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Abstract 

A variety of polynomials, including their diverse generalizations, have 
been investigated. In this paper, we aim to present some (presumably) 
new identities and relations for the λ-Apostol-Daehee polynomials 

( )λ;xnD  and the λ-Apostol-Daehee polynomials ( )( )λ;xk
nD  of 

order k, which have been very recently introduced, with (possibly) 
other polynomials and numbers. 

1. Introduction and Preliminaries 

Special polynomials and numbers such as Bernoulli polynomials and 
numbers, Euler polynomials and numbers, Genocchi polynomials and 
numbers, Apostol-Bernoulli polynomials and numbers, Stirling numbers of 
the first and second kinds, Daehee polynomials and numbers, Apostol-
Daehee polynomials and numbers with their generalizations have applied           
in a wide range of areas including mathematics, mathematical physics, 
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probability, statistics and engineering. Very recently, Simsek [2, 4] 
introduced Apostol-Daehee numbers and polynomials and their extensions to 
give certain interesting identities and relations among them and some other 
polynomials and numbers (see also [3, 5]). 

In this sequel, we also aim to present certain (presumably) new identities 
and relations among Apostol-Daehee polynomials and numbers and some 
other polynomials and numbers. 

For our purpose, we choose to recall some known polynomials and 
numbers. The Bernoulli polynomials ( )xBn  are defined by the generating 

function: 
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The numbers ( )0: nn BB =  are called the Bernoulli numbers generated by 
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The generalized Bernoulli polynomials ( )( )xBn
α  of degree α in x are defined 

by the generating function: 

 ( )( ) ( )∑
∞

=

αα
α

=π<=⎟
⎠
⎞

⎜
⎝
⎛

− 0
1:1;2!1 n

n
n

xt
t tn

txBe
e

t  (1.3) 

for arbitrary (real or complex) parameter α. Clearly, we have 
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in terms of the generalized Bernoulli numbers ( )α
nB  defined by the generating 

function: 
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The Apostol-Bernoulli polynomials ( )λ;xnB  are defined by means of the 

generating function (see [1, 6]): 
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( )1whenlog;1when2 ≠λλ<=λπ< tt  

with, of course, 

 ( ) ( )1;xxB nn B=  and ( ) ( ),;0: λ=λ nn BB  (1.8) 

where ( )λnB  denotes the so-called Apostol-Bernoulli numbers. The Apostol-

Bernoulli polynomials ( )( )λα ;xnB  of (real or complex) order α are defined 

by means of the following generating function: 
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( π< 2t  when λ<=λ log;1 t  when )1:1;1 =≠λ α  

with, of course, 

 ( )( ) ( )( )1;xxB nn
αα = B  and ( )( ) ( )( ),;0: λ=λ αα

nn BB  (1.10) 

where ( )( )λα
nB  denotes the so-called Apostol-Bernoulli numbers of order α. 

The Stirling numbers ( )kns ,  of the first kind are defined by the 



Junesang Choi 1848 

generating functions: 
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and 

 ( ){ } ( ) ( )∑
∞

=
<=+

kn

n
k zn

zknskz .1!,!1log  (1.12) 

The Stirling numbers ( )knS ,  of the second kind are defined by the 

generating functions: 

( ) ( ) ( )∑
=

+−−=
n

k

n kzzzknSz
0

,11,  (1.13) 

( ) ( )∑
∞

=
=−

kn

n
kz

n
zknSke ,!,!1  (1.14) 

and 

( ) ( ) ( ) ( ) ( )∑
∞

=

−−−−− <=−−−
kn

kn kzzknSkzzz ,,1211 1111  (1.15) 

where ( )knS ,  denotes the number of ways of partitioning a set of n elements 

into k non-empty subsets. 

For more details of the above-recalled polynomials and numbers and 
other ones, one may refer to [7, Sections 1.6-1.8]. 

Simsek [2, 4] introduced to investigate the λ-Apostol-Daehee 
polynomials ( )λ;xnD  by means of the following generating function: 
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Simsek [4] defined the λ-Apostol-Daehee polynomials ( )( )λ;xk
nD  of order k 
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by means of the following generating function: 
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It is easy to see that 

 ( )( ) ( ).;;1 λ=λ xx nn DD  (1.18) 

Remark 1. It is easy to see that 

 ( )( ) ( ).;;1 λ=λ xx nn DD  (1.19) 

Define a function ( )tf  as follows: 
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where ( )t+1log  is assumed to have the principal branch. Since ( )tft 0lim →  

( ),01 f==  f is analytic at .0=t  So we have 
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Then we obtain 
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Equating the coefficients of ,nt  we get a recurrence formula for the np  as 
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follows: 
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The first few of np  are 
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Define a function ( ) ( )0; ≠ααtg  as follows: 
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It is easy to see that ( )α;tg  is analytic at .0=t  Let 
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Likewise as in getting (1.22), we obtain a recurrence formula for the ( ):αnq  
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The first few of ( )αnq  are 
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2. Main Results 

Here we present some (presumably) new identities and relations for          
the λ-Apostol-Daehee polynomials ( )λ;xnD  and the λ-Apostol-Daehee 

polynomials ( )( )λ;xk
nD  of order k with (possibly) other polynomials and 

numbers. Here and in the following, let N  denote the set of positive integers 
and { }.0:0 ∪NN =  

Theorem 1. The following difference formula for the λ-Apostol-Daehee 
polynomials ( )λ;xnD  holds true: 
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where ( )jks ,  are Stirling numbers of the first kind given in (1.11) and 

(1.12). 

Proof. We find from (1.16) that 
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The Maclaurin series of ( )tλ++λ 1loglog  is given as follows: 
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The binomial series of ( )xtλ+1  is given as follows: 
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Applying (1.11) to (2.5), we have 
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which, upon equating the coefficients of ,nt  gives the desired identity (2.1). 

~ 

Theorem 2. The following explicit formula for the λ-Apostol-Daehee 
polynomials ( )λ;xnD  holds true: 
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where ( )jks ,  are Stirling numbers of the first kind given in (1.11) and 

(1.12). 

Proof. We see that 
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We find from (2.4), (2.6) and (2.8) that 
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which, upon equating the coefficients of ,nt  yields the desired identity (2.7). 

 ~ 

Theorem 3. The following higher-order derivative formula for the             

λ-Apostol-Daehee polynomials ( )( )λ;xk
nD  of order k holds true: 
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where ( ),js  are Stirling numbers of the first kind given in (1.11) and 

(1.12). 

Proof. Differentiating both sides of (1.17) -times with respect to the 
variable x and using (1.12) with the (temporary) assumption ( ) 0, =js  if 
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,<j  we have 
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the first and last of which, upon equating the coefficients of ,nt  yields the 
desired identity (2.9). ~ 

Theorem 4. The following addition formula for the λ-Apostol-Daehee 

polynomials ( )( )λ;xk
nD  of order k holds true: 
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where ( ),js  are Stirling numbers of the first kind given in (1.11) and 

(1.12). ~ 

Proof. A similar argument as in the above proofs can establish the result 
here. So its detailed account is omitted. ~ 

Theorem 5. The following integral formula holds true: 
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where jp ’s are given in (1.22). 

Proof. Integrating both sides of (1.17) with respect to the variable x from 
α to ,1+α  we have 
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Using (1.17) and (1.21), we obtain 
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which, upon equating the coefficients of ,nt  yields the desired formula (2.11). 
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Theorem 6. The following formula holds true: 
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where ( )αjq  are given in (1.25). 

Proof. We find from (1.17) that 
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Upon using (1.17) and (1.24) on the right-hand side, similarly as above, we 
obtain the desired identity (2.12). ~ 

3. Further Remarks 

It is seen that ( )λ;, xtG  in (1.16) is analytic at 0=t  as a function of 

the variable t and 
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which, upon using the Maple, gives the following interesting identity: 
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where Γ, ψ and 12 F  are Gamma function, Psi- (or Digamma) function, and 

hypergeometric function, respectively (see, e.g., [7, Chapter 1]). 
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