{equation*}
$$

The first few of $q_{n}(\alpha)$ are

$$
\begin{gathered}
q_{0}(\alpha)=\frac{1}{\alpha}, q_{1}(\alpha)=\frac{1-\alpha}{2 \alpha}, q_{2}(\alpha)=\frac{(\alpha-1)(\alpha+1)}{12 \alpha}, \\
q_{3}(\alpha)=-\frac{(\alpha-1)(\alpha+1)}{24 \alpha}, q_{4}(\alpha)=-\frac{(\alpha-1)(\alpha+1)\left(\alpha^{2}-19\right)}{720 \alpha}, \cdots .
\end{gathered}
$$

2. Main Results

Here we present some (presumably) new identities and relations for the λ-Apostol-Daehee polynomials $\mathfrak{D}_{n}(x ; \lambda)$ and the λ-Apostol-Daehee polynomials $\mathfrak{D}_{n}^{(k)}(x ; \lambda)$ of order k with (possibly) other polynomials and numbers. Here and in the following, let \mathbb{N} denote the set of positive integers and $\mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$.

Theorem 1. The following difference formula for the λ-Apostol-Daehee polynomials $\mathfrak{D}_{n}(x ; \lambda)$ holds true:

$$
\begin{align*}
& \lambda \mathfrak{D}_{n}(x+1 ; \lambda)-\mathfrak{D}_{n}(x ; \lambda)=\lambda^{n} \log \lambda \sum_{j=0}^{n} s(n, j) x^{j} \\
& \quad+\lambda^{n} \sum_{k=0}^{n-1} \sum_{j=0}^{k}(-1)^{n-1-k}(n-1-k)!\binom{n}{k} s(k, j) x^{j} \quad(n \in \mathbb{N}), \tag{2.1}
\end{align*}
$$

where $s(k, j)$ are Stirling numbers of the first kind given in (1.11) and (1.12).

Proof. We find from (1.16) that

$$
\begin{align*}
\sum_{n=0}^{\infty}\left\{\lambda \mathfrak{D}_{n}(x+1 ; \lambda)-\mathfrak{D}_{n}(x ; \lambda) \frac{t^{n}}{n!}\right. & =\lambda G(t, x+1 ; \lambda)-G(t, x ; \lambda) \\
& =\{\log \lambda+\log (1+\lambda t)\}(1+\lambda t)^{x} . \tag{2.2}
\end{align*}
$$

The Maclaurin series of $\log \lambda+\log (1+\lambda t)$ is given as follows:

$$
\begin{equation*}
\log \lambda+\log (1+\lambda t)=\sum_{n=0}^{\infty} \alpha_{n} t^{n} \quad(|\lambda t|<1) \tag{2.3}
\end{equation*}
$$

where

$$
\alpha_{0}=\log \lambda \text { and } \alpha_{n}=\frac{(-1)^{n-1}}{n} \lambda^{n} \quad(n \in \mathbb{N})
$$

The binomial series of $(1+\lambda t)^{x}$ is given as follows:

$$
\begin{equation*}
(1+\lambda t)^{x}=\sum_{n=0}^{\infty}\binom{x}{n} \lambda^{n} t^{n} \quad(|\lambda t|<1), \tag{2.4}
\end{equation*}
$$

where

$$
\binom{x}{n}:= \begin{cases}1 & (n=0) \tag{2.5}\\ \frac{x(x-1) \cdots(x-n+1)}{n!} & (n \in \mathbb{N})\end{cases}
$$

Applying (1.11) to (2.5), we have

$$
\begin{equation*}
(1+\lambda t)^{x}=\sum_{n=0}^{\infty} \beta_{n}(x ; \lambda) t^{n} \quad(|\lambda t|<1), \tag{2.6}
\end{equation*}
$$

where

$$
\beta_{n}(x ; \lambda)=\frac{\lambda^{n}}{n!} \sum_{j=0}^{n} s(n, j) x^{j} \quad\left(n \in \mathbb{N}_{0}\right) .
$$

We find from (2.2), (2.4) and (2.6) that

$$
\sum_{n=0}^{\infty}\left\{\lambda \mathfrak{D}_{n}(x+1 ; \lambda)-\mathfrak{D}_{n}(x ; \lambda)\right\} \frac{t^{n}}{n!}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \alpha_{n-k} \beta_{k}(x ; \lambda)\right) t^{n},
$$

which, upon equating the coefficients of t^{n}, gives the desired identity (2.1).

Theorem 2. The following explicit formula for the λ-Apostol-Daehee polynomials $\mathfrak{D}_{n}(x ; \lambda)$ holds true:

$$
\mathfrak{D}_{n}(x ; \lambda)=\frac{n!}{\lambda-1} \sum_{k=0}^{n}\left\{(\log \lambda)(-1)^{n-k} \frac{\lambda^{k}}{k!}\left(\frac{\lambda^{2}}{\lambda-1}\right)^{n-k} \sum_{j=0}^{k} s(k, j) x^{j}\right.
$$

$$
\begin{equation*}
\left.+\sum_{m=0}^{n-k-1} \frac{(-1)^{n-k-1}}{(n-k-m) k!} \lambda^{n-m}\left(\frac{\lambda^{2}}{\lambda-1}\right)^{m} \sum_{j=0}^{k} s(k, j) x^{j}\right\} \quad\left(n \in \mathbb{N}_{0}\right) \tag{2.7}
\end{equation*}
$$

where $s(k, j)$ are Stirling numbers of the first kind given in (1.11) and (1.12).

Proof. We see that

$$
\begin{equation*}
\frac{1}{\lambda(1+\lambda t)-1}=\sum_{n=0}^{\infty} \gamma_{n} t^{n} \quad\left(\left|\frac{\lambda^{2}}{\lambda-1} t\right|<1\right), \tag{2.8}
\end{equation*}
$$

where

$$
\gamma_{n}=\frac{(-1)^{n}}{\lambda-1}\left(\frac{\lambda^{2}}{\lambda-1}\right)^{n} \quad\left(n \in \mathbb{N}_{0}\right)
$$

We find from (2.4), (2.6) and (2.8) that

$$
\sum_{n=0}^{\infty} \mathfrak{D}_{n}(x ; \lambda) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty}\left\{\sum_{k=0}^{n} \sum_{m=0}^{n-k} \alpha_{n-k-m} \gamma_{m} \beta_{k}(x ; \lambda)\right\} t^{n},
$$

which, upon equating the coefficients of t^{n}, yields the desired identity (2.7).

Theorem 3. The following higher-order derivative formula for the λ-Apostol-Daehee polynomials $\mathfrak{D}_{n}^{(k)}(x ; \lambda)$ of order k holds true:

$$
\begin{equation*}
\frac{\partial^{\ell}}{\partial x^{\ell}} \mathfrak{D}_{n}^{(k)}(x ; \lambda)=\ell!\sum_{j=\ell}^{n}\binom{n}{j} \mathfrak{D}_{n-j}^{(k)}(x ; \lambda) \lambda^{j} s(j, \ell) \quad\left(\ell \in \mathbb{N}_{0}\right), \tag{2.9}
\end{equation*}
$$

where $s(j, \ell)$ are Stirling numbers of the first kind given in (1.11) and (1.12).

Proof. Differentiating both sides of (1.17) ℓ-times with respect to the variable x and using (1.12) with the (temporary) assumption $s(j, \ell)=0$ if
$j<\ell$, we have

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{\partial^{\ell}}{\partial x^{\ell}} \mathfrak{D}_{n}^{(k)}(x ; \lambda) \frac{t^{n}}{n!} & =\left\{\sum_{n=0}^{\infty} \mathfrak{D}_{n}^{(k)}(x ; \lambda) \frac{t^{n}}{n!}\right\}\{\log (1+\lambda t)\}^{\ell} \\
& =\sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \mathfrak{D}_{n}^{(k)}(x ; \lambda) \frac{t^{n}}{n!} \ell!s(j, \ell) \frac{\lambda^{j} t^{j}}{j!} \\
& =\sum_{n=0}^{\infty}\left\{\sum_{j=0}^{n} \mathfrak{D}_{n-j}^{(k)}(x ; \lambda) \frac{\ell!s(j, \ell)}{(n-j)!j!} \lambda^{j}\right\} t^{n},
\end{aligned}
$$

the first and last of which, upon equating the coefficients of t^{n}, yields the desired identity (2.9).

Theorem 4. The following addition formula for the λ-Apostol-Daehee polynomials $\mathfrak{D}_{n}^{(k)}(x ; \lambda)$ of order k holds true:

$$
\begin{equation*}
\mathfrak{D}_{n}^{(k)}(x+y ; \lambda)=\sum_{j=0}^{n} \sum_{\ell=0}^{j}\binom{n}{j} \mathfrak{D}_{n-j}^{(k)}(x ; \lambda) \lambda^{j} s(j, \ell) y^{\ell} \quad\left(n \in \mathbb{N}_{0}\right), \tag{2.10}
\end{equation*}
$$

where $s(j, \ell)$ are Stirling numbers of the first kind given in (1.11) and (1.12).

Proof. A similar argument as in the above proofs can establish the result here. So its detailed account is omitted.

Theorem 5. The following integral formula holds true:

$$
\begin{equation*}
\int_{\alpha}^{\alpha+1} \mathfrak{D}_{n}^{(k)}(x ; \lambda) d x=\sum_{j=0}^{n} j!\binom{n}{j} \lambda^{j} \mathfrak{D}_{n-j}^{(k)}(\alpha ; \lambda) p_{j} \quad\left(j \in \mathbb{N}_{0}\right), \tag{2.11}
\end{equation*}
$$

where p_{j} 's are given in (1.22).
Proof. Integrating both sides of (1.17) with respect to the variable x from α to $\alpha+1$, we have

$$
\left(\frac{\log \lambda+\log (1+\lambda t)}{\lambda(1+\lambda t)-1}\right)^{k}(1+\lambda t)^{\alpha} \frac{\lambda t}{\log (1+\lambda t)}=\sum_{n=0}^{\infty} \int_{\alpha}^{\alpha+1} \mathfrak{D}_{n}^{(k)}(x ; \lambda) d x \frac{t^{n}}{n!}
$$

Using (1.17) and (1.21), we obtain

$$
\sum_{n=0}^{\infty}\left(\sum_{j=0}^{n} \mathfrak{D}_{n-j}^{(k)}(\alpha ; \lambda) \frac{\lambda^{j} p_{j}}{(n-j)!}\right) t^{n}=\sum_{n=0}^{\infty} \int_{\alpha}^{\alpha+1} \mathfrak{D}_{n}^{(k)}(x ; \lambda) d x \frac{t^{n}}{n!}
$$

which, upon equating the coefficients of t^{n}, yields the desired formula (2.11).

Theorem 6. The following formula holds true:

$$
\begin{gather*}
\sum_{\ell=0}^{m-1} \mathfrak{D}_{n}^{(k)}\left(x+\frac{\ell}{m} ; \lambda\right)=\sum_{j=0}^{n} j!\binom{n}{j} \mathfrak{D}_{n-j}^{(k)}(x ; \lambda) q_{j}\left(\frac{1}{m}\right) \tag{2.12}\\
\left(m \in \mathbb{N} ; n \in \mathbb{N}_{0}\right)
\end{gather*}
$$

where $q_{j}(\alpha)$ are given in (1.25).
Proof. We find from (1.17) that

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(\sum_{\ell=0}^{m-1} \mathfrak{D}_{n}^{(k)}\left(x+\frac{\ell}{m} ; \lambda\right)\right) \frac{t^{n}}{n!} \\
= & \left(\frac{\log \lambda+\log (1+\lambda t)}{\lambda(1+\lambda t)-1}\right)^{k}(1+\lambda t)^{x} \cdot \frac{\lambda t}{(1+\lambda t)^{\frac{1}{m}}-1} .
\end{aligned}
$$

Upon using (1.17) and (1.24) on the right-hand side, similarly as above, we obtain the desired identity (2.12).

3. Further Remarks

It is seen that $G(t, x ; \lambda)$ in (1.16) is analytic at $t=0$ as a function of the variable t and

$$
\mathfrak{D}_{n}(x ; \lambda)=\left.\frac{\partial^{n}}{\partial t^{n}} G(t, x ; \lambda)\right|_{t=0},
$$

which, upon using the Maple, gives the following interesting identity:

$$
\begin{aligned}
\mathfrak{D}_{n}(x ; \lambda)= & \frac{1}{\lambda(\lambda-1)(n+1) \Gamma(1-x)}\left[(n+1)!\lambda\left(\frac{\lambda^{2}}{1-\lambda}\right)^{n}\right. \\
& \times\left\{(\pi \cot (\pi x)+\log \lambda+\psi(x)) \Gamma(1-x)-\left(\frac{1}{\lambda}\right)^{x} \Gamma(-x)\right. \\
& -(\pi \cot (\pi x)+\psi(x)) \Gamma(1-x)+\Gamma(-x)\} \\
& +(\lambda-1)(-\lambda)^{n} \Gamma(1-x+n)\{x(\psi(x)+\pi \cot (\pi x))+1+x \log \lambda\} \\
& \times{ }_{2} F_{1}\left(1, n-x+1 ; n+2 ; \frac{\lambda-1}{\lambda}\right)+(n+1)!x(\lambda-1)\left(\frac{\lambda^{2}}{1-\lambda}\right)^{n} \\
& \left.\times \sum_{k=0}^{n-1}\left(\frac{\lambda-1}{\lambda}\right)^{k} \Gamma(k-x+1) \psi(k-x+1)\right],
\end{aligned}
$$

where Γ, ψ and ${ }_{2} F_{1}$ are Gamma function, Psi- (or Digamma) function, and hypergeometric function, respectively (see, e.g., [7, Chapter 1]).

Acknowledgments

The author would like to give his deep-felt thanks for the reviewer's helpful comment with a kind suggestion of two valuable papers.

References

[1] T. M. Apostol, On the Lerch zeta-function, Pacific J. Math. 1 (1951), 161-167.
[2] Y. Simsek, Apostol type Daehee numbers and polynomials, Adv. Stud. Contemp. Math. 26(3) (2016), 555-566.
[3] Y. Simsek, Analysis of the p-adic q-Volkenborn integrals: an approach to generalized Apostol-type special numbers and polynomials and their applications, Cogent Math. 3(1) (2016), Article 1269393.
[4] Y. Simsek, Identities on the Changhee numbers and Apostol-Daehee polynomials, Adv. Stud. Contemp. Math. 27 (2017) (accepted).
[5] Y. Simsek and A. Yardimci, Applications on the Apostol-Daehee numbers and polynomials associated with special numbers, polynomials, and p-adic integrals, Adv. Diff. Equ. 2016 (2016), Article ID 308.
[6] H. M. Srivastava, Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Phil. Soc. 129 (2000), 77-84.
[7] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London, New York, 2012.

