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Abstract

In this paper, we show that the solutions to the nonlinear perturbed
differential system

y =1t y)+ j:o 9(s, y(s), Tay(s))ds+ h(t, y(t), T2y(t)),

have boundedness, uniformly Lipschitz stability, and asymptotic
behavior by imposing conditions on the perturbed part

[ t‘O g(s, y(s), Tiy(s))ds, h(t, y(t), Toy(t)), and on the fundamental

Received: November 22, 2016; Accepted: January 20, 2017
2010 Mathematics Subject Classification: 34C11, 34D05, 34D 10, 34D20.
Keywords and phrases: h-stability, t,, -similarity, bounded, uniformly Lipschitz stability,

uniformly Lipschitz stability in variation, exponentially asymptotic stability, exponentially
asymptotic stability in variation.



1510 Dong Man Im and Y oon Hoe Goo
matrix of the unperturbed system y' = f(t, y) using the notion of
h-stability.

1. Introduction and Preliminaries

We consider the unperturbed nonlinear nonautonomous differential
system

X(t) = £t X(1), X(to) = %, (L)

and the perturbed differential system of (1.1) including an operator T such
that

y="f(t y)+ j; g(s, ¥(s), Tiy(s))ds + h(t, y(t), Toy(t)), ¥(to) = Yo, (1.2)

where f e C(R* xR", R"), g, he C(R* xR" xR", R"), R =0, ),
f(t,00=0, 9g(t, 00 =ht00)=0 ad T, T,:CR"R")—>
C(R*, R") are continuous operators and R" is an n-dimensional Euclidean
space. We always assume that the Jacobian matrix f, = of /ox exists and
is continuous on R* x R". The symbol |-| will be used to denote any

convenient vector normin R".

Let X(t, tg, Xg) denote the unique solution of (1.1) with X(tg, tg, Xp)
= Xy, existing on [tg, o). Then we can consider the associated variationa

systems around the zero solution of (1.1) and around X(t), respectively,

V(t) = fx(t, 0)v(t), Mto) = Vo (1.3)
and
Z(t) = fu(t, X(t, to, X)) 1), zto) = 2. (1.4)
The fundamental matrix ®@(t, tg, Xg) of (1.4) isgiven by

0
(t to, %) = 7, X(t. to, %),

and @(t, tg, 0) isthe fundamental matrix of (1.3).
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We give some of the main definitions that we need in the sequel [10].

Definition 1.1. The system (1.1) (the zero solution x =0 of (1.1)) is
caled (S) stable if for any ¢ > 0 and tg > O, there exists & = 8(tg, €) > 0
suchthat if | xg| < 8, then | x(t)| < & foral t > tg > 0,

(US) uniformly stableif the § in (S) isindependent of the time t),

(ULS) uniformly Lipschitz stable if there exist M > 0 and & > 0 such
that | x(t)| < M| xg | whenever | xg| <8 and t >ty > 0,

(ULSV) uniformly Lipschitz stable in variation if there exist M > 0 and
8 > 0 suchthat | ®(t, tg, Xg)| <M for [xg| <& and t >ty >0,

(AS) asymptotically stable if it is stable and if there exists & = 8(tg) > O
suchthat if | x| < 8, then | x(t)| > O ast — oo,

(EAS) exponentially asymptotically stable if there exist constants
K >0, ¢c>0, and 6 > 0 such that

| X(t)] < K| % |e ), o<t <t
provided that | Xg | < 8,

(EASV) exponentially asymptotically stable in variation if there exist
constants K > 0 and ¢ > 0 such that

| D(t, tg, %) | < Ke 0 o<ty <t
provided that | Xg | < .
Remark 1.2 [12]. The last definition impliesthat for | xg | < &
|X(t)| < K| % |e0), 0<tg<t.
We recall some notions of h-stability [21].

Definition 1.3. The system (1.1) (the zero solution x =0 of (1.1)) is
caled an h-system if there exist a constant ¢ > 1, and a positive continuous

functionh on R™ such that



1512 Dong Man Im and Y oon Hoe Goo
| X(t)] < o % [h(t)h(to) ™
for t >ty > 0 and | X | small enough (hereh(t)_1 = %)

Definition 1.4. The system (1.1) (the zero solution x = 0 of (1.1)) is
caled (hS) h-stable if there exists & > 0 such that (1.1) is an h-system for
| Xg| <& and hisbounded.

Let M denote the set of al nx n continuous matrices A(t) defined on
R* and N be the subset of M consisting of those nonsingular matrices
S(t) that are of class C* with the property that S(t) and S™%(t) are bounded.
The notion of t, -similarity in M was introduced by Conti [9].

Definition 1.5. A matrix At) e M is t,-similar to amatrix B(t) € M

if there existsan nx n matrix F(t) absolutely integrable over R™, i.e.,

l F(t)|dt <
0 | ( )| <
such that

S(t) + S(t)B(t) - A(t)S(t) = F(t) (1.5)
for some S(t) e V.

The nation of t -similarity is an equivalence relation in the set of all

nx n continuous matrices on R™, and it preserves some stability concepts
[9, 15].

Pinto [21, 22] introduced the notion of h-stability (hS) with the intention
of obtaining results about stability for a weakly stable system (at leadt,
weaker than those given exponential asymptotic stability) under some
perturbations. That is, Pinto extended the study of exponential asymptotic
stability to a variety of reasonable systems called h-systems. The new notion
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of uniformly Lipschitz stability (ULS) was introduced by Dannan and Elaydi
[10]. This notion of ULS lies somewhere between uniformly stability on one
side and the notions of asymptotic stability in variation of Brauer [4] and
uniformly stability in variation of Brauer and Strauss [3] on the other side.
An important feature of ULS is that for linear systems, the notion of
uniformly Lipschitz stability and that of uniformly stability are equivalent.
However, for nonlinear systems, the two naotions are quite distinct and Choi
and Ryu [7] and Choai et al. [8] investigated bounds of solutions for nonlinear
perturbed systems. Also, Goo [13] and Choi and Goo [5] studied the
boundedness of solutions for the perturbed differential systems. Goo [14] and
Goo et d. [6, 16, 17] investigated uniform Lipschity stability and asymptotic
property of perturbed nonlinear systems. Elaydi and Farran [11] introduced
the notion of exponential asymptotic stability (EAS) which is a stronger
notion than that of ULS. They investigated some analytic criteria for an
autonomous differential system and its perturbed systems to be EAS.
Pachpatte [19, 20] investigated the stability, boundedness, and the asymptotic
behavior of the solutions of perturbed nonlinear systems under some suitable
conditions on the perturbation term g and on the operator T.

In this paper, we investigate bounds, UL S, and asymptotic behavior for
solutions of the nonlinear differential systems further allowing more general
perturbations that were previously allowed using the notion of h-stability.

We give some related properties that we need in the sequel.
Lemma 1.6 [22]. Thelinear system
X = At)x, X(to) = X, (16)

where A(t) is an nxn continuous matrix, is an h-system (respectively,
h-stable) if and only if there exist ¢ >1 and a positive and continuous

(respectively bounded) function h defined on R* such that

| 4(t, to)] < ch(t)h(to) ™ (1.7)

for t >ty > 0, where ¢(t, tg) isafundamental matrix of (1.6).
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We need Alekseev formula to compare between the solutions of (1.1)
and the solutions of perturbed nonlinear system

y' = f(t y)+a(t, y), ¥(to) = Yo. (1.8)
where g e C(R™ x R", R") and g(t, 0) = 0. Let y(t) = y(t, tg, yg) denote
the solution of (1.8) passing through the point (tg, yg) in R* x R".

The following is a generalization to nonlinear system of the variation of
constants formula due to Alekseev [1].

Lemma 1.7 [2]. Let x and y be a solution of (1.1) and (1.8), respectively.
If yo € R", then for all t >ty such that x(t, tg, o) € R", y(t, tg, Yo)

e R",

Y T, ¥0) = X to, o)+ [ 000, S (S)als. Yis)ds

Theorem 1.8 [7]. If the zero solution of (1.1) is hS, then the zero solution
of (1.3) ishS

Theorem 19 [8]. Suppose that fy(t,0) is t,-similar to
f(t, X(t, tg, Xg)) for t >ty >0 and | Xg | < & for some constant & > 0. If
the solution v = 0 of (1.3) ishS, then the solution z = 0 of (1.4) ishS.

Lemma 1.10 (Bihari-type inequality). Let u, L € C(R*), we C((0, »))

and w(u) be nondecreasing in u. Suppose that, for some ¢ > 0,

ut)<c+ I: Ms)W(u(s))ds, t >ty > 0.
0
Then

u(t) < w—l[W(c) o : k(s)ds}, to<t<by
0
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where W(u) = I W(u) istheinverse of W(u) and

Uo W( s)’
t

b = sup{t >ty : W(c) + L A(s)ds e domW_l}.
0

Lemma 1.11 [5]. Let u, Aq, Ao, A3, Aa, A5, Ag € C(RT), we C((0, )

and w(u) be nondecreasingin u, u < w(u). Suppose that for some ¢ > 0,

u(t) < ¢ + Lto Aq(s)u(s)ds + L: Ap(S)W(U(s))ds
. j:o xs(s)j:) %a(x)u(t) chds

. j:o x5(s)j:) rg(t)W(u(x))deds, 0 < tg < t.
Then

u(t) < W_l[W(c) ; j:o (kl(s) £ (s) + xs(s)jtz ha(t)

S
+7u5(S)I XG(T)drjds},
to
where tg <t < by, W, W are the same functions as in Lemma 1.10, and

by = sup{t >t 1 W(o) + :O (kl(s) +1() + Aa(s) :) ha(7)

+ 7‘5(5),[: ke(r)dr) ds e domW_l}.
0

Lemma1.12[6]. Letu, Ay, Ao, A3, Ags Ag, Ag, A7, Ag, Ag, Mg €
C(R™), we C((0, »)), and w(u) be nondecreasing in u, u < w(u). Suppose

that for some ¢ >0 and 0 <ty <'t,
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t t
ut) < c+ j a(u(s)ds + j . %ea(S)W(U(S))ds
[ @) (rauw) + 250 gt utr)e

T t S
#27(0) | . kg(r)vv(u(r))drjdrds + jto ro(s) | . Jao(®)w(u(e) drs.

Then

u(t) sW‘l[W(c) n Jt:[kl(s) +2.2(8)+25(5) | :) (k4(r) +5(7) | ;xe(r)dr
+39(0)[ t; xg(r)drjdr +9(s) [ :) Klo(r)drj ds},

wheretg <t <b, W, W are the same functions asin Lemma 1.10, and

b = sup{t > 15 :W(c) + J.: (xl(s) + Ao(S)
0
+a(9) [ tz [M(r) +5(0) [ t; () +27(0) [ ; kg(r)drjdr

S
+ 7\.9(3)‘[ klo(r)drj ds e domW‘l}.
to
Corollary 1.13. Let u, 7\.1, 7\.2, 7\.3, )\,4, 7\.5, 7\.6, 7\.7, 7\.8, 7\.9 € C(R+), We

C((0, ©)), and w(u) be nondecreasing in u, u<w(u). Suppose that for
somec>0and 0<ty<t,

t t S
ut) < c+ |  Ja(OWU(s)ds + | REC | . (k;g(r)u(r)
+94(x) j ; Js(H)u(r)dr + 1g(7) j t; M(r)w(u(r))drjdrds

o :O () tz o (T)W(u(x)) dedls
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Then

u(t) < W_l[w(c) T j (xl(s) +00(9) j t: [xg(r) +4(0) j t; Jos(r ) dr

t
to
T S
T ke(t)J M(r)dr)dx 1 2g(s) j kg(‘t)dtj ds}
to to
where tg <t < by, W, W are the same functions as in Lemma 1.10, and

b = sup{t >ty :W(c)+ Lt (kl(s)
0
+3,(9) j tz [7»3(1) +3(7) j t; A(r)dr + () j ; M(r)dr)dr

+ kg(s)jts Xg('t)d‘c) dse domW‘l}.
0

2. Main Results

In this section, we investigate boundedness, ULS, and asymptotic
behavior for solutions of perturbed functional differential systems using the
notion of t., -similarity.

To obtain these properties, the following assumptions are needed:

(H1) fy(t, 0) is t,-similar to fy(t, X(t, tg, X)) for t >ty >0 and
| Xo | < & for some constant & > 0.

(H2) The solution x = 0 of (1.1) is hSwith the increasing function h.
(H3) W(u) be nondecreasing in u such that u < w(u) and %w(u) <

w(%) for some v > 0.

(H4) The solution x = 0 of (2.1) isULSV.
(H5) The solution x = 0 of (2.1) iSEASV.
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Lemma 2.1. Let u, 7\,1, kz, 7\,3, X4, 7‘5' }“6' 7\,7, ks, kg, 7\,10 S C(R+),
w e C((0, «)), and w(u) be nondecreasing in u, u < w(u). Suppose that

forsomec>0and 0<ty <t,

t t S
u) <c+ | o aSus)ds + | 2 | . (kg(r)u(r) + Ag(x)W(u(x))
+ (1) j t; hg()U(r)dr + A-(7) j t; xg(r)vv(u(r))dr)drds

) " () [/ Aao()w(u(o))eas 2.1)
% 9 % 10 - .
Then, we have
] t S T
u(t) <W [W(c)+ J.to[kl(s)+k2(s) Ito(kg(r)+k4(r)+k5(r) Loks(r)dr
T S
(%) j . Xg(r)erdr + xg(s)jto klo(r)dr)ds}, 2.2)
wheretg <t <y, W, W1 are the same functions asin Lemma 1.10, and

by = sup{t >t 1 W(o) + : (kl(s) +(9) [ ts (xg(r) +a(7)
0 0
e j t; Ag(r)dr + A7 (2) j ; xg(r)drjdr

- kg(s)_[t: klo(r)dr) ds e domW‘l}.

Proof. Define a function v(t) by the right member of (2.1) and let us

differentiate v(t). Then, we have

VO =0+ 7o) j;[xs(s>u<s)+ a(9Wu(s)
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; xs(s)jtz MU + A7(s) [ tz lg(r)w(u(r))dtj ds

2(0), Taol9wiuts))ds
Thisreducesto

t S
V(0 2110+ 220, (158 1a(9) 4 25051 relo)ck

#2709 tz Xg(r)dtjds ; kg(t)Jt: 3o(S) ds} Wv(t)),

t >y, since v(t) is nondecreasing, u < w(u), and u(t) < v(t). Now, by

integrating the above inequality on [tg, t] and using v(tg) = ¢, we obtain

YORCSH| ; (xl(s) + kz(S)JtZ(kg(t) +2q(8) + s(1) | t; o(r)dr

+9(0) [ t; kg(r)erdT ; xg(s)jt: klo(r)drj wWv(s)ds.  (23)

It follows from Lemma 1.10 that (2.3) yields the estimate (2.2). O

Theorem 22. Let a, b, c, d, k, p, ge C(R"). Suppose that (H1),
(H2), (H3), and g in (1.2) satisfy

[9(t, v, Tay) | < a®)] y(t) | + bYW y(t) ) +[ Toy(t)], (24)
Tay(®)] < 50O [ K| y(s)ds+ )] plo)w( yis))ds, (29
0 0

and

[ h(t, y(t), T2y(t))|

< e YO [+ Ty, [ Toyt) | < f:o asw y(s))ds,  (26)
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where a, b, c, d, k, p, g e Ll(R+), w e C((0, ©)), Ty, T, are continuous
operators. Then, any solution y(t) = y(t, tg, Yg) of (1.2) is bounded on
[tg, o) and it satisfies

FOIE h(t)w—l[W(c) + o t [c(s) +f (a(r) +b(z) + b(r) | ; k(r)dr

S
fo 0
T T
+ d(r)I p(r)dr)dr + c(s)_[ q(r)drjds},
to to
where tg <t <by, W, W1 are the same functions asin Lemma 1.10, and

by = sup{t >t 1 W(0) + oz t [c(s) | t: (a(r) +b(x) + b(o) [ ; K(r)dr

to
+ d(r)Jt:) p(r)drjdr + c(s)It; q(r)drjds € domW‘l}.

Proof. Let X(t) = X(t, tg, Yg) and y(t) = y(t, tg, Yo) be solutions of
(1.1) and (1.2), respectively. By Theorem 1.8, since the solution x = 0 of
(1.2) is hS, the solution v =0 of (1.3) is hS. Therefore, from (H1), by
Theorem 1.9, the solution z = 0 of (1.4) is hS. Using the nonlinear variation
of constants formula due to Lemma 1.7, together with (2.4), (2.5), and (2.6),
we have

t S
310+ [ o s )] ] ] o yto) Tte o
16, ¥, Toy) s
4ot (¢
<alyolhontor ™ [ sy a0 bl y(o)
5000 ) e+ i) (e () e

9| ¥(9) + oo yio) Do o
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It follows from (H2) and (H3) that

Y01 = ] yo ) htto) ™+ [ eohtt){et9) Y]
| y(0)| | y(0)| N I(]
. [a(r) et )w( 48 j+b(r)jto )L
r | ()] Y@ 4
- d(r)Lo p(r) @) jdrjd +c(s)I q() 6 j jds

Define u(t) = | y(t)|| h(t)[ L. Then, by Lemma 2.1, we have

FOIE h(t)W_l[W(c) ey j (c(s) J. [a(r) +b(x)+ b(x) [ t; k(r)dr

; d(r)Jt:) p(r)drjdr L c(s) j t; q(r)dr) ds]

where ¢ = ¢ yo |h(tg) L. The above estimation yields the desired result
since the function h is bounded. Thus, the proof is complete. O

Remark 2.3. Letting c(t) = d(t) =0 in Theorem 2.2, we obtain the
same result as that of Theorem 3.1in[13].

Theorem 2.4. Let a, b, ¢, d, k, p, g € C(R™). Suppose that (H1), (H2),
(H3), and gin (1.2) satisfy

I:OI g(s, ¥(s), hy(s))[ds < at)] y(t)[ + bOW( y(t) ) +[Ty(®)[, 27

To0) < B0, kW y(s) s+ ) Pl ySlds @8

and

| h(t, y(t), Toy(1) | < (ct)w(] y(©) ) +] Toy(®)]), [ Toy(t) |
<), a(9)] v9)lds 29)
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where a, b, ¢, d, k, p, g e LYR"), we C((0, )), T;, T, are continuous
operators. Then, any solution y(t) = y(t, tg, Yg) of (1.2) is bounded on

[tg, o) and it satisfies

| y(t)| < h(t)W_l{W(c) + 6 j [a(s) +b(s) + c(s)

S S
+ b(s) j K(t)dkt + d(s)j (p(t) + q(r))dr)ds},
to to
where tg <t <by, W, W are the same functions as in Lemma 1.10, and

by = sup{t >ty : W(c) + CzI (a(s) +b(s) + c(s)

+(s)[ tz K(x)dt + d(s) | t: (p(z) + q(r))drj ds e domw—l}.

Proof. Let X(t) = x(t, tg, Yg) and y(t) = y(t, tg, Yo) be solutions of
(1.1) and (1.2), respectively. By the same argument as in the proof in
Theorem 2.2, the solution z=0 of (1.4) is hS. Applying the nonlinear
variation of constants formula due to Lemma 1.7, together with (2.7), (2.8),
and (2.9), we have

| y(t)| < o yo [h(t)h(te) ™t

[ o) a9 (9] + (69) et (9]

509 (e y(6) D + (9) (30 + )] yto) [k s
Using (H2) and (H3), we obtain

| y(®)| < & o |h(t)h(ty)” +L czh(t)(a(s)| zg ;| +(b(s) + c(S))\A{l zgl)

+b(9) jto k(r)w(l %(z) )dr +d(s) jto( o(1)+ (). zg ;' dr) ds
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Let u(t) =| y(t)]] h(t)|_1. Then, by Lemma1.11, we have

FOIE h(t)W_l{W(c) s j :o(a(s) 1 b(s) + ¢(s) + b(s) jt osk(r)dr

+d(s) jt Os( o(t) + q(t)) dr)ds},

where ¢ = ¢;| Yo |h(tg) ™. Thus, any solution y(t) = y(t, to, yg) of (1.2) is

bounded on [tg, «), and so the proof is complete. O

Remark 25. Letting c(t) = d(t) =0 in Theorem 2.4, we obtain the

same result as that of Theorem 3.7 in [13].

Theorem 2.6. Suppose that (H3), (H4), and that the perturbing termgin
(1.2) satisfy

9t y, Tay) | < a®)] y(®) [+ b)w(] y(t)]) + [Ty ()], (210)
T =B f, K9 Slds+ pl0) [, alshul v Des (21D

and

[ h(t, y(t), T2y(1) | < c)w(| y(t) ) + [Ty, [ T2y(t) [ < d(®)] Y1), (2.12)

where a, b, c d, k, p,geC(R"), ab,cd Kk pge Ll(R+), W e

C((0, »)), T4, T, are continuous operators, and

M (to) = W_l{W(M )+ M j t:(c(s) +d(s)+ jt :(a(r) +b(t) + b(x) jt : k(r)dr
+ p(r)jt; a(r) drj dr} dS} , (2.13)

where M (tp) < o and by = «. Then the zero solution of (1.2) isULS.
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Proof. Let x(t) = x(t, tg, Yg) and y(t) = y(t, tg, Yo) be solutions of
(1.1) and (1.2), respectively. By the assumption (H4), it is ULS ([10],
Theorem 3.3). Using (H3), together with (2.10), (2.11), and (2.12), we have

01 Mo+ [ Mol (e et oo )

| y(s)] | y(s)]
+c(s)w( Yol )+d(s) Yol jds

Let u(t) =| y(t)|| o |_1. Now an application of Lemma 1.12 yields

1 t s
| y(®)] <] Yo W [W(M JeM| (c(s) +a(s)+ | (a(r) +b(x)
0 0

n b(r)J.t:k(r)dr + p(r)ItZ q(r)drjdrj ds}.

Thus, by (2.13), we have |y(t)| < M(tg)| yg| for some M(tg) >0

whenever | yg | < 8. This completes the proof. O

Remark 2.7. Letting c(t) = d(t) = p(t) = 0 in Theorem 2.6, we obtain

the same result as that of Theorem 3.1in [16].

Theorem 2.8. Suppose that (H3), (H4), and that the perturbing termgin
(1.2) satisfy

J (5. ¥(5), Tuy(S) s = )| o) |+ Bl YO+ Toy() ], (2.0

Ty < b0 kS| S lds+ A0 plshul vo)es, (219

and
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| h(t, y(t), Toy(t))]
<o) y©) |+ Toy®) ], | Toy(®)] < d(t)f; as)w( y(s)|)ds,  (2.16)

where a, b, c,d, k, pgeC(R"), ab,cd Kk pge Ll(R+), W e

C((0, )), Ty, T, are continuous operators, and

M (ty) = W_l[W(M )+ M Jt:(a(s) 1 b(s) + ¢(s) + b(s) jt :k(t)dr

+d(s) t: (p(x) + (1)) dr) ds}, (2.17)

where M (tg) < o0 and by = . Then the zero solution of (1.2) isULS.

Proof. Let X(t) = x(t, tg, Yg) and y(t) = y(t, tg, Yo) be solutions of
(1.2) and (1.2), respectively. By the assumption (H4), it is ULS. Applying
(H3), together with (2.14), (2.15), and (2.16), we have

|y(t)|<M|y0|+j M|y0|((a(s)+c(s))|Y()|+b( )M{lly(j)lljj

+ Lto M| yo |(b(s)jt: k(r)%dT

-ds)”(pto) + q(r))m{%j dr) ds

Defining u(t) = | y(t)|| yo | ™, then it follows from Lemma 1.11 that

Ly <] yo |W_1[W(M )+ M j; (a(s) +b(s) + o(9) + b(s) | Osk(r)dt

; d(s)jt:( o(7) + (1)) drj ds]
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Hence, by (2.17), we have |y(t)| < M(tp)|yg| for some M(tp) >0

whenever | yg | < 8. Thus, the proof is complete. O

Remark 2.9. Letting c(t) = d(t) = q(t) = 0O in Theorem 2.8, we obtain
the same result as that of Theorem 3.3 in [16].

Theorem 2.10. Suppose that (H3), (H5), and that the perturbing term
g(t, y, Tyy) satisfy

| g(t, y(t), Ty()) | < & “(a(t)] y(t)| + b(t)w( y(t)[) + | Ty () ), (2.18)

Tt < o), KOl ySds+my [, pewlyohes (219

and

| h(t, y(t), Toy(t))]

< (e dOW( YO ) + | T2y(t) ), | T2y(0)| < Lto e “%q(s)| y(s)|ds, (2.20)
where o >0, ab,c d k,mp, g weCR"), abcdkmp,q
e LYRY). If

M(to) = W_l{w(c) M| t:e“s(d(s) +f :(a(r) +b(x) + o)
+ C(T)-Lo k(r)dr + m(r)jto p(r)dr)dr) ds}, (2.21)

where M(tg) <o, by =0, c=]yy |Me°‘t0, W and W1 are the same
functions as in Lemma 1.10, then all solutions of (1.2) approach zero as
t > oo

Proof. Let X(t) = X(t, tg, Yg) and y(t) = y(t, tg, Yo) be solutions of

(1.1) and (1.2), respectively. Using (H5), it is EAS by Remark 1.2. Therefore,
by view of Lemma 1.7, together with (2.18), (2.19), and (2.20), we have
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| y(t)| < M| yp et

[ meet9] [ el o) y0o) + bl o))
0

to

o) [ e o+ ) [ e yte) o

reesdu] ) + [ e (o) (o) s
By (H3), it follows that

Y01 < M) yo &0+ [ Me“*(‘-S)(d(s)wq ¥(s)[e™)
] 0 oo ol s e o)

o) [ Ky e+ o) pte () e [ i,
Let u(t) = | y(t)|e*. Then, by Corollary 1.13 and (2.21), we obtain
ly(t)] < e‘o‘tW_l{W(c) Y j : e“s(d(s) + j SEa(r) +b(t) + g(7)
0 to
e j . k(r)dr + m(r)jto p(r)dr)dr) ds} < ce M (to),

where t >ty and c = M| yy |e°‘t0. Hence, al solutions of (1.2) approach
zeroas t — oo, and so the theorem is complete. O

Remark 2.11. Letting c(t) = d(t) = g(t) = 0 in Theorem 2.10, we obtain
the same result as that of Theorem 3.2 in [17].

Theorem 2.12. Suppose that (H3), (H5), and that the perturbed term
g(t, y, Tyy) satisfy
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| :OI o(s, ¥(9), Tuy(9))|ds < & (a(t)| y(t) |+ bt)w( Y(O) )+ | Tay(1)]). (2.22)

and
Ty < b0, KW y(s)hds+df ol ys)lcs (229
| h(t, y(t), T2y(1)|
< e‘“t(d(t) | :0 o(s)| y(s)[ds + | Toy(t) Ij, [ T2y(®)| < at)w(] y®©)), (224)
where o > 0, a, b, ¢, d, k, p,q, we C(R"), a b, c, d, k, p,qe L(R"). If

M (ty) = W_l[w(c) M j :(a(s) 1 b(s) + g(s) + b(s) jt :k(r)dr

+d(s) jt OS(C(T) . p(r))drj ds} (2.25)

where by =, M(tg) <, ¢c=M|yg|e*®, Wand W™ are the same

functions as in Lemma 1.10, then all solutions of (1.2) approach zero as
t > oo

Proof. Let X(t) = X(t, tg, Yg) and y(t) = y(t, tg, Yo) be solutions of

(12.1) and (1.2), respectively. Using (H5), it is EAS. Therefore, by Lemma
1.7, together with (2.22), (2.23), and (2.24), we have

YO <Ml yole )+ [0 Me“*“—S)[e—“(a(sn Y(S)| +bls)w( y(s))
+b(9) [ (el Y(2) o

A9 (e(6) + ple))] (5 |k + 9w y(5) ) Jos
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By (H3), we obtain

| y(t)| < M| yg e *(-0) 4 I:O Me““(a(s)| y(s)|e™®
= (0(5) + ()Wl Y(5)[€°%) + b(9) [ ()l () e )k

+d(s) j :) () + p(v))| y(x) |e°“drj ds

Define u(t) = | y(t)|e°‘t. Then, an application of Lemma 1.11 and (2.25)
yields

t
|y(t)| < e‘o‘tW‘l{W(c) + MJ.t (a(s) +b(s) + q(s)
0

; b(s)LZ K(r)de+ d(s) [ tz (c(t) + p(r))dr) ds} < e M (ty),

where t >ty and c = M|y, |e°‘t0. Hence, all solutions of (1.2) approach

zeroas t — oco. This completes the proof. O
Remark 2.13. Letting d(t) = g(t) = 0 in Theorem 2.12, we obtain the
same result as that of Theorem 3.4in [17].
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