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Abstract 

This study investigates the optimal control of an inventory system, 
with beta rectangular distributed defective and gamma distributed 
deteriorating items. We develop an optimal manufacturing-inventory 
planning model, where optimality conditions are derived from the 
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dynamics of the manufacturing-inventory level. The explicit solution 
of the manufacturing-inventory model, under continuous review policy 
using the Pontryagin maximum principle, is obtained. Moreover, 
simulation and sensitivity analysis results are illustrated numerically, 
with several demand patterns and different parameter values of beta 
rectangular and gamma distributions. Also, the effect of the number of 
items checked in the result is discussed. Our numerical results suggest 
that the inventory control model, with defective and deterioration 
items, can help firms to hedge demand for several situations of that 
demand and the number of items that are checked. 

1. Introduction and Literature Review 

The dynamics of the manufacturing-inventory planning problem is of 
interest in cases where units of a product are defective, and while in stock, 
product units are subject to deterioration. Many researchers have handled 
defective items as a percentage of product items. 

[7] investigated the EPQ model with a constant percentage of product 
items in each cycle being defective, as well as a constant percentage of 
reworked items. [4] developed the EPQ model using multi-products. Some 
defective items will be repaired during inventory depletion and disposal 
without cost. Other researchers have considered the percentage of defective 
items is a random variable. Most researchers have developed an inventory 
model with a uniform distribution [2, 10, 15] to avoid the shortage that 
occurs due to defective items, with many assumptions, such as the quadratic 
function of holding costs and allowable delays in payments. The effect of 
defect rate, which represents a random variable following beta distribution, 
on the reorder point and total cost was investigated by [8]. 

In contrast, several researchers have dealt with deteriorating inventory. 
[11, 12] have investigated the inventory system with a constant deterioration 
rate and holding costs as a function of time. [1, 17] have developed an 
inventory system model with the deterioration rate as a part of time, for two 
cases with and without shortages and a demand rate that remains constant 
and depended on price, respectively. The inventory control model, with the 
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deterioration rate as a random variable following a Weibull distribution, was 
developed by [3]. [19] added the cost of deterioration to an economic order 
quantity (EOQ) model with a Weibull deterioration rate. 

Some researchers have studied manufacturing-inventory systems with 
both deteriorating and defective items. [13] investigated a production model 
with stochastic rates of demand and imperfect production. The researcher 
assumed a constant rate of deterioration. The percentage of defective items            
is a random variable that follows uniform distribution and a constant 
deterioration rate was considered by [6, 9]. Researchers have investigated an 
EOQ model with defective items sold at a discount and an inspection rate of 
items higher than the demand rate, respectively. A deteriorating inventory 
system with single items, the buyer delaying payment to supplier and a 
constant rate of deterioration and defects were considered by [20]. [14] 
developed a model, where defects, deterioration, demand and production 
rates were constant, with screened quality applied deterioration items in 
addition to normal items. However, researchers above have treated the 
inventory system with a constant deterioration rate and random defective 
items, and did not deal with both deteriorating rate and defect percentage as 
random variables. As seen, references that dealt with beta rectangular 
defective items and references that handled the defective and deteriorating 
items together are rarely available. Our model contributes in several ways. 
First, we develop an optimal inventory control model with defect percentage 
and the time of deterioration items together as random variables that follow 
probability distributions (this type of research is rare in previous studies). 
Second, we derive optimality conditions using the Pontryagin maximum 
principle suggested by [16]. Third, we provide several simulation results that 
could be used to investigate the effects of the model’s parameter value on 
manufacturing rates, inventory levels and the total cost. 

2. Rate Functions 

2.1. The defect rate 

The percentage of defective items is a random variable that follows        
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beta rectangular distribution. The probability density function of a beta 
rectangular distribution was defined by [5] as 

( ) ,0;0;1,;
1

>τ≤≤
τ
ε−+

τ
ε=ε

−
atatatf a

a
 

where ε (the mixture parameter) takes values between zero and one. 

Following [15], the defect rate is given by 

( ) ( )∫
τ

ϕ >τε−+
+
τε=ϕϕϕ=μ

0
.1,2

1
1 aa

adf  (1) 

2.2. The deterioration rate 

The time of deterioration is a random variable that follows a standard 
gamma distribution, the probability density function is 

( ) ( ) ( ) .0;0;exp1; 1 >α≥−
αΓ

=α −α ttttf  

The instantaneous rate of deterioration of the standard gamma 
distribution is represented by the hazard function 

( ) ( )
( ) ( ) ( ),exp,

1
1

1 ttttF
tft −

αΓ
=

−
=δ −α  (2) 

where ( )t,αΓ  is the upper incomplete gamma function. 

3. Mathematical Model 

3.1. Notations 

T : the length of the planning horizon ( )0>T  

( ) :tXi  the inventory level at time t (state variable) 

( ) :tUT  total manufacturing rate at time t (control variable) 

( ) :tUN  net manufacturing rate at time t (control variable) 

( ) :ˆ tuT  the total manufacturing goal rate 
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( ) :ˆ tuN  the net manufacturing goal rate 

( ) :tD  demand rate for the manufacturing at time t 

( ) :tδ  the deterioration rate, where the time of deterioration is a random 

variable that follows the gamma distribution 

:ˆix  the inventory goal level (a target level) 

:ϕ  the defect percentage is a random variable that follows beta 

rectangular distribution 

:0>ih  a penalty is incurred when the inventory level deviates from its 

goal level 

:0>Tk  a penalty is incurred when the total manufacturing rate deviates 

from its goal rate 

:0>Nk  a penalty is incurred when the net manufacturing rate deviates 

from its goal rate 

:ρ  constant non-negative (discount rate) 

3.2. Assumptions 

It is assumed that a firm can manufacture a certain product (total 
manufacturing) and place it in the first store to check a sample of product 
items. Next, other product items and non-defective items (net manufacturing) 
are placed in the second store to hedge demand. According to equation (2), 
there is some deterioration in the items stored in the second store. The 
percentage of defective items is a random variable that follows beta 
rectangular distribution (according to equation (1)). Demand rate varies with 
time. The firm has set its inventory goal levels and the total and net 
production goal rates without shortage. 

3.3. Optimal control model with deterioration and defective items 

Following [18], the objective function can be expressed in quadratic 
form: 
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( )uXUJ ˆ,,.Min  

{ { ( ) } { ( ) } { ( ) ( )}∫ −+−+−= ρ−T
TTT

t tutUkxtXhxtXhe
0

22
222

2
111 ˆˆˆ

2
1  

{ ( ) ( )} }dttutUk NNN
2ˆ−+  (3) 

subject to the dynamics of the inventory levels of first and second stores: 

( ) ( ) ( ) ( ) ( ) ,0;2
1

1 11 TttUtUtXa
atXdt

d
NT ≤≤−=

⎭⎬
⎫

⎩⎨
⎧ τε−+

+
τε+  (4) 

( ) ( ) ( ) ( ) ( ) ( ) TttDtUtXttttXdt
d

N ≤≤−=
⎭⎬
⎫

⎩⎨
⎧ −

αΓ
+ −α 0;exp,

1
2

1
2  (5) 

with initial condition ( ) ,0 0
ii xX =  and the nonnegative constraints given by 

( ) ( ) ( ) ( ) 0,,, 21 ≥tXtXtUtU NT  for all [ ].,0 Tt ∈  (6) 

The total manufacturing goal rate ( )tuTˆ  must satisfy the state equation 

(4): 

( ) ( ) ( ) .ˆ
2

1
1

ˆˆ 1xa
atutu NT ⎭⎬

⎫
⎩⎨
⎧ τε−+

+
τε+=  (7) 

The net manufacturing goal rate ( )tuNˆ  must satisfy the state equation 

(5): 

( ) ( ) ( ) ( ) .ˆexp,
1ˆ 2

1 xttttDtuN ⎭⎬
⎫

⎩⎨
⎧ −

αΓ
+= −α  (8) 

Substituting equation (8) in equation (7) yields 

( ) ( ) ( ) ( ) ( ) .ˆ
2

1
1

ˆexp,
1ˆ 12

1 xa
axttttDtuT ⎭⎬

⎫
⎩⎨
⎧ τε−+

+
τε+

⎭⎬
⎫

⎩⎨
⎧ −

αΓ
+= −α  (9) 

4. Optimal Inventory Control Model and Solutions 

To solve problems by the Pontryagin maximum principle [16, 18], there 
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exists an adjoint function ( )tiλ  such that the Hamiltonian functional form is 

given by 

( ) [ { ( ) } { ( ) }2
222

2
111 ˆˆ

2
1 xtXhxtXhetH t −+−−= ρ−  

{ ( ) ( )} { ( ) ( )} ]22 ˆˆ tutUktutUk NNNTTT −+−+  

( ) ( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡

⎭
⎬
⎫

⎩
⎨
⎧ τε−+

+
τε−−λ+ tXa

atUtUt NT 11 2
1

1  

( ) ( ) ( ) ( ) ( ) ( ) .exp,
1

2
1

2 ⎥⎦
⎤

⎢⎣
⎡

⎭⎬
⎫

⎩⎨
⎧ −

αΓ
−−λ+ −α tXttttDtUt N  (10) 

To obtain the control variables ( )tUT  and ( ),tUN  we differentiate 

equation (10) with respect to ( )tUT  and ( ),tUN  respectively, and put zero: 

( ) ( ) ( ) ( ) ( ) [ ],,0,;1ˆ 1 TtttUetktutU TT
t

T
TT ∈Ω∈λ+= ρ  (11) 

( ) ( ) ( ) ( ){ } ( ) ( ) [ ],,0,;1ˆ 12 TtttUttektutU NN
t

N
NN ∈Ω∈λ−λ+= ρ  (12) 

where ( ) ( )[ ] .,,,0 max NTitUti ==Ω  

The adjoint equation is 

( ) ( ) ( ) ( ) ( )( ) ( ) .2,1;,ˆ,,, =λ−=λ
∂
∂ itdt

dttutUtXtHtX i
i

 (13) 

Then 

( ) { ( ) } ( ) ( ) ,2
1

1
ˆ 11111 ⎭

⎬
⎫

⎩
⎨
⎧ τε−+

+
τελ+−=λ ρ−

a
atxtXehtdt

d t  (14) 

( ) { ( ) } ( ) ( ) ( )
⎭⎬
⎫

⎩⎨
⎧ −

αΓ
λ+−=λ −αρ− ttttxtXehtdt

d t exp,
1ˆ 1

22222  (15) 

with boundary conditions ( ) .2,1,0 ==λ iTi  
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We put equations (11) and (12) into the state equation (4) to obtain 

( ) ( ) ( ) ( ) ( ) ( ){ }ttektutektudt
tdX t

N
N

t
T

T 121
1 1ˆ1ˆ λ−λ−−λ+= ρρ  

( ) ( ).2
1

1 1 tXa
a
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+
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By substituting equation (7) into equation (16), we get 
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d t

N
t
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1211
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From equation (17), we have 
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211
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Substituting equations (14) and (15) in the second derivative of the 
equation (17) yields 
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Finally, substituting equation (18) into equation (19) yields 
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⎭
⎬
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⎩
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( ) ( ) { ( ) } ( ).ˆexp,
1

122
21 tXdt

dxtXk
httt N

ρ+−−⎥⎦
⎤
⎭⎬
⎫

⎩⎨
⎧ −

αΓ
− −α  (20) 

By substituting equations (11) and (12) into equation (5), we obtain 

( ) ( ) ( ) ( ){ } ( )tDttektutXdt
d t

N
N −λ−λ+= ρ

122
1ˆ  

( ) ( ) ( ).exp,
1

2
1 tXttt ⎭

⎬
⎫

⎩
⎨
⎧ −

αΓ
− −α  (21) 

Substituting equation (8) into equation (21) yields 

( ) ( ) ( ){ } ( ) ( ) { ( ) }.ˆexp,
11

22
1

122 xtXtttttektXdt
d t

N
−

⎭⎬
⎫

⎩⎨
⎧ −

αΓ
−λ−λ= −αρ  

 (22) 

From equation (22), we have 

( ) ( ) ( )tektXdt
dtek

t
N

t
N

122
11 λ+=λ ρρ  

( ) ( ) { ( ) }.ˆexp,
1

22
1 xtXttt −

⎭⎬
⎫

⎩⎨
⎧ −

αΓ
+ −α  (23) 

By substituting equations (11) and (12) in the second derivative of 
equation (22), we get 

( ) ( ) { ( ) }⎢⎣
⎡ −+λρ−= ρ

222122

2
ˆ1 xtXhtektX

dt
d t
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( ) ( ) ( )
⎭⎬
⎫

⎩⎨
⎧ −
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λ+ −αρ tttet t exp,

1 1
2  
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{ ( ) } ( ) ( )
⎥⎦
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Substituting equation (23) into equation (24) yields 
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11ˆ 1
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⎥⎦
⎤
⎭⎬
⎫

⎩⎨
⎧ τε−+

+
τελ− 2

1
11 a

at  

( ) ( ) ( ).exp,
1

2
1 tXdt

dttt ⎥⎦
⎤

⎢⎣
⎡

⎭
⎬
⎫

⎩
⎨
⎧ −

αΓ
−ρ+ −α  (25) 

The analytical solution of the equations system (11), (12), (20) and (25) 
is very difficult. We therefore solve it numerically with the initial condition 

( ) 00 ii xX =  and the terminal condition ( ) .0=λ Ti  

5. Numerical Simulation Solution and Sensitivity Analysis 

We present the solutions of optimal control problem and sensitivity 
analysis, examining how the results obtained vary with changes in model 
parameter values, using Matlab software (Version 8.5). 

5.1. Numerical solution 

Consider an inventory system with the following parameter values in 
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proper units ;3;2;001.0;9;25;35;20ˆ 0
2

0
12 ===ρ==== NT kkTxxx  

.3.0;4.0;2;1 21 =ε=τ== hh  

In Figure 1, the variations in the optimal inventory levels for stores 1 
(I.L.S1) and 2 (I.L.S2) are shown along with their convergence to the 
inventory goal levels (I.G.L.) over time, as desired. The optimal desired 
inventory levels, with a value 25ˆ1 =x  for the first store and 20ˆ2 =x  for the 

second store are obtained to represent the inventory threshold desired by the 
firm. 

 
Figure 1. Optimal inventory levels with 6==α a  and .25ˆ1 =x  

 In Figures 2 to 4, the left part (optimal rates) of the figures is similar to 
the right part (goal rates). This means that the optimal total manufacturing 
(T.M.R.) and net manufacturing (N.M.R.) are converging towards their             
goals (T.M.G.R. and N.M.G.R.) for different kinds of demand. As a result, 
objective function values up to the optimum value. 

 
Figure 2. Optimal manufacturing rates with 6==α a and ( ) .530 ttD +=  
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Figure 3. Optimal manufacturing rates with 6==α a  and ( ) .250 ttD −=  

 

Figure 4. Optimal manufacturing rates with 6==α a  and ( ) [ += 310tD  

( )].cos 5.0 te  

5.2. Sensitivity analysis 

Sensitivity analysis is performed by increasing the sample checked 1x̂  

by 25% and 100% (as shown in Table 1), demand function (as shown in 
Table 2) and increasing parameter values of gamma and beta rectangular by 
50% and 200% (as shown in Table 3). 
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Table 1. Sensitivity analysis where 1x̂  is changed by 25% and 100% in the 

case of an increasing demand and 3,6 ==α a  

Time 
1x̂  M.V. 

0 3 6 9 

1x  35 22.74 20.77 20.21 

2x  25 21.37 20.51 20.11 

Tu  25.5 49.8 71.3 90.1 

Tû  34.6 51.8 71.8 90.1 

Nu  28.4 46.8 67.2 85.5 

20 

Nû  30 47.2 67.2 85.5 

1x  35 27.14 25.62 25.17 

2x  25 21.36 20.42 20.1 

Tu  29.2 51.3 72.6 91.2 

Tû  35.8 53 73 91.2 

Nu  27.6 46.8 67.2 85.5 

25 

Nû  30 47.2 67.2 85.5 

1x  35 40.33 40.23 40.05 

2x  25 20.51 20.19 20.03 

Tu  40.2 56 76.3 94.7 

Tû  39.2 56.4 76.4 94.7 

Nu  25.3 47 67.2 85.5 

40 

Nû  30 47.2 67.2 85.5 

From Table 1, we can deduce the following: 
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1. The increase in goal inventory level of the first store leads to more 
convergence between inventory levels and its goals. 

2. The objective function value is decreasing with the increase in goal 
inventory level of the first store. 

3. The increase in goal inventory level of the first store by 25% and 
100% leads to increasing the total manufacturing rate by 1.2% and 5.1%, 
respectively, at the end of the planning period. 

4. The increase in goal inventory level of the first store leads to 
increasing defective items by the same percentage. 

Table 2. Sensitivity analysis of the demand function where 25ˆ1 =x  and 

6==α a  

Time 
Demand M.V. 

0 3 6 9 

1x  35 27.11 25.6 25.16 

2x  25 21.34 20.4 20.09 

Tu  29.6 51.7 72.9 91.6 

Tû  36.1 53.3 73.3 91.6 

Nu  27.6 46.8 67.2 85.5 

t530 +  

Nû  30 47.2 67.2 85.5 

1x  35 27.11 25.6 25.16 

2x  25 21.34 20.4 20.09 

Tu  49.6 50.7 50.9 48.6 

Tû  56.1 52.3 51.3 48.6 

Nu  47.6 45.8 45.2 42.5 

t250 −  

Nû  50 46.2 45.2 42.5 
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1x  35 27.11 25.6 25.16 

2x  25 21.34 20.4 20.09 

Tu  35 34.4 46.2 41.9 

Tû  41.5 36 46.6 41.9 

Nu  33 29.5 40.5 35.9 

[ ( )]te 5.0cos310 +  

Nû  35.4 29.9 40.5 35.9 

From Table 2, we can deduce the following: 

1. Inventory levels are insensitive towards the change in the demand 
function. 

2. The objective function value is insensitive towards the change in the 
demand function. 

3. Manufacturing rates are highly sensitive with respect to demand 
functions. 

As a result of 1 and 2, the model is efficient in controlling inventory 
levels and total cost for different kinds of demand. 

Table 3. Sensitivity analysis where α and a are changed by 50% and 200% 
in the case of an increasing demand and 25ˆ1 =x  

α a Time 1x  2x  θ ϕ Tu  Tû  Nu  Nû  

0 35 25 0 27.9 35 30.3 30 
3 27.81 21.72 0.75 63.5 65.5 60.4 60 
6 25.63 20.34 0.86 82.3 82.6 77.2 77.1 

2 

9 25.13 20.04 0.9 

0.22 

 98.5 98.5 93 93 
0 35 25 0 28.3 35.8 30.2 30 
3 27.74 21.66 0.75 63.7 65.8 60.4 60 
6 25.6 20.32 0.86 82.5 82.9 77.2 77.1 

3 

9 25.13 20.04 0.9 

0.23 

 98.8 98.8 93 93 
0 35 25 0 28.9 36.1 30.2 30 
3 27.66 21.6 0.75 64.3 66.1 60.4 60 
6 25.57 20.3 0.86 82.9 83.2 77.2 77.1 

2 

6 

9 25.12 20.04 0.9 

0.2429

 99.1 99.1 93 93 
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0 35 25 0 27.7 35.5 28.9 30 
3 28.07 22.06 0.53 58.8 61.1 55.8 55.6 
6 25.82 20.49 0.72 79.4 79.9 74.5 74.4 

2 

9 25.19 20.07 0.8 

0.22 
 

96.5 96.5 91 91 
0 35 25 0 28.3 35.8 28.8 30 
3 27.89 21.92 0.53 59.3 61.3 55.8 55.6 
6 25.7 20.4 0.72 79.8 80.2 74.5 74.4 

3 

9 25.14 20.03 0.8 

0.23 
 

96.8 96.8 91 91 
0 35 25 0 28.8 36.1 28.8 30 
3 27.82 21.86 0.53 59.7 61.7 55.8 55.6 
6 25.67 20.38 0.72 80.1 80.5 74.5 74.4 

3 

6 

9 25.13 20.03 0.8 

0.2429
 

97.1 97.1 91 91 
0 35 25 0 28.8 35.5 27.7 30 
3 27.15 21.38 0.11 51 52.7 46.8 47.2 
6 25.63 20.43 0.36 72.3 72.7 67.2 67.2 

2 

9 25.18 20.1 0.52 

0.22 
 

91 91 85.5 85.5 
0 35 25 0 29.2 35.8 27.6 30 
3 27.14 21.36 0.11 51.3 53 46.8 47.2 
6 25.62 20.42 0.36 72.6 73 67.2 67.2 

3 

9 25.17 20.1 0.52 

0.23 
 

91.2 91.2 85.5 85.5 
0 35 25 0 29.6 36.1 27.6 30 
3 27.11 21.34 0.11 51.7 53.3 46.8 47.2 
6 25.6 20.4 0.36 72.9 73.3 67.2 67.2 

6 

6 

9 25.16 20.09 0.52 

0.2429
 

91.6 91.6 85.5 85.5 

From Table 3, we can deduce the following: 

1. The increase in beta rectangular value leads to an increasing defective 
item percentage. In contrast, deteriorating items are decreasing with the 
increase in gamma parameter value. 

2. The increase in beta rectangular value leads to a slightly increasing 
total manufacturing rate. 

3. The net manufacturing rate is insensitive towards the change in beta 
rectangular parameter value. 

4. The rates of total and net manufacturing decrease with the increase in 
gamma parameter value. 

5. The gamma parameter has more effect on manufacturing rates than the 
beta rectangular parameter. 
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6. The increase in parameter’s values of both gamma and beta 
rectangular lead to decreasing rates of total and net manufacturing. 

6. Conclusion and Recommendations 

In this paper, to more realistic, we considered an optimal manufacturing-
inventory control model with gamma distributed deteriorating items and         
beta rectangular distributed defective items without shortage and a constant 
holding cost. The optimal conditions were derived, along with an explicit 
solution of the manufacturing-inventory model under continuous review 
policy, using the Pontryagin maximum principle. Simulation and sensitivity 
analysis results were illustrated numerically in this optimal control model to 
investigate the effect of model parameters on the results. 

In our model, a product sample is checked and the increase in sample 
quantity leads to a decreasing total cost. Moreover, the manufacturing rate        
is increased slightly with the increased beta rectangular parameter value, but 
decreases with the increase in gamma parameter value. Overall, gamma 
parameter has more effect on manufacturing rates than beta rectangular 
parameter. Economically, this model was found to be efficient for inventory 
control, with defective and deteriorating items, and the total cost for different 
kinds of demand. This study may be extended to consider the stochastic 
demand or holding cost as a function in both the cases, with and without 
shortage. 
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