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Abstract 

In this paper, we show that the solutions to the nonlinear perturbed 
differential system 

( ) ( ) ( )( ) ( ) ( )( )∫ ++=′
t

t
tyTtythdssyTsysgytfy

0
,,,,,, 21  

have boundedness, uniformly Lipschitz stability, and asymptotic 
behavior by imposing conditions on the perturbed part 

( ) ( )( ) ( ) ( )( )∫
t
t

tyTtythdssyTsysg
0

21 ,,,,,,  and on the fundamental 
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matrix of the unperturbed system ( )ytfy ,=′  using the notion of     

h-stability. 

1. Introduction and Preliminaries 

We consider the unperturbed nonlinear nonautonomous differential 
system 

( ) ( )( ) ( ) ,,, 00 xtxtxtftx ==′  (1.1) 

and the perturbed differential system of (1.1) including an operator T such 
that 

( ) ( ) ( )( ) ( ) ( )( ) ( )∫ =++=′
t

t
ytytyTtythdssyTsysgytfy

0
,,,,,,, 0021  (1.2) 

where ( ),, nnCf RRR ×∈ +  ( ),,, nnnChg RRRR ××∈ +  [ ),,0 ∞=+R  

( ) ,00, =tf  ( ) ( ) ,00,0,0,0, == thtg  and ( ) →+ nCTT RR ,:, 21  

( )nC RR ,+  are continuous operators and nR  is an n-dimensional Euclidean 

space. We always assume that the Jacobian matrix xffx ∂∂=  exists and                

is continuous on .nRR ×+  The symbol ⋅  will be used to denote any 

convenient vector norm in .nR  

Let ( )00,, xttx  denote the unique solution of (1.1) with ( )000 ,, xttx  

,0x=  existing on [ ).,0 ∞t  Then we can consider the associated variational 

systems around the zero solution of (1.1) and around ( ),tx  respectively, 

( ) ( ) ( ) ( ) 00,0, vtvtvtftv x ==′  (1.3) 

and 
( ) ( )( ) ( ) ( ) .,,,, 0000 ztztzxttxtftz x ==′  (1.4) 

The fundamental matrix ( )00,, xttΦ  of (1.4) is given by 

( ) ( ),,,,, 00
0

00 xttxxxtt
∂
∂=Φ  

and ( )0,, 0ttΦ  is the fundamental matrix of (1.3). 
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We give some of the main definitions that we need in the sequel [10]. 

Definition 1.1. The system (1.1) (the zero solution 0=x  of (1.1)) is 
called (S) stable if for any 0>ε  and ,00 ≥t  there exists ( ) 0,0 >εδ=δ t  

such that if ,0 δ<x  then ( ) ε<tx  for all ,00 ≥≥ tt  

(US) uniformly stable if the δ in (S) is independent of the time ,0t  

(ULS) uniformly Lipschitz stable if there exist 0>M  and 0>δ  such 
that ( ) 0xMtx ≤  whenever δ≤0x  and ,00 ≥≥ tt  

(ULSV) uniformly Lipschitz stable in variation if there exist 0>M  and 
0>δ  such that ( ) Mxtt ≤Φ 00,,  for δ≤0x  and ,00 ≥≥ tt  

(AS) asymptotically stable if it is stable and if there exists ( ) 00 >δ=δ t  

such that if ,0 δ<x  then ( ) 0→tx  as ,∞→t  

(EAS) exponentially asymptotically stable if there exist constants 
,0>K  ,0>c  and 0>δ  such that 

( ) ( ) ttexKtx ttc ≤≤≤ −−
00 0,0  

provided that ,0 δ<x  

(EASV) exponentially asymptotically stable in variation if there exist 
constants 0>K  and 0>c  such that 

( ) ( ) ttKextt ttc ≤≤≤Φ −−
000 0,,, 0  

provided that .0 ∞<x  

Remark 1.2 [12]. The last definition implies that for δ≤0x  

( ) ( ) .0, 00 0 ttexKtx ttc ≤≤≤ −−  

We recall some notions of h-stability [21]. 

Definition 1.3. The system (1.1) (the zero solution 0=x  of (1.1)) is 
called an h-system if there exist a constant ,1≥c  and a positive continuous 

function h on +R  such that 
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( ) ( ) ( ) 1
00
−≤ ththxctx  

for 00 ≥≥ tt  and 0x  small enough ( ) ( ) .1here 1 ⎟
⎠
⎞⎜

⎝
⎛ =−

thth  

Definition 1.4. The system (1.1) (the zero solution 0=x  of (1.1)) is 
called (hS) h-stable if there exists 0>δ  such that (1.1) is an h-system for 

δ≤0x  and h is bounded. 

Let M  denote the set of all nn ×  continuous matrices ( )tA  defined on 
+R  and N  be the subset of M  consisting of those nonsingular matrices 

( )tS  that are of class 1C  with the property that ( )tS  and ( )tS 1−  are bounded. 

The notion of ∞t -similarity in M  was introduced by Conti [9]. 

Definition 1.5. A matrix ( ) M∈tA  is ∞t -similar to a matrix ( ) M∈tB  

if there exists an nn ×  matrix ( )tF  absolutely integrable over ,+R  i.e., 

( )∫
∞

∞<
0

dttF  

such that 

( ) ( ) ( ) ( ) ( ) ( )tFtStAtBtStS =−+  (1.5) 

for some ( ) .N∈tS  

The notion of ∞t -similarity is an equivalence relation in the set of all 

nn ×  continuous matrices on ,+R  and it preserves some stability concepts 

[9, 15]. 

Pinto [21, 22] introduced the notion of h-stability (hS) with the intention 
of obtaining results about stability for a weakly stable system (at least, 
weaker than those given exponential asymptotic stability) under some 
perturbations. That is, Pinto extended the study of exponential asymptotic 
stability to a variety of reasonable systems called h-systems. The new notion 
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of uniformly Lipschitz stability (ULS) was introduced by Dannan and Elaydi 
[10]. This notion of ULS lies somewhere between uniformly stability on one 
side and the notions of asymptotic stability in variation of Brauer [4] and 
uniformly stability in variation of Brauer and Strauss [3] on the other side. 
An important feature of ULS is that for linear systems, the notion of 
uniformly Lipschitz stability and that of uniformly stability are equivalent. 
However, for nonlinear systems, the two notions are quite distinct and Choi 
and Ryu [7] and Choi et al. [8] investigated bounds of solutions for nonlinear 
perturbed systems. Also, Goo [13] and Choi and Goo [5] studied the 
boundedness of solutions for the perturbed differential systems. Goo [14] and 
Goo et al. [6, 16, 17] investigated uniform Lipschity stability and asymptotic 
property of perturbed nonlinear systems. Elaydi and Farran [11] introduced 
the notion of exponential asymptotic stability (EAS) which is a stronger 
notion than that of ULS. They investigated some analytic criteria for an 
autonomous differential system and its perturbed systems to be EAS. 
Pachpatte [19, 20] investigated the stability, boundedness, and the asymptotic 
behavior of the solutions of perturbed nonlinear systems under some suitable 
conditions on the perturbation term g and on the operator T. 

In this paper, we investigate bounds, ULS, and asymptotic behavior for 
solutions of the nonlinear differential systems further allowing more general 
perturbations that were previously allowed using the notion of h-stability. 

We give some related properties that we need in the sequel. 

Lemma 1.6 [22]. The linear system 

( ) ( ) ,, 00 xtxxtAx ==′  (1.6) 

where ( )tA  is an nn ×  continuous matrix, is an h-system (respectively,          

h-stable) if and only if there exist 1≥c  and a positive and continuous 

(respectively bounded) function h defined on +R  such that 

( ) ( ) ( ) 1
00, −≤φ thtchtt  (1.7) 

for ,00 ≥≥ tt  where ( )0, ttφ  is a fundamental matrix of (1.6). 
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We need Alekseev formula to compare between the solutions of (1.1) 
and the solutions of perturbed nonlinear system 

( ) ( ) ( ) ,,,, 00 ytyytgytfy =+=′  (1.8) 

where ( )nnCg RRR ,×∈ +  and ( ) .00, =tg  Let ( ) ( )00,, yttyty =  denote 

the solution of (1.8) passing through the point ( )00, yt  in .nRR ×+  

The following is a generalization to nonlinear system of the variation of 
constants formula due to Alekseev [1]. 

Lemma 1.7 [2]. Let x and y be a solution of (1.1) and (1.8), respectively. 

If ,0
ny R∈  then for all 0tt ≥  such that ( ) ,,, 00

nyttx R∈  ( )00,, ytty  

,nR∈  

( ) ( ) ( )( ) ( )( )∫ Φ+=
t

t
dssysgsystyttxytty

0
.,,,,,,, 0000  

Theorem 1.8 [7]. If the zero solution of (1.1) is hS, then the zero solution 
of (1.3) is hS. 

Theorem 1.9 [8]. Suppose that ( )0,tf x  is ∞t -similar to 

( )( )00,,, xttxtf x  for 00 ≥≥ tt  and δ≤0x  for some constant .0>δ  If 

the solution 0=v  of (1.3) is hS, then the solution 0=z  of (1.4) is hS. 

Lemma 1.10 (Bihari-type inequality). Let ( ),, +∈λ RCu  ( )( )∞∈ ,0Cw  

and ( )uw  be nondecreasing in u. Suppose that, for some ,0>c  

( ) ( ) ( )( )∫ ≥≥λ+≤
t

t
ttdssuwsctu

0
.0, 0  

Then 

( ) ( ) ( ) ,, 10
1

0
bttdsscWWtu

t

t
<≤⎥⎦

⎤
⎢⎣
⎡ λ+≤ ∫−  
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where ( ) ( ) ( )∫ −=
u
u

uWsw
dsuW

0

1,  is the inverse of ( )uW  and 

( ) ( ) .dom:sup
0

1
01

⎭
⎬
⎫

⎩
⎨
⎧ ∈λ+≥= ∫ −t

t
WdsscWttb  

Lemma 1.11 [5]. Let ( ) ( )( )∞∈∈λλλλλλ + ,0,,,,,,, 654321 CwCu R  

and ( )uw  be nondecreasing in ( )., uwuu ≤  Suppose that for some ,0>c  

( ) ( ) ( ) ( ) ( )( )∫ ∫ λ+λ+≤
t

t

t

t
dssuwsdssusctu

0 0
21  

( ) ( ) ( )∫ ∫ τττλλ+
t

t

s

t
dsdus

0 0
43  

( ) ( ) ( )( )∫ ∫ ≤≤τττλλ+
t

t

s

t
ttdsduws

0 0
.0, 065  

Then 

( ) ( ) ( ) ( ) ( ) ( )⎢⎣
⎡

⎜
⎝
⎛ ττλλ+λ+λ+≤ ∫ ∫− t

t

s

t
dssscWWtu

0 0
4321

1  

( ) ( ) ,
0

65 ⎥⎦
⎤

⎟
⎠
⎞ττλλ+ ∫ dsds

s

t
 

where 1
10 ,, −<≤ WWbtt  are the same functions as in Lemma 1.10, and 

( ) ( ) ( ) ( ) ( )
⎩
⎨
⎧

⎜
⎝
⎛ ττλλ+λ+λ+≥= ∫ ∫

t

t

s

t
dssscWttb

0 0
432101 :sup  

( ) ( ) .dom 1
65

0 ⎭
⎬
⎫∈⎟

⎠
⎞ττλλ+ −∫ Wdsds

s

t
 

Lemma 1.12 [6]. Let u, ,1λ  ,2λ  ,3λ  ,4λ  ,5λ  ,6λ  ,7λ  ,8λ  ,9λ  ∈λ10  

( ) ( )( ),,0, ∞∈+ CwC R  and ( )uw  be nondecreasing in u, ( ).uwu ≤  Suppose 

that for some 0>c  and ,0 0 tt ≤≤  
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( ) ( ) ( ) ( ) ( )( )∫ ∫ λ+λ+≤
t

t

t

t
dssuwsdssusctu

0 0
21  

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫⎜
⎝
⎛ λτλ+ττλλ+

τt

t

s

t t
drrurus

0 0 0
6543  

( ) ( ) ( )( ) ( ) ( ) ( )( )∫ ∫∫ τττλλ+τ⎟
⎠
⎞λτλ+

τ t

t

s

tt
dsduwsdsddrruwr

0 00
.10987  

Then 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⎢⎣
⎡

⎜
⎝
⎛

⎜
⎝
⎛ λτλ+τλλ+λ+λ+≤ ∫ ∫ ∫

τ− t

t

s

t t
drrssscWWtu

0 0 0
654321

1  

( ) ( ) ( ) ( ) ,
00

10987 ⎥⎦
⎤

⎟
⎠
⎞ττλλ+τ⎟

⎠
⎞λτλ+ ∫∫

τ
dsdsddrr

s

tt
 

where 1
10 ,, −<≤ WWbtt  are the same functions as in Lemma 1.10, and 

( ) ( ) ( )
⎩
⎨
⎧

⎜⎜
⎝

⎛
λ+λ+≥= ∫

t

t
sscWttb

0
2101 :sup  

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ τ⎟
⎠
⎞

⎜
⎝
⎛ λτλ+λτλ+τλλ+

τ τs

t t t
ddrrdrrs

0 0 0
876543  

( ) ( ) .dom 1
109

0 ⎭
⎬
⎫∈⎟

⎠
⎞ττλλ+ −∫ Wdsds

s

t
 

Corollary 1.13. Let ( ),,,,,,,,,, 987654321
+∈λλλλλλλλλ RCu  ∈w  

( )( ),,0 ∞C  and ( )uw  be nondecreasing in ( )., uwuu ≤  Suppose that for 

some 0>c  and ,0 0 tt ≤≤  

( ) ( ) ( )( ) ( ) ( ) ( )∫ ∫ ∫ ⎜⎜
⎝

⎛
ττλλ+λ+≤

t

t

t

t

s

t
usdssuwsctu

0 0 0
321  

( ) ( ) ( ) ( ) ( ) ( )( ) dsddrruwrdrrur
t t

τ⎟
⎠
⎞λτλ+λτλ+ ∫ ∫

τ τ

0 0
7654  

( ) ( ) ( )( )∫ ∫ τττλλ+
t

t

s

t
dsduws

0 0
.98  
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Then 

( ) ( ) ( ) ( ) ( ) ( ) ( )⎢⎣
⎡

⎜
⎝
⎛

⎜
⎝
⎛ λτλ+τλλ+λ+≤ ∫ ∫ ∫

τ− t

t

s

t t
drrsscWWtu

0 0 0
54321

1  

( ) ( ) ( ) ( ) ,
00

9876 ⎥⎦
⎤

⎟
⎠
⎞ττλλ+τ⎟

⎠
⎞λτλ+ ∫∫

τ
dsdsddrr

s

tt
 

where 1
10 ,, −<≤ WWbtt  are the same functions as in Lemma 1.10, and 

( ) ( )
⎩
⎨
⎧

⎜⎜
⎝

⎛
λ+≥= ∫

t

t
scWttb

0
101 :sup  

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫ τ⎟
⎠
⎞

⎜
⎝
⎛ λτλ+λτλ+τλλ+

τ τs

t t t
ddrrdrrs

0 0 0
765432  

( ) ( ) .dom 1
98

0 ⎭
⎬
⎫∈⎟

⎠
⎞ττλλ+ −∫ Wdsds

s

t
 

2. Main Results 

In this section, we investigate boundedness, ULS, and asymptotic 
behavior for solutions of perturbed functional differential systems using the 
notion of ∞t -similarity. 

To obtain these properties, the following assumptions are needed: 

(H1) ( )0,tf x  is ∞t -similar to ( )( )00,,, xttxtf x  for 00 ≥≥ tt  and 

δ≤0x  for some constant .0>δ  

(H2) The solution 0=x  of (1.1) is hS with the increasing function h. 

(H3) ( )uw  be nondecreasing in u such that ( )uwu ≤  and ( ) ≤uwv
1  

⎟
⎠
⎞⎜

⎝
⎛

v
uw  for some .0>v  

(H4) The solution 0=x  of (2.1) is ULSV. 

(H5) The solution 0=x  of (2.1) is EASV. 
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Lemma 2.1. Let ( ),,,,,,,,,,, 10987654321
+∈λλλλλλλλλλ RCu  

( )( ),,0 ∞∈ Cw  and ( )uw  be nondecreasing in ( )., uwuu ≤  Suppose that 

for some 0>c  and ,0 0 tt ≤≤  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫ ∫ ⎜⎜
⎝

⎛
ττλ+ττλλ+λ+≤

t

t

t

t

s

t
uwusdssusctu

0 0 0
4321  

( ) ( ) ( ) ( ) ( ) ( )( ) dsddrruwrdrrur
t t

τ⎟
⎠
⎞λτλ+λτλ+ ∫ ∫

τ τ

0 0
8765  

( ) ( ) ( )( )∫ ∫ τττλλ+
t

t

s

t
dsduws

0 0
.109  (2.1) 

Then, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⎢⎣
⎡

⎜
⎝
⎛

⎜
⎝
⎛ λτλ+τλ+τλλ+λ+≤ ∫ ∫ ∫

τ− t

t

s

t t
drrsscWWtu

0 0 0
654321

1  

( ) ( ) ( ) ( ) ,
00

10987 ⎥⎦
⎤

⎟
⎠
⎞ττλλ+τ⎟

⎠
⎞λτλ+ ∫∫

τ
dsdsddrr

s

tt
 (2.2) 

where 1
10 ,, −≤≤ WWbtt  are the same functions as in Lemma 1.10, and 

( ) ( ) ( ) ( ) ( )
⎩
⎨
⎧

⎜⎜
⎝

⎛
⎜⎜
⎝

⎛
τλ+τλλ+λ+≥= ∫ ∫

t

t

s

t
sscWttb

0 0
432101 :sup  

( ) ( ) ( ) ( ) τ⎟
⎠
⎞λτλ+λτλ+ ∫ ∫

τ τ
ddrrdrr

t t0 0
8765  

( ) ( ) .dom 1
109

0 ⎭
⎬
⎫∈⎟

⎠
⎞ττλλ+ −∫ Wdsds

s

t
 

Proof. Define a function ( )tv  by the right member of (2.1) and let us 

differentiate ( ).tv  Then, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ⎜⎜
⎝

⎛
λ+λλ+λ=′

t

t
suwssusttuttv

0
4321  



Perturbations of Differential Systems 1519 

( ) ( ) ( ) ( ) ( ) ( )( ) dsduwsdus
s

t

s

t
⎟
⎠
⎞τττλλ+τττλλ+ ∫ ∫

0 0
8765  

( ) ( ) ( )( )∫ λλ+
t

t
dssuwst

0
.109  

This reduces to 

( ) ( ) ( ) ( ) ( ) ( ) ( )⎢⎣
⎡

⎜
⎝
⎛ ττλλ+λ+λλ+λ≤′ ∫ ∫

t

t

s

t
dssstttv

0 0
654321  

( ) ( ) ( ) ( ) ( )( ),
00

10987 tvwdsstdsds
t

t

s

t ⎥⎦
⎤λλ+⎟

⎠
⎞ττλλ+ ∫∫  

,0tt ≥  since ( )tv  is nondecreasing, ( ),uwu ≤  and ( ) ( ).tvtu ≤  Now, by 

integrating the above inequality on [ ]tt ,0  and using ( ) ,0 ctv =  we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ∫⎜
⎝
⎛

⎜
⎝
⎛ λτλ+τλ+τλλ+λ+≤

τt

t

s

t t
drrssctv

0 0 0
654321  

( ) ( ) ( ) ( ) ( )( ) .
00

10987 dssvwdsddrr
s

tt
⎟
⎠
⎞ττλλ+τ⎟

⎠
⎞λτλ+ ∫∫

τ
 (2.3) 

It follows from Lemma 1.10 that (2.3) yields the estimate (2.2).  ~ 

Theorem 2.2. Let ( ).,,,,,, +∈ RCq p k d c ba  Suppose that (H1), 

(H2), (H3), and g in (1.2) satisfy 

( ) ( ) ( ) ( ) ( )( ) ( ) ,,, 11 tyTtywtbtytayTytg ++≤  (2.4) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫+≤
t

t

t

t
dssywsptddssysktbtyT

0 0
,1  (2.5) 

and 

( ) ( )( )tyTtyth 2,,  

( ) ( ) ( )( ) ( ) ( ) ( )( )∫≤+≤
t

t
dssywsqtyTtyTtytc

0
,, 22  (2.6) 
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where ( ),,,,,,, 1 +∈ RLqpkdcba  ( )( ),,0 ∞∈ Cw  ,1T  2T  are continuous 

operators. Then, any solution ( ) ( )00,, yttyty =  of (1.2) is bounded on 

[ )∞,0t  and it satisfies 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⎢⎣
⎡

⎜
⎝
⎛

⎜
⎝
⎛ τ+τ+τ++≤ ∫ ∫ ∫

τ− t

t

s

t t
drrkbbascccWWthty

0 0 0
2

1  

( ) ( ) ( ) ( ) ,
00

⎥⎦
⎤

⎟
⎠
⎞+τ⎟

⎠
⎞τ+ ∫∫

ττ
dsdrrqscddrrpd

tt
 

where 1
10 ,, −<≤ WWbtt  are the same functions as in Lemma 1.10, and 

( ) ( ) ( ) ( ) ( ) ( )
⎩
⎨
⎧

⎜
⎝
⎛

⎜
⎝
⎛ τ+τ+τ++≥= ∫ ∫ ∫

τt

t

s

t t
drrkbbascccWttb

0 0 0
201 :sup  

( ) ( ) ( ) ( ) .dom 1

00 ⎭
⎬
⎫∈⎟

⎠
⎞+τ⎟

⎠
⎞τ+ −ττ

∫∫ Wdsdrrqscddrrpd
tt

 

Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(1.1) and (1.2), respectively. By Theorem 1.8, since the solution 0=x  of 
(1.1) is hS, the solution 0=v  of (1.3) is hS. Therefore, from (H1), by 
Theorem 1.9, the solution 0=z  of (1.4) is hS. Using the nonlinear variation 
of constants formula due to Lemma 1.7, together with (2.4), (2.5), and (2.6), 
we have 

( ) ( ) ( )( ) ( ) ( )( )∫ ∫⎜⎝
⎛ ττττΦ+≤

t

t

s

t
dyTygsysttxty

0 0
1,,,,  

( ) ( )( ) dssyTsysh ⎟⎟
⎠

⎞
+ 2,,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫⎜⎜⎝
⎛

⎜⎜
⎝

⎛
ττ+ττ+≤ −− t

t

s

t
ywbyashthcththyc

0 0

1
2

1
001  

( ) ( ) ( ) ( ) ( ) ( )( ) τ⎟
⎠
⎞τ+τ+ ∫ ∫

τ τ
ddrrywrpddrryrkb

t t0 0
 

( ) ( ) ( ) ( )( ) .
0

dsdywqsysc
s

t
⎟
⎠
⎞
⎟
⎠
⎞

⎜
⎝
⎛ τττ++ ∫  
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It follows from (H2) and (H3) that 

( ) ( ) ( ) ( ) ( ) ( )
( )∫ ⎜

⎝
⎛+≤ − t

t sh
syscthcththycty

0
2

1
001  

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( )∫ ∫⎜

⎝
⎛ τ+⎟

⎠
⎞

⎜
⎝
⎛

τ
τ

τ+
τ
τ

τ+
τs

t t
drrh

ryrkbh
ywbh

ya
0 0

 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) .
00

dsdh
ywqscddrrh

rywrpd
s

tt
⎟
⎠
⎞τ⎟

⎠
⎞

⎜
⎝
⎛

τ
τ

τ+τ⎟
⎠
⎞

⎟
⎠
⎞

⎜
⎝
⎛τ+ ∫∫

τ
 

Define ( ) ( ) ( ) .1−= thtytu  Then, by Lemma 2.1, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⎢⎣
⎡

⎜
⎝
⎛

⎜
⎝
⎛ τ+τ+τ++≤ ∫ ∫ ∫

τ− t

t

s

t t
drrkbbascccWWthty

0 0 0
2

1  

( ) ( ) ( ) ( ) ,
00

⎥⎦
⎤

⎟
⎠
⎞ττ+τ⎟

⎠
⎞τ+ ∫∫

ττ
dsdqscddrrpd

tt
 

where ( ) .1
001
−= thycc  The above estimation yields the desired result 

since the function h is bounded. Thus, the proof is complete. ~ 

Remark 2.3. Letting ( ) ( ) 0== tdtc  in Theorem 2.2, we obtain the 

same result as that of Theorem 3.1 in [13]. 

Theorem 2.4. Let ( ).,,,,,, +∈ RCqpkdcba  Suppose that (H1), (H2), 

(H3), and g in (1.2) satisfy 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )∫ ++≤
t

t
tyTtywtbtytadssyTsysg

0
,,, 11  (2.7) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )∫ ∫+≤
t

t

t

t
dssysptddssywsktbtyT

0 0
,1  (2.8) 

and 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )tyTtyTtywtctyTtyth 222 ,,, +≤  

( ) ( ) ( ) ,
0
∫≤

t

t
dssysqtd  (2.9) 
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where ( ),,,,,,, 1 +∈ RLqpkdcba  ( )( ),,0 ∞∈ Cw  21, TT  are continuous 

operators. Then, any solution ( ) ( )00,, yttyty =  of (1.2) is bounded on 

[ )∞,0t  and it satisfies 

( ) ( ) ( ) ( ) ( ) ( )⎢
⎣

⎡
⎜⎜
⎝

⎛
+++≤ ∫− t

t
scsbsaccWWthty

0
2

1  

( ) ( ) ( ) ( ) ( )( ) ,
0 0

⎥⎦
⎤

⎟
⎠
⎞ττ+τ+ττ+ ∫ ∫ dsdqpsddksb

s

t

s

t
 

where 1
10 ,, −<≤ WWbtt  are the same functions as in Lemma 1.10, and 

( ) ( ) ( ) ( )
⎩
⎨
⎧

⎜⎜
⎝

⎛
+++≥= ∫

t

t
scsbsaccWttb

0
201 :sup  

( ) ( ) ( ) ( ) ( )( ) .dom 1

0 0 ⎭
⎬
⎫∈⎟

⎠
⎞ττ+τ+ττ+ −∫ ∫ Wdsdqpsddksb

s

t

s

t
 

Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(1.1) and (1.2), respectively. By the same argument as in the proof in 
Theorem 2.2, the solution 0=z  of (1.4) is hS. Applying the nonlinear 
variation of constants formula due to Lemma 1.7, together with (2.7), (2.8), 
and (2.9), we have 

( ) ( ) ( ) 1
001
−≤ ththycty  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )∫ ⎜
⎝
⎛ +++ −t

t
sywscsbsysashthc

0

1
2  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) .
0 0

dsdyqpsddywksb
s

t

s

t
⎟
⎠
⎞τττ+τ+τττ+ ∫ ∫  

Using (H2) and (H3), we obtain 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )

( )∫ ⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+++≤ − t

t sh
sywscsbsh

sysathcththycty
0

2
1

001  

( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

( ) .
0 0

dsdh
yqpsddh

ywksb
s

t

s

t
⎟
⎠
⎞τ

τ
τ

τ+τ+τ⎟
⎠
⎞

⎜
⎝
⎛

τ
τ

τ+ ∫ ∫  
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Let ( ) ( ) ( ) .1−= thtytu  Then, by Lemma 1.11, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⎢⎣
⎡

⎜
⎝
⎛ ττ++++≤ ∫ ∫− t

t

s

t
dksbscsbsaccWWthty

0 0
2

1  

( ) ( ) ( )( ) ,
0

⎥⎦
⎤

⎟
⎠
⎞ττ+τ+ ∫ dsdqpsd

s

t
 

where ( ) .1
001
−= thycc  Thus, any solution ( ) ( )00,, yttyty =  of (1.2) is 

bounded on [ ),,0 ∞t  and so the proof is complete. ~ 

Remark 2.5. Letting ( ) ( ) 0== tdtc  in Theorem 2.4, we obtain the 

same result as that of Theorem 3.7 in [13]. 

Theorem 2.6. Suppose that (H3), (H4), and that the perturbing term g in 
(1.2) satisfy 

( ) ( ) ( ) ( ) ( )( ) ( ) ,,, 11 tyTtywtbtytayTytg ++≤  (2.10) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫+≤
t

t

t

t
dssywsqtpdssysktbtyT

0 0
,1  (2.11) 

and 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ,,,, 222 tytdtyTtyTtywtctyTtyth ≤+≤  (2.12) 

where ( ),,,,,,, +∈ RCqpkdcba  ( ),,,,,,, 1 +∈ RLqpkdcba  ∈w  

( )( ),,0 ∞C  21, TT  are continuous operators, and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⎢⎣
⎡

⎜
⎝
⎛

⎜
⎝
⎛ τ+τ+τ+++= ∫ ∫ ∫

∞ τ−

0 0 0

1
0 t

s

t t
drrkbbasdscMMWWtM  

( ) ( ) ,
0

⎥⎦
⎤

⎟
⎠
⎞τ⎟

⎠
⎞τ+ ∫

τ
dsddrrqp

t
 (2.13) 

where ( ) ∞<0tM  and .1 ∞=b  Then the zero solution of (1.2) is ULS. 
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Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(1.1) and (1.2), respectively. By the assumption (H4), it is ULS ([10], 
Theorem 3.3). Using (H3), together with (2.10), (2.11), and (2.12), we have 

( ) ( ) ( ) ( ) ( )∫ ∫⎜⎝
⎛

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ τ

τ+
τ

τ+≤
t

t

s

t y
ywby

yayMyMty
0 0 00

00  

( ) ( ) ( ) ( ) ( ) ( )
τ⎟

⎠
⎞

⎟
⎠
⎞

⎜
⎝
⎛τ+τ+ ∫ ∫

τ τ
ddry

rywrqpdry
ryrkb

t t0 0 00
 

( ) ( ) ( ) ( ) .
00

dsy
sysdy

sywsc ⎟
⎠
⎞+⎟

⎠
⎞

⎜
⎝
⎛+  

Let ( ) ( ) .1
0

−= ytytu  Now an application of Lemma 1.12 yields 

( ) ( ) ( ) ( ) ( ) ( )⎢
⎣

⎡
⎜⎜
⎝

⎛
⎜⎜
⎝

⎛
τ+τ+++≤ ∫ ∫− t

t

s

t
basdscMMWWyty

0 0

1
0  

( ) ( ) ( ) ( ) .
0 0

⎥⎦
⎤

⎟
⎠
⎞τ⎟

⎠
⎞τ+τ+ ∫ ∫

τ τ
dsddrrqpdrrkb

t t
 

Thus, by (2.13), we have ( ) ( ) 00 ytMty ≤  for some ( ) 00 >tM  

whenever .0 δ<y  This completes the proof. ~ 

Remark 2.7. Letting ( ) ( ) ( ) 0=== tptdtc  in Theorem 2.6, we obtain 

the same result as that of Theorem 3.1 in [16]. 

Theorem 2.8. Suppose that (H3), (H4), and that the perturbing term g in 
(1.2) satisfy 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )∫ ++≤
t

t
tyTtywtbtytadssyTsysg

0
,,, 11  (2.14) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫+≤
t

t

t

t
dssywsptddssysktbtyT

0 0
,1  (2.15) 

and 
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( ) ( )( )tyTtyth 2,,  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫≤+≤
t

t
dssywsqtdtyTtyTtytc

0
,, 22  (2.16) 

where ( ),,,,,,, +∈ RCqpkdcba  ( ),,,,,,, 1 +∈ RLqpkdcba  ∈w  

( )( ),,0 ∞C  21, TT  are continuous operators, and 

( ) ( ) ( ) ( ) ( ) ( ) ( )⎢⎣
⎡

⎜
⎝
⎛ ττ++++= ∫ ∫

∞−

0 0

1
0 t

s

t
dksbscsbsaMMWWtM  

( ) ( ) ( )( ) ,
0

⎥⎦
⎤

⎟
⎠
⎞ττ+τ+ ∫ dsdqpsd

s

t
 (2.17) 

where ( ) ∞<0tM  and .1 ∞=b  Then the zero solution of (1.2) is ULS. 

Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(1.1) and (1.2), respectively. By the assumption (H4), it is ULS. Applying 
(H3), together with (2.14), (2.15), and (2.16), we have 

( ) ( ) ( )( ) ( ) ( ) ( )
∫ ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+++≤

t

t
dsy

sywsby
syscsayMyMty

0 00
00  

( ) ( ) ( )∫ ∫⎜
⎝
⎛ τ

τ
τ+

t

t

s

t
dy

yksbyM
0 0 0

0  

( ) ( ) ( )( ) ( ) .
0 0

dsdy
ywqpsd

s

t
⎟
⎠
⎞τ⎟

⎠
⎞

⎜
⎝
⎛ τ

τ+τ+ ∫  

Defining ( ) ( ) ,1
0

−= ytytu  then it follows from Lemma 1.11 that 

( ) ( ) ( ) ( ) ( ) ( ) ( )⎢⎣
⎡

⎜
⎝
⎛ ττ++++≤ ∫ ∫− t

t

s

t
dksbscsbsaMMWWyty

0 0

1
0  

( ) ( ) ( )( ) .
0

⎥⎦
⎤

⎟
⎠
⎞ττ+τ+ ∫ dsdqpsd

s

t
 



Dong Man Im and Yoon Hoe Goo 1526 

Hence, by (2.17), we have ( ) ( ) 00 ytMty ≤  for some ( ) 00 >tM  

whenever .0 δ<y  Thus, the proof is complete. ~ 

Remark 2.9. Letting ( ) ( ) ( ) 0=== tqtdtc  in Theorem 2.8, we obtain 

the same result as that of Theorem 3.3 in [16]. 

Theorem 2.10. Suppose that (H3), (H5), and that the perturbing term 
( )yTytg 1,,  satisfy 

( ) ( )( ) ( ( ) ( ) ( ) ( )( ) ( ) ),,, 11 tyTtywtbtytaetyTtytg t ++≤ α−  (2.18) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ∫+≤
t

t

t

t
dssywsptmdssysktctyT

0 0
,1  (2.19) 

and 

( ) ( )( )tyTtyth 2,,  

( ( ) ( )( ) ( ) ) ( ) ( ) ( ) ,,
0

22 ∫ α−α− ≤+≤
t

t
st dssysqetyTtyTtywtde  (2.20) 

where ,0>α  ( ),,,,,,,,, +∈ RCwqpmkdcba  qpmkdcba ,,,,,,,  

( ).1 +∈ RL  If 

( ) ( ) ( ) ( ) ( ) ( )⎢
⎣

⎡
⎜⎜
⎝

⎛
⎜⎜
⎝

⎛
τ+τ+τ++= ∫ ∫

∞ α−

0 0

1
0 t

s

t
s qbasdeMcWWtM  

( ) ( ) ( ) ( ) ,
0 0

⎥⎦
⎤

⎟
⎠
⎞τ⎟

⎠
⎞τ+τ+ ∫ ∫

τ τ
dsddrrpmdrrkc

t t
 (2.21) 

where ( ) ,0 ∞<tM  ,1 ∞=b  ,00
tMeyc α=  W and 1−W  are the same 

functions as in Lemma 1.10, then all solutions of (1.2) approach zero as 
.∞→t  

Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(1.1) and (1.2), respectively. Using (H5), it is EAS by Remark 1.2. Therefore, 
by view of Lemma 1.7, together with (2.18), (2.19), and (2.20), we have 
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( ) ( )00
tteyMty −α−≤  

( ) ( ) ( ) ( ) ( )( )∫ ∫⎜⎜⎝
⎛

⎜⎜
⎝

⎛
ττ+ττ+ ατ−−α−t

t

s

t
st ywbyaeMe

0 0
 

( ) ( ) ( ) ( ) ( ) ( )( ) τ⎟
⎠
⎞τ+τ+ ∫ ∫

τ τ
ddrrywrpmdrryrkc

t t0 0
 

( ) ( )( ) ( ) ( ) .
0

dsdyqesywsde
s

t
s ⎟

⎠
⎞τττ++ ∫ ατ−α−  

By (H3), it follows that 

( ) ( ) ( ) ( ) ( ( ) )∫ ⎜⎜
⎝

⎛
+≤ α−α−−α− t

t
ssttt esywsdMeeyMty

0

00  

( ) ( )( ) ( ) ( ) ( ( ) )∫ ⎜⎜
⎝

⎛
ττ+ττ+τ+ ατατs

t
eywbeyqa

0
 

( ) ( ) ( ) ( ) ( ) ( ( ) ) .
00

dsddrerywrpmdreryrkc
t

r
t

r ⎟
⎠
⎞τ⎟

⎠
⎞τ+τ+ ∫∫

τ ατ α  

Let ( ) ( ) .tetytu α=  Then, by Corollary 1.13 and (2.21), we obtain 

( ) ( ) ( ) ( ) ( ) ( )⎢
⎣

⎡
⎜⎜
⎝

⎛
⎜⎜
⎝

⎛
τ+τ+τ++≤ ∫ ∫α−α− t

t

s

t
st qbasdeMcWWety

0 0

1  

( ) ( ) ( ) ( ) ( ),0
00

tMcedsddrrpmdrrkc t
tt

α−ττ
≤⎥⎦

⎤
⎟
⎠
⎞τ⎟

⎠
⎞τ+τ+ ∫∫  

where 0tt ≥  and .00
teyMc α=  Hence, all solutions of (1.2) approach 

zero as ,∞→t  and so the theorem is complete. ~ 

Remark 2.11. Letting ( ) ( ) ( ) 0=== tqtdtc  in Theorem 2.10, we obtain 

the same result as that of Theorem 3.2 in [17]. 

Theorem 2.12. Suppose that (H3), (H5), and that the perturbed term 
( )yTytg 1,,  satisfy 
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( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )( )∫ ++≤ α−t

t
t tyTtywtbtytaedssyTsysg

0
,,, 11  (2.22) 

and 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )∫ ∫+≤
t

t

t

t
dssysptddssywsktbtyT

0 0
,1  (2.23) 

( ) ( )( )tyTtyth 2,,  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ),, 22
0

tywtqtyTtyTdssysctde
t

t
t ≤⎟

⎠
⎞

⎜
⎝
⎛ +≤ ∫α−  (2.24) 

where ,0>α  ( ),,,,,,,, +∈ RCwqpkdcba  ( ).,,,,,, 1 +∈ RLqpkdcba  If 

( ) ( ) ( ) ( ) ( ) ( ) ( )⎢⎣
⎡

⎜
⎝
⎛ ττ++++= ∫ ∫

∞−

0 0

1
0 t

s

t
dksbsqsbsaMcWWtM  

( ) ( ) ( )( ) ,
0

⎥⎦
⎤

⎟
⎠
⎞ττ+τ+ ∫ dsdpcsd

s

t
 (2.25) 

where ,1 ∞=b  ( ) ,0 ∞<tM  ,00
teyMc α=  W and 1−W  are the same 

functions as in Lemma 1.10, then all solutions of (1.2) approach zero as 
.∞→t  

Proof. Let ( ) ( )00,, yttxtx =  and ( ) ( )00,, yttyty =  be solutions of 

(1.1) and (1.2), respectively. Using (H5), it is EAS. Therefore, by Lemma 
1.7, together with (2.22), (2.23), and (2.24), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ ⎜⎜
⎝

⎛
⎜⎜
⎝

⎛
++≤ α−−α−−α− t

t
ssttt sywsbsysaeMeeyMty

0

00  

( ) ( ) ( )( )∫ τττ+
s

t
dywksb

0
 

( ) ( ) ( )( ) ( ) ( ) ( )( ) .
0

dssywsqdypcsd
s

t
⎟
⎠
⎞+τττ+τ+ ∫  



Perturbations of Differential Systems 1529 

By (H3), we obtain 

( ) ( ) ( ) ( )∫ ⎜⎜
⎝

⎛
+≤ αα−−α− t

t
sttt esysaMeeyMty

0

00  

( ) ( )( ) ( ( ) ) ( ) ( ) ( ( ) )∫ τττ+++ ατα s

t
s deywksbesywsqsb

0
 

( ) ( ) ( )( ) ( ) .
0

dsdeypcsd
s

t
⎟
⎠
⎞τττ+τ+ ∫ ατ  

Define ( ) ( ) .tetytu α=  Then, an application of Lemma 1.11 and (2.25) 

yields 

( ) ( ) ( ) ( ) ( )⎢
⎣

⎡
⎜⎜
⎝

⎛
+++≤ ∫−α− t

t
t sqsbsaMcWWety

0

1  

( ) ( ) ( ) ( ) ( )( ) ( ),0
0 0

tMedsdpcsddksb ts

t

s

t
α−≤⎥⎦

⎤
⎟
⎠
⎞ττ+τ+ττ+ ∫ ∫  

where 0tt ≥  and .00
teyMc α=  Hence, all solutions of (1.2) approach 

zero as .∞→t  This completes the proof. ~ 

Remark 2.13. Letting ( ) ( ) 0== tqtd  in Theorem 2.12, we obtain the 

same result as that of Theorem 3.4 in [17]. 

Acknowledgement 

The authors are very grateful for the referee’s valuable comments. 

References 

 [1] V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary 
differential equations, Vestn. Mosk. Univ. Ser. I. Math. Mekh. 2 (1961), 28-36 
(Russian). 

 [2] F. Brauer, Perturbations of nonlinear systems of differential equations, J. Math. 
Anal. Appl. 14 (1966), 198-206. 



Dong Man Im and Yoon Hoe Goo 1530 

 [3] F. Brauer and A. Strauss, Perturbations of nonlinear systems of differential 
equations, III, J. Math. Anal. Appl. 31 (1970), 37-48. 

 [4] F. Brauer, Perturbations of nonlinear systems of differential equations, IV,                        
J. Math. Anal. Appl. 37 (1972), 214-222. 

 [5] S. I. Choi and Y. H. Goo, Boundedness in perturbed nonlinear functional 
differential systems, J. Chungcheong Math. Soc. 28 (2015), 217-228. 

 [6] S. I. Choi and Y. H. Goo, Uniform Lipschitz stability of perturbed differential  
systems, Far East J. Math. Sci. (FJMS) 101(4) (2017), 721-735. 

 [7] S. K. Choi and H. S. Ryu, h-stability in differential systems, Bull. Inst. Math. 
Acad. Sinica 21 (1993), 245-262. 

 [8] S. K. Choi, N. J. Koo and H. S. Ryu, h-stability of differential systems via ∞t -

similarity, Bull. Korean. Math. Soc. 34 (1997), 371-383. 

 [9] R. Conti, Sulla ∞t -similitudine tra matricie l’equivalenza asintotica dei sistemi 

differenziali lineari, Rivista di Mat. Univ. Parma 8 (1957), 43-47. 

 [10] F. M. Dannan and S. Elaydi, Lipschitz stability of nonlinear systems of 
differential systems, J. Math. Anal. Appl. 113 (1986), 562-577. 

 [11] S. Elaydi and H. R. Farran, Exponentially asymptotically stable dynamical 
systems, Appl. Anal. 25 (1987), 243-252. 

 [12] P. Gonzalez and M. Pinto, Stability properties of the solutions of the nonlinear 
functional differential systems, J. Math. Appl. 181 (1994), 562-573. 

 [13] Y. H. Goo, Boundedness in functional differential systems via ∞t -similarity,             

J. Chungcheong Math. Soc. 29 (2016), 347-359. 

 [14] Y. H. Goo, Uniform Lipschitz stability and asymptotic behavior for perturbed 
differential systems, Far East J. Math. Sci. (FJMS) 99(3) (2016), 393-412. 

 [15] G. A. Hewer, Stability properties of the equation by ∞t -similarity, J. Math. Anal. 

Appl. 41 (1973), 336-344. 

 [16] D. M. Im and Y. H. Goo, Uniform Lipschitz stability and asymptotic property of 
perturbed functional differential systems, Korean J. Math. 24 (2016), 1-13. 

 [17] D. M. Im and Y. H. Goo, Asymptotic property for perturbed nonlinear functional 
differential systems, J. Appl. Math. Inform. 33 (2015), 687-697. 

 [18] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory 
and Applications, Academic Press, New York and London, 1969. 



Perturbations of Differential Systems 1531 

 [19] B. G. Pachpatte, Stability and asymptotic behavior of perturbed nonlinear systems, 
J. Diff. Equ. 16 (1974), 14-25. 

 [20] B. G. Pachpatte, Perturbations of nonlinear systems of differential equations,             
J. Math. Anal. Appl. 51 (1975), 550-556. 

 [21] M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 
(1984), 161-175. 

 [22] M. Pinto, Stability of nonlinear differential systems, Applicable Analysis 43 
(1992), 1-20. 


