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Abstract 

Let λ,v  be positive integers, vKλ  denote a complete multigraph on v 

vertices in which each pair of distinct vertices joining with λ  edges. 

In this article, difference method is used to introduce a new design that 

decomposes vK4  into cycles, when ( ).12mod10,2≡v  This design         

merging between cyclic ( )rmm ...,,1 -cycle system and near-four-

factor is called a near cyclic ( )rmm ...,,1 -cycle system. 

1. Introduction 

In this paper, it is considered that all graphs are undirected with no loops 

and vertices set .vZ  We denote the complete graph on v vertices by .vK      

An m-cycle (respectively, m-path), denoted by ( )10 ...,, −mcc  ( ly,respective  

[ ]),...,, 10 −mcc  consists of m distinct vertices { }110 ...,,, −mccc  and m edges 
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{ },1+iicc  20 −≤≤ mi  and 10 −mcc  ( ly,respective  1−m  edges { },1+iicc  

).20 −≤≤ mi  

An ( )rmm ...,,1 -cycle is the union of all edges in each im -cycle, 

.1 ri ≤≤  A decomposition of a graph G is a set of subgraphs { }rHH ...,,1  

of G whose edges set partitions the edge set of G. If vK  has a decomposition 

into r cycles of length ,...,,, 21 rmmm  then it is said an ( )rmm ...,,1 -cycle 

system of order v that is defined as a pair ( )CV ,  such that ( ),vKVV =  and 

C is a collection of edge-disjoint im -cycles, for ,1 ri ≤≤  which partitions 

the ( ).vKE  In particular, if ,1 mmm r ===  then it is called an m-cycle 

system of order v or ( )mv CK , -design. 

A complete multigraph of order v, denoted by ,vKλ  can be obtained by 

replacing each edge of vK  with λ  edges. A ( )rmm ...,,1 -cycle system of 

vKλ  is a pair ( ),, CV  where ( )vKVV λ=  and C is a collection of edge-

disjoint im -cycles for ri ≤≤1  which partitions the edge multiset of .vKλ  

An automorphism of ( )rmm ...,,1 -cycle system of vKλ  is a bijection 

( ) ( )vv ZVZV →α :  such that for any ( ) Ccc t ∈−10 ...,,  if and only if 

( ) ( )( ) ( )rt mmCcc ...,,,...,, 110 ∈αα − -cycle system of vKλ  is called cyclic if it 

has automorphism that is a permutation consisting of a single cycle of order 
v, for instance, ( )1...,,1,0 −=α v  and is said to be simple if all its cycles 

are distinct. 

Given an m-cycle ( ),...,,, 110 −= mm cccC  by iCm +  we mean 

( ),...,,, 110 icicic m +++ −  where .vZi ∈  Analogously, if { ,1mCC =  

}rmm CC ...,,2  is an ( )rmm ...,,1 -cycle, then we use iC +  instead of 

{ }....,,, 21 iCiCiC rmmm +++  A set of cycles that generates the cyclic 

( )rmm ...,,1 -cycle system of vKλ  by repeated addition of 1 modular v 

which is called a starter set (briefly .)δ  

The study of ( )rmm ...,,1 -cycle system of vKλ  has been considered the 
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most important problems in graph decomposition. The important is case 
.,1 1 mmm r ====λ  The existence question for a ( )mv CK , -design 

has been solved by Alspach and Gavlas [2] in the case of m odd and by Šajna 
[11] for m even. While the existence question for a cyclic m-cycle has been 
settled when 3=m  [8], 5 and 7 [10]. For m even and ( ),2mod1 mv ≡  a 

cyclic m-cycle system of order v was proved for ( )4mod2,0≡m  in [6, 9]. 

Recently, Bryant et al. [3] showed the necessary and sufficient conditions for 
decomposing vK  into r cycles of lengths rmmm ...,,, 21  or into r cycles of 

lengths rmmm ...,,, 21  and perfect matching. Thus, the Alspach’s problem 

has been settled which was posed in 1981 [1]. More recently, it has been 
extended to this decomposition for the complete multigraph vKλ  in [4]. 

A k-factor of a graph G is a spanning subgraph whose vertices have a 
degree k. While a near-k-factor is a subgraph in which all vertices have a 
degree k with exception of one vertex (isolated vertex) which has a degree 
zero. 

Moreover, in [7], Matarneh and Ibrahim introduced the decomposition of 
a complete multigraph ,2 vK  when ( ),12mod0≡v  by combination of cyclic 

( )rmmm ...,,, 21 -cycle system and near-two-factor. In our paper, we propose 

a new design for decomposing a complete multigraph vK4  when ≡v  

( ).12mod10,2  This is obtained by merging a cyclic ( )rmm ...,,1 -cycle 

system and near-four-factors that is called a near cyclic ( )rmm ...,,1 -cycle 

system denoted by ( ).,4 δvKNCCS  Thus, we present ( )δ,4 vKNCCS  as a 

( )δ×v  array satisfying the following conditions: 

• the cycles in row r and column i form a near-four-factor with focus r, 

 • the cycles associated with rows contain no repetitions. 

The main result of this paper is the following: 

Theorem 1.1. There exists a full simple cyclic ( )rmm ...,,1 -cycle system 

of ,4 vK  ( ),,4 δvKNCCS  when ( ).12mod10,2≡v  
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2. Preliminaries 

Throughout this paper, we use difference set method that will be clarified 
in this section to obtain the main results. 

Let ,vKG =  for ( )vKVba ∈,  and ,ba ≠  the difference d of pair 

{ }ba,  is ba −  or ,bav −−  whichever is smaller. We define the 

difference d of any edge ( )vKEab ∈  as { }.,min bavba −−−  So, the 

difference of any edge in ( )vKE  is not exceeding ,2
v   ( ).21 vd ≤≤  Let 

( )110 ...,,, −= nn aaaC  ( ly,respective  [ ])110 ...,,, −= nn aaaP  be an n-cycle 

(respectively, n-path) of ,vK  the list of differences from nC  is a multiset 

( ) { }{ },...,,2,1,min 11 niaavaaCD iiiin =|−−−= −−  where naa =0  

( ly,respective  ( ) { }{ }).1...,,2,1,min 11 −=−−−= −− niaavaaPD iiiin  

The list difference from { }tmm CC ...,,1=δ  is the multiset ( ) =CD  

( )∪t
i miCD1 .=  

Definition 2.1. Given a complete multigraph ,vKλ  when v even. A set 

{ }tmm CC ...,,1=δ  of cycles of vKλ  is ( )δλ ,vK -difference system if 

( ) ( )∪t
i iCDD 1==δ  covers each element of { }0

22
−=∗

vv ZZ  exactly λ  times 

and the middle difference 






2
v  appears 





λ

2  times. 

As a particular result of the theory developed in [5], we have:  

Proposition 2.1. A set { }tCC ...,,1=δ  of im -cycles, where ti ...,,2,1=  

is a starter set of a cyclic ( )tmm ...,,1 -cycle system of ,4 vK  if and only if δ  

is a ( )δ,4 vK -difference system. 

The orbit of cycle ,nC  denoted by ( ),nCorb  is the set of all distinct        

n-cycles in the collection { }.vn ZiiC ∈|+  The length of ( )nCorb  is its 

cardinality, i.e., ( ) ,kCorb n =  where k is the minimum positive integer such 
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that .nn CkC =+  A cycle orbit of length v on vKλ  is said to be full and 
otherwise short. 

3. A Near Cyclic ( )rmmm ...,,, 21 -cycle System 

In this section, we present new definitions and results of a near cyclic 
( )rmmm ...,,, 21 -cycle system, that are useful for our proof. 

Definition 3.1. A near cyclic ( )rmm ...,,1 -cycle system of ,4 vK  

( ),,4 δvKNCCS  combining a near-four-factor and cyclic ( )rmm ...,,1 -cycle 

system that is generated by the starter set .δ  In addition, ( )δ,4 vKNCCS  is a 

( )δ×v  array that satisfies the following conditions: 

• the cycles in row r and column i form a near-four-factor with focus r,  

• the cycles associated with rows contain no repetitions. 

Undoubtedly, for presenting the ( ),,4 δvKNCCS  it is sufficient to 
provide a starter set δ  that satisfied a near-four-factor. 

We present here some of new definitions which will be needed in the 
sequel. 

Definition 3.2. Two m-cycles H and F of a graph G of order v are said to 
be parallel if they have the same difference set. 

Definition 3.3. Let H and F be two m-cycles of a graph G of order v.     
If the sum of each two corresponding vertices of them is v, then it is called 
adjoined m-cycles, i.e., for ( )mhhhH ...,,, 21=  and ( )mfffF ...,,, 21=  if 

,...,,1, mivfh ii ==+  then H and F are adjoined cycles. 

Corollary 3.1. Any two adjoined cycles are parallel cycles. 

Throughout the paper, we shall sometimes use superscripts to            
identify the number of the cycles in a set. So, let us consider =δ  

{ }r
r

n
m

n
m

n
m CCC ...,,, 2

2
1
1

 to be the set comprised of in  cycles of length ,im  for 

....,,2,1 ri =  In addition, we consider that imC  is the ith m-cycle in starter 
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set .δ  Therefore, it is convenient to provide an example here to clarify the 
above discussion. 

Example 3.1. Let 224KG =  and { }2
11

5
4 , CC=δ  be a set of cycles of G 

such that 

( ) ( ) ( ),8,14,19,3,9,13,20,2,10,12,21,1 321 444 === CCC  

( ),15,7,18,444 =C  ( ),6,16,17,554 =C  

( ),21,17,7,8,6,9,4,10,3,11,2111 =C  

( ).1,5,15,14,16,13,18,12,19,11,20211 =C  

Firstly, we note that each nonzero element in 22Z  occurs twice in the cycles 

of .δ  So every vertex has a degree 4 except zero element (isolated vertex) 
has degree zero. So, it satisfies the near-four-factor. Secondly, the difference 
sets for the cycles in δ  are listed in Table 3.1 and Table 3.2 for 4-cycles and 
11-cycles, respectively. 

Table 3.1 
4-cycle (1, 21, 12, 10) (2, 20, 13, 9) (3, 19, 14, 8) (4, 18, 7, 15) (5, 17, 16, 6) 

Difference set {2, 9, 2, 9} {4, 7, 4, 7} {6, 5, 6, 5} {8, 11, 8, 11} {10, 1, 10, 1} 

Table 3.2 
11-cycle (2, 11, 3, 10, 4, 9, 6, 8, 7, 17, 21) (20, 11, 19, 12, 18, 13, 16, 14, 15, 5, 1) 

Difference set {9, 8, 7, 6, 5, 3, 2, 1, 10, 4, 3} {9, 8, 7, 6, 5, 3, 2, 1, 10, 4, 3} 

As clearly shown, we observe that ( ) 













=δ == ∪∪ ∪ 2

1 11
5

1 4 ii ii CDCDD  

covers each element of ∗
11Z  four times while the middle difference 112

22 =  

appears exactly twice. Therefore, the set { }2
11

5
4 , CC=δ  is a ( )δ,4 22K -

difference system. Then an ( )δ,4 22KNCCS  is ( )722 ×  array and the starter 

set { }2
11

5
4 , CC=δ  generates all the cycles in ( )722 ×  array by repeated 

addition of 1 (mod 22) as shown in Table 3.3. 
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Table 3.3 
Focus ( )δ,4 vKNCCS  

0 1 21 12 10 2 20 13 9 3 19 14 8 20 11 19 12 18 13 16 14 15 5 1 

1 2 0 13 11 3 21 14 10 4 20 15 9 21 12 20 13 19 14 17 15 16 6 2 

     

20 21 19 10 8 0 18 11 7 1 17 12 6 18 9 17 10 16 11 14 12 13 3 21 

21 0 20 11 9 1 19 12 8 2 18 13 7 19 10 18 11 17 12 15 13 14 4 0 

As usual, any m-cycle has been written as a permutation 

( ),...,,,...,,,...,, ,31,3,21,2,11,1 lrn aaaaaa  

where .mlrn =++  For the sake of simplicity, it can be represented as 
connected paths, we mean that ( )lrnm PPPC ,3,2,1 ,,=  such that =nP ,1  

[ ],...,, ,11,1 naa  [ ],...,, ,21,2,2 rr aaP =  [ ]....,, ,31,3,3 ll aaP =  

We will define the difference between any two paths H and K, denoted 
by ( ),, KHD  as the difference between the last vertex in the path H and        

the first vertex in the path K. Thus, for the cycle ( ),,, ,3,2,1 lrnm PPPC =    

we find that ( ) ([ ]),,, 1,2,1,2,1 aaDPPD nrn =  ( ) ([ ])1,3,2,3,2 ,, aaDPPD rlr =  

and ( ) ([ ]).,, 1,1,3,1,3 aaDPPD lnl =  Subsequently, 

( ) ( ) ( ) ( ) ( )rnlrnm PPDPDPDPDCD ,2,1,3,2,1 ,∪∪∪=  

( ) ( )nllr PPDPPD ,1,3,3,2 ,, ∪∪  

and ( ) ( ) ( ) ( ).,3,2,1 lrnm PVPVPVCV ∪∪=  

Now we are ready to present the proof for Theorem 1.1, the main aim of 
our paper. We distinguish two cases according to the congruence class of 

( ).12mod≡v  

Case 1. There exists a full near cyclic ( )rmm ...,,1 -cycle system of 

( ).,4,4 10121012 δ++ nn KNCCSK  
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Proof. We have two subcases: 

Subcase 1. n is odd. 

Suppose { }2
56

23
4 , +

+=δ n
n CC  is the starter set of 10124 +nK  such that the 

list of 4-cycles is: 

( )∪ 23

1 ,4,3,2,14

2
35

,,,
+

=
+≠

=
n

i iiii
ni

i ccccC  

( )∪ 23

1

2
35

,56,56,1012,
+

=
+≠

−+++−+=
n

i
ni

ininini  

when ,2
35 += ni  let 

.2
3556,2

3556,2
351012,2

35
4 





 ++++−++−++= nnnnnnnC i  

While we consider ∗
+56nC  and ∗∗

+56nC  that are adjoined ( )56 +n -cycle such 

that ( ),,, 32156
∗∗∗∗

+ = PPPC n  ( ),,, 32156
∗∗∗∗∗∗∗∗

+ = PPPC n  where { ∗∗∗
ii PP ,  

}31 ≤≤| i  are paths as follows: 

[ ] [ ],43,53,33,54,22...,,46,3,56,2 21 +++=++++= ∗∗ nnnPnnnnP  

[ ],912,710,68...,,39,99,49,893 +++++++=∗ nnnnnnnP  

[ ],58,810...,,66,712,56,8121 ++++++=∗∗ nnnnnnP  

[ ],69,59,792 +++=∗∗ nnnP  

[ ].1,32,44...,,73,13,63,233 ++++++=∗∗ nnnnnnP  

We will divide the proof into two parts as follows: 

Part 1. In this part, we prove that δ  is a near-four-factor. To do this, we 
need to calculate the vertices 
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231,,4,3,2,1
23

1 4 +≤≤=




 +

=
niccccCV iiii

n

i i ∪∪∪∪  

such that ,,1 ic i =  ,1012,2 inc i −+=  ,56,3 inc i ++=  ,56,4 inc i −+=  

.2
35,231 +≠+≤≤ nini  Then 

{ } ,2
3523...,,3,2,1,1 



 +−+= nnc i  

{ } ,2
171989...,,812,912,2 



 +−+++= nnnnc i  

{ } ,2
131779...,,76,66,3 



 +−+++= nnnnc i  

{ } .2
7733...,,36,46,4 



 +−+++= nnnnc i  

While, if ,2
35 += ni  then 

( ) .2
1317,2

77,2
1719,2

35
4 



 ++++= nnnnCV i  

Observe that the vertices of all 4-cycles cover every nonzero elements   
of { }{ }561012 +−+ nZ n  exactly once, whereas we provide the vertices of 

( )56 +n -cycles as ( ) ( ) 3,2,1, =∗∗∗ iPVPV ii ∪  as follows: 

( ) { } { },54...,,46,5622...,,4,3,21 ++++=∗ nnnnPV ∪  

( ) { },43,53,332 +++=∗ nnnPV  

( ) { }710...,,99,893 +++=∗ nnnPV  

{ } { },91268...,,39,49 ++++ nnnn ∪∪  

( ) { } { },58...,,66,56810...,,712,8121 ++++++=∗∗ nnnnnnPV ∪  
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( ) { },69,59,792 +++=∗∗ nnnPV  

( ) { } { } { }.144...,,73,6332...,,13,233 ∪∪ ++++++=∗∗ nnnnnnPV  

Then the vertices of ( )56 +n -cycles cover each nonzero element of 

1012 +nZ  exactly once except { }56 +n  twice. Then the vertex set of the 

cycles in ( ),, δδ V  covers each element of ∗
+1012nZ  twice. Consequently, it 

satisfies near-four-factor (with isolated zero element).  

Part 2. In this part, we prove that { }2
56

23
4 , +

+=δ n
n CC  is the 

( )δ+ ,4 1012nK -difference system. So, we will check the difference as 

follows: 

( ) ( )∪ ∪23

1

23

1 ,1,,4,3,2,1 ,41,,,,,
+

=

+

= + ≤≤=
n

i

n

i ijijiiii jccDccccD  

where ,,1,5 ii cc =  

( ) ( ) { } { }∪ ∪23

1

23

1,2,1

2
35

2
35

,3546...,,4,22,
+

=

+

=
+≠ +≠

+−+==
n

i

n

iii
ni ni

nniccD  

( ) ( )∪ ∪23

1

23

1,3,2

2
35

2
35

256,
+

=

+

=
+≠ +≠

−+=
n

i

n

iii
ni ni

inccD  

{ } { },21,3...,,16,36 +−++= nnn  

( ) ( ) { } { }∪ ∪23

1

23

1,4,3

2
35

2
35

,3546...,,4,22,
+

=

+

=
+≠ +≠

+−+==
n

i

n

iii
ni ni

nniccD  

( ) ( )∪ ∪23

1

23

1,1,4

2
35

2
35

256,
+

=

+

=
+≠ +≠

−+=
n

i

n

iii
ni ni

inccD  

{ } { }.21,3...,,16,36 +−++= nnn  
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When ,2
35 += ni  then ( ) { }.56,35,56,354 ++++= nnnnCD i  

Then the list of difference set of 4-cycles covers every element              

of { ( )} { }56256 ++−∗
+ nnZ n ∪  exactly twice. Similarly, we compute 

( ) ( )∗∗
+

∗
+ 5656 nn CDCD ∪  as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ),,,, 13322132156
∗∗∗∗∗∗∗∗∗∗

+ = PPDPPDPPDPDPDPDCD n ∪∪∪∪∪  

( ) { } ( ) { },1,2,32,42...,,26,36 21 =++++= ∗∗ PDnnnnPD  

( ) { },22,12...,,5,43 ++=∗ nnPD  

( ) ( ) { },233,54, 21 +=++=∗∗ nnnDPPD  

( ) ( ) { },4689,43, 32 +=++=∗∗ nnnDPPD  

( ) ( ) { }.32,912, 13 =+=∗∗ nDPPD  

Relying on adjoined cycles ∗∗
+56nC  and ,56

∗
+nC  we find the same 

difference set by Corollary 3.1. Then ( ) ( )∗∗
+

∗
+ 5656 nn CDCD ∪  covers each 

element of ∗
+56nZ  exactly twice except { }2+n  four times. From the above 

discussion, we deduce that ( )δD  covers each element in ∗
+56nZ  four times 

and the middle difference { }56 +n  twice. 

This assures that { }2
56

23
4 , +

+=δ n
n CC  is ( )δ+ ,4 1012nK -difference 

system, n is odd. Therefore, { }2
16

23
4 , +

+=δ n
n CC  is starter set for the 

( )δ+ ,4 1012vKNCCS  when n is odd.  

Subcase 2. n is even. 

Suppose { }2
56

23
4 , +

+=δ n
n CC  is the starter set of 10124 +nK  such that the 

list of 4-cycles is: 
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( )∪ 23

1 ,4,3,2,14

2

,,,
+

=
≠

=
n

i iiii
ni

i ccccC  

( )∪ 23

1

2

.56,56,1012,
+

=
≠

−+++−+=
n

i
ni

ininini  

When ,2
ni =  then 





 ++−+−+= 256,21012,256,24

nnnnnnnC i  

whereas ∗
+56nC  and ∗∗

+56nC  are adjoined ( )56 +n -cycles such that 

( ),,, 32156
∗∗∗∗

+ = PPPC n  ( ),,, 32156
∗∗∗∗∗∗∗∗

+ = PPPC n  where { ≤|∗∗∗ 1, ii PP  

}3≤i  are paths as follows: 

[ ],54,22...,,46,3,56,21 ++++=∗ nnnnP  

[ ],43,33,532 +++=∗ nnnP  

[ ],912,710,68...,,39,99,49,893 +++++++=∗ nnnnnnnP  

[ ],58,810...,,66,712,56,8121 ++++++=∗∗ nnnnnnP  

[ ],69,79,592 +++=∗∗ nnnP  

[ ].1,32,44...,,73,13,63,233 ++++++=∗∗ nnnnnnP  

In similar way for the Subcase 1, one may easily verify that 

( ) ( ) ( )




 





=δ ∗∗

+
∗
+

+
= 5656

23
1 4 nn

n
i CVCVCVV i ∪∪∪  covers each element in 

∗
+1012nZ  exactly twice. Now, we are going to calculate the difference set of 

4-cycles as follows: 

( ) ( )∪ ∪23

1

23

1 ,1,,4,3,2,1

2 2

,41,,,,,
+

=

+

= +

≠ ≠

≤≤=
n

i

n

i ijijiiii
ni ni

jccDccccD  

where ,,1,5 ii cc =  
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( ) ( ) { } { }∪ ∪23

1

23

1,2,1

2 2

,46...,,4,22,
+

=

+

=
≠ ≠

−+==
n

i

n

iii
ni ni

nniccD  

( ) ( )∪ ∪23

1

23

1,3,2

2 2

256,
+

=

+

=
≠ ≠

−+=
n

i

n

iii
ni ni

inccD  

{ } { },551,3...,,16,36 +−++= nnn  

( ) ( ) { } { }∪ ∪23

1

23

1,4,3

2 2

,46...,,4,22,
+

=

+

=
≠ ≠

−+==
n

i

n

iii
ni ni

nniccD  

( ) ( )∪ ∪23

1

23

1,1,4

2 2

2562,
+

=

+

=
≠ ≠

−+=
n

i

n

iii
ni ni

iniccD  

{ } { }.551,3...,,16,36 +−++= nnn  

When ( ) { }.56,55,56,55,2 4 ++++== nnnnCDni i  

Then the list of difference set of 4-cycles covers each element                      

of { ( )} { }5656 +−∗
+ nnZ n ∪  exactly twice. Correspondingly, the list of 

difference set of ( )56 +n -cycles calculates as follows: 

( ) ( ) ( ) ( ) ( )∗∗∗∗∗∗
+ = 2132156 , PPDPDPDPDCD n ∪∪∪  

( ) ( ),,, 1332
∗∗∗∗ PPDPPD ∪∪  

( ) { } ( ) { },1,2,32,42...,,26,36 21 =++++= ∗∗ PDnnnnPD  

( ) { } ( ) ( ) { },53,54,,22,12...,,5,4 213 nnnDPPDnnPD =++=++= ∗∗∗  

( ) ( ) { } ( ) ( ) { }.32,912,,4689,43, 1332 =+=+=++= ∗∗∗∗ nDPPDnnnDPPD  

As clearly shown, in the previous equation, the vertices of 56 +n -cycles 

cover every element of ∗
+56nZ  exactly twice except { }n  four times. Thus,         
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we realize now that { }2
56

23
4 , +

+=δ n
n CC  is ( )δ+ ,4 1012nK -difference 

system, n is even. Then { }2
56

23
4 , +

+=δ n
n CC  is starter set for the 

( )δ+ ,4 1012vKNCCS  when n is even.  

Case 2. There exists a full cyclic ( )rmm ...,,1 -cycle system of 

( ).,4,4 212212 δ++ nn KNCCSK  

Proof. We also have two subcases: 

Subcase 1. n is even. 

When ,2=n  ,26=v  let { }2
6

2
7

6
4 ,, CCC=δ  be the starter set of 

( )δ,4 26KNCCS  as follows: 

( ) ( ) ( ),10,16,23,3,11,15,24,2,12,14,25,1 321 444 === CCC  

( ) ( ) ( ),20,7,19,6,8,18,21,5,9,17,22,4 654 444 === CCC  

( ) ( ),16,22,15,23,14,24,13,10,4,11,3,12,2,13 77 == ∗∗∗ CC  

( ) ( ).8,7,9,21,25,20,18,19,17,5,1,6 66 == ∗∗∗ CC  

It is straightforward to check that δ  is actually a starter set of 
( ).,4 26 δKNCCS  

When ,4≥n  suppose { }2
14

2
22

3
4 ,, −+=δ nn

n CCC  is the starter set of 

( )δ+ ,4 212nKNCCS  such that the list of 4-cycles is: 

( )∪ n

i iiii
ni

i ccccC
3

1 ,4,3,2,14

2
45

,,,
+≠

=
=  

( )∪ n

i
ni

ininini
3

1

2
45

,16,16,212,
+≠

=
−+++−+=  

when 2
45 += ni  let 
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.2
4516,2

45212,2
4516,2

45
4 





 ++++−++−++= nnnnnnnC i  

While we consider ∗
−14nC  and ∗∗

−14nC  that are adjoined ( )14 −n -cycles 

such that 

( ),24,2,34,12...,,4,16,3,6,2,1614 ++−−+=∗
− nnnnnnnC n  

( ).8,210,18,310...,,36,112,26,12,1614 nnnnnnnnnC n +−++−++=∗∗
−  

As well, we consider that ∗
+22nC  and ∗∗

+22nC  are adjoined ( )22 +n -

cycles such that 

∗
+22nC  

( ),9,19,19,29...,,210,28,110,18,12,1,22 nnnnnnnnnn +−+−+−+++=  

∗∗
+22nC  

( ).23,13,33,3...,,42,4,32,14,110,112,10 ++++++++= nnnnnnnnnnn  

Similarly, it will be following the same manner of the previous case to 
prove that the set δ  is the starter set of .4 212 +nK  We will divide the proof 

into two parts as follows: 

Part 1. In this part, we prove a near-four-factor. So, we need to calculate 

the vertices niccccCV iiii
n

i i 31,,4,3,2,1
3

1 4 ≤≤=







= ∪∪∪∪  such that 

,16,212, ,3,2,1 incincic iii ++=−+==  

.2
45,231,16,4

+≠+≤≤−+= niniinc i  

{ } { } ,2
1929...,,12,112,2

453...,,3,2,1 ,2,1 



−++=





 +−= nnnncnnc ii  

{ } ,2
61719...,,36,26,3 



 +−+++= nnnnc i  
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{ } .2
2713...,,16,6,4 



 −−+−= nnnnc i  

And when ,2
45 += ni  then ( ) .2

617,2
19,2

27,2
45

4 



 +−+= nnnnCV i  

At the same time, the vertex set of remaining cycles can be written as 
follows: 

( ) { } { },16...,,34,242...,,4,3,214 +++=∗
− nnnnCV n ∪  

( ) { } { },12...,,310,2108...,,26,1614 nnnnnnCV n ++++=∗∗
− ∪  

( ) { } { },110,210...,,38,28,1822,12,122 −−+++++=∗
+ nnnnnnnCV n ∪  

( ) { } { }.14,4...,,52,42,32110,10,11222 ++++++=∗∗
+ nnnnnnnnCV n ∪  

Simply we can note that ( )δV  covers { }∗
+212nZ  exactly twice. 

Part 2. In this part, we prove that { }2
22

2
14

3
4 ,, +−=δ nn

n CCC  is the 

( )δ+ ,4 212nK -difference system. So, we check the difference as follows: 

The list of difference set of all 4-cycles ( )







=∪
n

i iCD3
1 4  is determined as 

follows: 

( ) ( )∪ ∪n

i

n

i ijij jccDCD i
3

1

3

1 ,1,4 ,41,,
= = + ≤≤=  where ,,1,5 ii cc =  

( ) ( ) { } { }∪ ∪n

i

n

iii
ni ni

nniccD
3

1

3

1,2,1

2
45

2
45

,456...,,4,22,
+≠ +≠

= =
+−==  

( ) ( )∪ ∪n

i

n

iii
ni ni

inccD
3

1

3

1,3,2

2
45

2
45

216,
+≠ +≠

= =
−+=  

{ } { },31,3...,,16,36 −−++= nnn  
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( ) ( ) { } { }∪ ∪n

i

n

iii
ni ni

nniccD
3

1

3

1,4,3

2
45

2
45

,456...,,4,22,
+≠ +≠

= =
+−==  

( ) ( )∪ ∪n

i

n

iii
ni ni

inccD
3

1

3

1,1,4

2
45

2
45

216,
+≠ +≠

= =
−+=  

{ } { }.31,3...,,16,36 −−++= nnn  

Also, when ( ) { }.16,3,16,3,2
45

4 +−+−=+= nnnnCDni i  

Then the list of difference set of all 4-cycles ( ( ))nCD 3
4  covers each 

element of { ( )} { }164516 ++−∗
+ nnZ n ∪  precisely twice. Correspondingly, 

the list of difference set of remaining cycles { }∗∗
−

∗
−

∗∗
+

∗
+ 14142222 ,,, nnnn CCCC  

is computed as below: 

( ) ( ){ },24,2,34,12...,,4,16,3,6,2,1614 ++−−+=∗
− nnnnnnnDCD n  

( ) { } { }.1222,32...,,36,26,1614 −++−−−=∗∗
− nnnnnnCD n ∪  

Since ∗
−14nC  and ∗∗

−14nC  are adjoined cycles in ,4 212 +nK  ( ) =∗∗
−14nCD  

( ).14
∗
−nCD  

We also have: 

( ) {( ,28,110,18,12,1,2222 +−+++=∗
+ nnnnnDCD n  

)}nnnnn 9,19,19,29...,,210 +−+−  

{ } { }.451,2,3...,,42,32,22,6,2,12 +−−−+= nnnnnnn ∪  

Since ∗
+22nC  and ∗∗

+22nC  are adjoined cycles in ,4 212 +nK  ( ) =∗∗
+22nCD  

( ).22
∗
+nCD  
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Thus, each element in the multiset ∗
+16nZ  is covered by ( ) ∪∗

−14nCD  

( ) ( ) ( )∗∗
+

∗
+

∗∗
− 222214 nnn CDCDCD ∪∪  twice except { }45 +n  four times. In 

view of previous observation, we conclude that { }2
14

2
22

3
4 ,, −+=δ nn

n CCC  is 

( )δ+ ,4 212nK -difference system, n is even.  

Subcase 2. n is odd. 

Suppose { }2
14

2
22

3
4 ,, −+=δ nn

n CCC  is the starter set of cycles of 

( )δ+ ,4 212nKNCCS  such that the list of 4-cycles is: 

( )∪ n

i iiii
ni

i ccccC
3

1 ,4,3,2,14

2
15

,,,
+≠

=
=  

( )∪ n

i
ni

ininini
3

1

2
15

,16,16,212,
+≠

=
−+++−+=  

when ,2
15 += ni  let 






 ++++−++−++= 2

1516,2
1516,2

15212,2
15

4
nnnnnnnC i  

whereas that ∗
−14nC  and ∗∗

−14nC  are adjoined ( )14 −n -cycles such that 

( ),24,2,34,12...,,4,16,3,6,2,1614 ++−−+=∗
− nnnnnnnC n  

( ).8,210,18,310...,,36,112,26,12,1614 nnnnnnnnnC n +−++−++=∗∗
−  

Also, we consider that ∗
+22nC  and ∗∗

+22nC  are adjoined ( )22 +n -cycles 

such that ( ),, 2122
∗∗∗

+ = PPC n  ( ),, 2122
∗∗∗∗∗∗

+ = PPC n  where { ≤|∗∗∗ 1, ii PP  

}2≤i  are paths as follows: 

[ ],110,1,221 ++=∗ nnP  
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[ ],23,13,33,3...,,42,4,32,142 ++++++=∗ nnnnnnnnP  

[ ],12,112,101 ++=∗∗ nnnP  

[ ].9,19,19,29...,,210,28,110,182 nnnnnnnnP +−+−+−+=∗∗  

Obviously, as the Subcase 1, it can be found that ( )δV  covers each 

element of ∗
+212nZ  exactly twice and the list of difference set of all 4-cycles 

( ( ))nCD 3
4  covers each element of { }nZ n −∗

+16  precisely twice, whereas the 

difference set of ( )14 −n -cycles ( ( ) ( ))∗∗
−

∗
− 1414 nn CDCD ∪  contains elements 

{ } { }1222,32...,,36,26,16 −++−−− nnnnnn ∪  twice. Now, we calculate 

the difference set of ( )22 +n -cycles as follows: 

( ) ( ) ( ) ( ) ( ),,, 12212122
∗∗∗∗∗∗∗

+ = PPDPPDPDPDCD n ∪∪∪  

( ) { } ( ) { },1,2,3...,,42,32,22,2,12 21 −−−=+= ∗∗ nnnPDnnPD  

( ) ( ) { } ( ) ( ) { }.23,22,,614,110, 1221 nnnDPPDnnnDPPD =++==++= ∗∗∗∗  

Then all elements in the set { }nnnnn 6,12,2,22,32...,,3,2,1 +−−  

appear in ( )∗
+22nCD  exactly once except { }n  twice. Therefore, the multiset 

of ( ) ( ) ( ) ( )∗∗
+

∗
+

∗∗
−

∗
− 22221414 nnnn CDCDCDCD ∪∪∪  covers each element of 

{ }∗
+16nZ  exactly twice except { }n  four times. 

Hence, { }2
14

2
22

3
4 ,, −+=δ nn

n CCC  is ( )δ+ ,4 212nK -difference system,    

n is odd. Then { }2
14

2
22

3
4 ,, −+=δ nn

n CCC  is starter set of ( ).,4 212 δ+nKNCCS  
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