Far East Journal of Mathematical Sciences (FJMS)
© 2017 Pushpa Publishing House, Allahabad, India http://www.pphmj.com
http://dx.doi.org/10.17654/MS101081839
Volume 101, Number 8, 2017, Pages 1839-1844

AN ANALOGOUS EULER SUM

Junesang Choi

Department of Mathematics
Dongguk University
Gyeongju 38066
Republic of Korea

Abstract

Since Euler discovered the Euler sum, the sum has been redeveloped in various ways and a large number of its variants have been presented. The object of this note is to evaluate an analogue of the original Euler sum.

1. Introduction and Preliminaries

The following well-known Euler sum

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{H_{n}}{n^{p}}=\left(1+\frac{p}{2}\right) \zeta(p+1)-\frac{1}{2} \sum_{j=2}^{p-1} \zeta(j) \zeta(p-j+1) \quad(p \in \mathbb{N} \backslash\{1\}) \tag{1.1}
\end{equation*}
$$

was first discovered by Euler. Since then, the formula (1.1) has been redeveloped in various ways and a large number of its variants have been presented (see, e.g., $[1,2,3,4,5,6]$ and the references therein). Here and in the following, an empty sum is assumed to be zero. The H_{n} denote the Received: January 18, 2017; Accepted: March 20, 2017

2010 Mathematics Subject Classification: 40A25, 11L99, 11M06, 11M35, 33B15.
Keywords and phrases: harmonic numbers, Riemann zeta function, generalized zeta function, Psi function, Euler sums.
harmonic numbers defined by

$$
\begin{equation*}
H_{n}:=\sum_{j=1}^{n} \frac{1}{j} \quad(n \in \mathbb{N}) \tag{1.2}
\end{equation*}
$$

whose generalized harmonic numbers are defined by

$$
\begin{equation*}
H_{n}^{(s)}:=\sum_{j=1}^{n} \frac{1}{j^{s}} \quad(n \in \mathbb{N} ; s \in \mathbb{C}) . \tag{1.3}
\end{equation*}
$$

Also $\zeta(s)$ is the Riemann zeta function defined by

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad(\Re(s)>1), \tag{1.4}
\end{equation*}
$$

one of whose simplest generalizations is called generalized (Hurwitz) zeta function defined by

$$
\begin{equation*}
\zeta(s, a)=\sum_{n=0}^{\infty} \frac{1}{(n+a)^{s}} \quad\left(\Re(s)>1 ; a \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}\right), \tag{1.5}
\end{equation*}
$$

Here and in the following, let \mathbb{N}, \mathbb{C} and \mathbb{Z}_{0}^{-}be the sets of positive integers, complex numbers, and non-positive integers, respectively, and $\mathbb{N}_{0}:=$ $\mathbb{N} \cup\{0\}$.

Among many properties of $\zeta(s)$ and $\zeta(s, a)$, the following formulas are recalled (see, e.g., [6, Sections 2.2 and 2.3]):

$$
\begin{equation*}
\zeta(s, a)=\zeta(s, n+a)+\sum_{k=0}^{n-1} \frac{1}{(k+a)^{s}} \quad(n \in \mathbb{N}), \tag{1.6}
\end{equation*}
$$

whose special case when $a=1$ is given by

$$
\begin{equation*}
\zeta(s)=\zeta(s, n+1)+\sum_{k=1}^{n} \frac{1}{k^{s}} \quad(n \in \mathbb{N}) . \tag{1.7}
\end{equation*}
$$

We also recall the following formula (see, e.g., [6, Eq. (6), p. 270]):

$$
\begin{equation*}
\sum_{k=2}^{\infty}(-1)^{k} \zeta(k, a) t^{k-1}=\psi(a+t)-\psi(a) \quad(|t|<|a|) \tag{1.8}
\end{equation*}
$$

where $\psi(s)$ is the Psi (or Digamma) function defined by $\psi(s)=\Gamma^{\prime}(s) / \Gamma(s)$ $(\Gamma(s)$ being the familiar Gamma function) one of whose properties is given (see, e.g., [6, Eq. (7), p. 25]):

$$
\begin{equation*}
\psi(s+n)-\psi(s)=\sum_{k=1}^{n} \frac{1}{s+k-1} \quad(n \in \mathbb{N}) \tag{1.9}
\end{equation*}
$$

Here, in this paper, like the Euler sum in (1.1), we aim to express the following analogous Euler sum:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{H_{n+m}}{n^{p}} \quad\left(p \in \mathbb{N} \backslash\{1\} ; m \in \mathbb{N}_{0}\right) \tag{1.10}
\end{equation*}
$$

in terms of the Riemann zeta functions $\zeta(s)$.

2. Main Result

For our purpose, we first give an evaluation asserted by the following lemma.

Lemma 1. Let

$$
\begin{equation*}
\mathcal{S}_{p}(j):=\sum_{n=1}^{\infty} \frac{1}{n^{p}(n+j)} \quad(j, p \in \mathbb{N}) \tag{2.1}
\end{equation*}
$$

The following formula holds true:

$$
\begin{align*}
\mathcal{S}_{p}(j)= & \sum_{n=1}^{j} \frac{1}{n^{p}(n+j)} \\
& +\frac{(-1)^{p+1}}{j^{p}}\left\{H_{2 j}-H_{j}+\sum_{k=2}^{p}(-1)^{k}\left(H_{j}^{(k)}-\zeta(k)\right) j^{k-1}\right\} \tag{2.2}
\end{align*}
$$

where, throughout this paper, an empty sum is assumed to be zero.

Proof. We begin by

$$
\mathcal{S}_{p}(j)=\sum_{n=1}^{j} \frac{1}{n^{p}(n+j)}+\sum_{n=j+1}^{\infty} \frac{1}{n^{p+1}} \cdot \frac{1}{1+j / n} .
$$

Applying the geometric expansion in the last term and changing the order of summations, we have

$$
\begin{aligned}
\mathcal{S}_{p}(j) & =\sum_{n=1}^{j} \frac{1}{n^{p}(n+j)}+\sum_{k=0}^{\infty}(-1)^{k} j^{k} \sum_{n=j+1}^{\infty} \frac{1}{n^{p+k+1}} \\
& =\sum_{n=1}^{j} \frac{1}{n^{p}(n+j)}+\sum_{k=0}^{\infty}(-1)^{k} j^{k} \sum_{n=0}^{\infty} \frac{1}{(n+j+1)^{p+k+1}} \\
& =\sum_{n=1}^{j} \frac{1}{n^{p}(n+j)}+\sum_{k=0}^{\infty}(-1)^{k} j^{k} \zeta(p+k+1, j+1) .
\end{aligned}
$$

We find

$$
\begin{aligned}
\mathcal{S}_{p}(j)= & \sum_{n=1}^{j} \frac{1}{n^{p}(n+j)}+\frac{(-1)^{p+1}}{j^{p}} \sum_{k=p+1}^{\infty}(-1)^{k} \zeta(k, j+1) j^{k-1} \\
= & \sum_{n=1}^{j} \frac{1}{n^{p}(n+j)}+\frac{(-1)^{p+1}}{j^{p}}\left\{-\sum_{k=2}^{p}(-1)^{k} \zeta(k, j+1) j^{k-1}\right. \\
& \left.+\sum_{k=2}^{\infty}(-1)^{k} \zeta(k, j+1) j^{k-1}\right\} .
\end{aligned}
$$

Using (1.8) and (1.9), we obtain

$$
\begin{aligned}
\mathcal{S}_{p}(j)= & \sum_{n=1}^{j} \frac{1}{n^{p}(n+j)} \\
& +\frac{(-1)^{p+1}}{j^{p}}\left\{\psi(2 j+1)-\psi(j+1)-\sum_{k=2}^{p}(-1)^{k} \zeta(k, j+1) j^{k-1}\right\}
\end{aligned}
$$

$$
\begin{align*}
& =\sum_{n=1}^{j} \frac{1}{n^{p}(n+j)}+\frac{(-1)^{p+1}}{j^{p}}\left\{\sum_{k=1}^{j} \frac{1}{k+j}-\sum_{k=2}^{p}(-1)^{k} \zeta(k, j+1) j^{k-1}\right\} \\
& =\sum_{n=1}^{j} \frac{1}{n^{p}(n+j)}+\frac{(-1)^{p+1}}{j^{p}}\left\{H_{2 j}-H_{j}-\sum_{k=2}^{p}(-1)^{k} \zeta(k, j+1) j^{k-1}\right\} \tag{2.3}
\end{align*}
$$

We find from (1.3) and (1.7) that

$$
\begin{equation*}
\zeta(s)=\zeta(s, n+1)+H_{n}^{(s)} \quad(n \in \mathbb{N} ; s \in \mathbb{C}) \tag{2.4}
\end{equation*}
$$

Finally, applying (2.4) to the $\zeta(k, j+1)$ in (2.3), we obtain the desired formula (2.2).

Now we are ready to give the main identity asserted by the following theorem.

Theorem 1. The following analogous Euler sum holds true:

$$
\begin{align*}
\sum_{n=1}^{\infty} \frac{H_{n+m}}{n^{p}} & =\left(1+\frac{p}{2}\right) \zeta(p+1)-\frac{1}{2} \sum_{j=2}^{p-1} \zeta(j) \zeta(p-j+1) \\
& +\frac{1}{2} H_{m}^{(p+1)}+\sum_{n=1}^{m} \frac{1}{n^{p}}\left\{\left((-1)^{p+1}-1\right) H_{2 n}+(-1)^{p} H_{n}+H_{n+m}\right\} \\
& +(-1)^{p+1} \sum_{k=2}^{p}(-1)^{k}\left\{\sum_{j=1}^{m} \frac{H_{j}^{(k)}}{j^{p+1-k}}-\zeta(k) H_{m}^{(p+1-k)}\right\} \tag{2.5}\\
& \quad\left(p \in \mathbb{N} \backslash\{1\} ; m \in \mathbb{N}_{0}\right)
\end{align*}
$$

Proof. We see that

$$
\begin{align*}
\sum_{n=1}^{\infty} \frac{H_{n+m}}{n^{p}} & =\sum_{n=1}^{\infty} \frac{H_{n}}{n^{p}}+\sum_{n=1}^{\infty} \frac{1}{n^{p}} \sum_{j=1}^{m} \frac{1}{n+j} \\
& =\sum_{n=1}^{\infty} \frac{H_{n}}{n^{p}}+\sum_{j=1}^{m} \sum_{n=1}^{\infty} \frac{1}{n^{p}(n+j)} \tag{2.6}
\end{align*}
$$

Now applying (1.1) and (2.2) to the last equality in (2.6) and noting (see [2, Eq. (1.23)])

$$
\begin{aligned}
\sum_{j=1}^{m} \sum_{n=1}^{j} \frac{1}{n^{p}(n+j)} & =\sum_{n=1}^{m} \sum_{j=n}^{m} \frac{1}{n^{p}(n+j)} \\
& =\sum_{n=1}^{m} \frac{1}{n^{p}}\left(H_{n+m}-H_{2 n}+\frac{1}{2 n}\right) \\
& =\sum_{n=1}^{m} \frac{1}{n^{p}}\left(H_{n+m}-H_{2 n}\right)+\frac{1}{2} H_{m}^{(p+1)},
\end{aligned}
$$

after some simplification, we obtain the desired identity (2.5).

References

[1] D. Borwein, J. M. Borwein and R. Girgensohn, Explicit evaluation of Euler sums, Proc. Edinburgh Math. Soc. 38 (1995), 277-294.
[2] J. Choi, Notes on formal manipulations of double series, Commun. Korean Math. Soc. 18(4) (2003), 781-789.
[3] J. Choi and H. M. Srivastava, Explicit evaluation of Euler and related sums, Ramanujan J. 10 (2005), 51-70.
[4] N. Nielsen, Die Gammafunktion, Chelsea Publishing Company, Bronx, New York, 1965.
[5] L.-C. Shen, Remarks on some integrals and series involving the Stirling numbers $\zeta(n)$, Trans. Amer. Math. Soc. 347 (1995), 1391-1399.
[6] H. M. Srivastava and J. Choi, Zeta and q-zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London, New York, 2012.

