JP Journal of Algebra, Number Theory and Applications

http://dx.doi.org/10.17654/NT039020151

Volume 39, Number 2, 2017, Pages 151-164

ISSN: 0972-5555

THE HECKE ALGEBRA REPRESENTATION OF THE COMPLEX REFLECTION GROUP G_7 IS UNITARY

Mohammad Y. Chreif and Mohammad N. Abdulrahim

Department of Mathematics
Beirut Arab University
P. O. Box 11-5020, Beirut, Lebanon

Abstract

We consider a 2-dimensional representation of the Hecke algebra $\mathcal{H}(G_7, u)$, where G_7 is the complex reflection group and u is the set of indeterminates $u = (x_1, x_2, y_1, y_2, y_3, z_1, z_2, z_3)$. After specializing the indeterminates to non-zero complex numbers on the unit circle, we prove that the representation is unitary relative to a Hermitian positive definite matrix. We then determine a necessary and sufficient condition for an element of $\mathcal{H}(G_7, u)$ to belong to the kernel of the complex specialization of the representation of the Hecke algebra $\mathcal{H}(G_7, u)$.

1. Introduction

Let V be a complex vector space and W be a finite irreducible subgroup of GL(V) generated by complex reflections. Let R be the set of reflections in

Received: September 13, 2016; Accepted: November 11, 2016

2010 Mathematics Subject Classification: 20F36.

Keywords and phrases: braid group, Hecke algebra, irreducible, reflections.

W. For any element s of R, denote by H_s its pointwise fixed hyperplane. We define the set $V^{reg} = V - \bigcup_{s \in R} H_s$ and denote by \overline{V} the quotient V^{reg}/W .

The braid group associated to (W,V) is the fundamental group $B(W)=\pi_1(\overline{V}, \overline{x}_0)$ of \overline{V} with respect to any point $\overline{x}_0 \in \overline{V}$.

We choose the set of indeterminates, $u=(u_{s,\,j})_{s,\,0\leq j\leq o(s)-1}$, where s runs over the generators of W and $u_{s,\,j}=u_{t,\,j}$ if s and t are conjugate in W. Here o(s) denotes the order of s. The cyclotomic Hecke algebra associated to W is the quotient of the group algebra $\mathbb{Z}[u,u^{-1}]B(W)$ by the ideal generated by the relations $\prod_{j=0}^{o(s)-1}(s-u_{s,\,j})$.

In [9], Malle and Michel constructed on the cyclotomic Hecke algebra $\mathcal{H}(G_7, u)$ of the complex reflection group, G_7 , an irreducible representation $\phi: \mathcal{H}(G_7, u) \to M_2(\mathbb{C}(u^{\frac{1}{2}}, u^{-\frac{1}{2}}))$, where u is the set of indeterminates $u = (x_1, x_2, y_1, y_2, y_3, z_1, z_2, z_3)$.

In our work, we specialize the indeterminates x_1 , x_2 , y_1 , y_2 , y_3 , z_1 , z_2 and z_3 to nonzero complex numbers on the unit circle. We then get a representation $\varphi: \mathcal{H}(G_7, u) \to GL_2(\mathbb{C})$. In Section 2, we recall, from an earlier work, some results that determine necessary and sufficient conditions for the irreducibility of the representation φ [6]. In Section 3, we determine a necessary and sufficient condition that shows that φ is unitary relative to a non-zero invertible Hermitian matrix if and only if $y_1y_2 = \pm 1$ and $x_1 \neq x_2$ (Theorem 4, Proposition 2). In Section 4, we find complex specializations under which the Hermitian matrices found in Section 3 are positive definite, and in which the representation φ remains to be irreducible (Theorem 5). In Section 5, we find a necessary and sufficient condition for an element of $\mathcal{H}(G_7, u)$ to belong to the kernel of the representation φ (Theorem 8).

2. Definitions, Notations and Theorems

Definition 1 [8]. Let V be a complex vector space of dimension n. A complex reflection of GL(V) is a non-trivial element of GL(V) which acts trivially on a hyperplane.

Definition 2 [8]. Let V be a complex vector space of dimension n. A complex reflection group is the subgroup of GL(V) generated by complex reflections.

Examples of complex reflection groups include dihedral groups and symmetric groups. For $n \ge 3$, the dihedral group, D_n , is the group of the isometries of the plane preserving a regular polygon, with the operation being composition.

A classification of all irreducible reflection groups shows that there are 34 primitive irreducible reflection groups [10]. The starting point was with Cohen, who provided a data for those irreducible complex reflection groups of rank 2 [7].

Definition 3 [4]. The complex reflection group, G_7 , is an abstract group defined by the presentation

$$G_7 = \langle t, u, s/t^2 = u^3 = s^3 = 1, tus = ust = stu \rangle.$$

Theorem 1 [2]. The braid group of G_7 is isomorphic to the group

$$B = \langle s_1, s_2, s_3/s_1s_2s_3 = s_2s_3s_1 = s_3s_1s_2 \rangle.$$

Definitions and properties of braid groups are found in [3].

 y_2, y_3, z_1, z_2, z_3). The cyclotomic Hecke algebra $\mathcal{H}(G_7, u)$ of G_7 is the quotient of the group algebra of B over $\mathbb{Z}[u, u^{-1}]$ by the relations

$$(s_1 - x_1)(s_1 - x_2) = 0$$
, $\prod_{i=1}^{3} (s_2 - y_i) = 0$, $\prod_{i=1}^{3} (s_3 - z_i) = 0$.

For more details about the Hecke algebra of G_7 , see [5].

Any 2-dimensional representation of B gives a representation of $\mathcal{H}(G_7, u)$ (see [9]).

Definition 5 [9]. Let $u = (x_1, x_2, y_1, y_2, y_3, z_1, z_2, z_3)$. The representation ϕ is defined as follows:

$$\phi: \mathcal{H}(G_7, u) \to M_2(\mathbb{C}(u^{\pm \frac{1}{2}})),$$

$$\phi(s_1) = \begin{pmatrix} x_1 & \frac{y_1 + y_2}{y_1 y_2} - \frac{(z_1 + z_2)x_2}{r} \\ 0 & x_2 \end{pmatrix}, \quad \phi(s_2) = \begin{pmatrix} y_1 + y_2 & \frac{1}{x_1} \\ -y_1 y_2 x_1 & 0 \end{pmatrix}$$

and

$$\phi(s_3) = \begin{pmatrix} 0 & \frac{-r}{y_1 y_2 x_1 x_2} \\ r & z_1 + z_2 \end{pmatrix},$$

where $r = \sqrt{x_1 x_2 y_1 y_2 z_1 z_2}$.

We specialize the indeterminates x_1 , x_2 , y_1 , y_2 , y_3 , z_1 , z_2 and z_3 to non-zero complex numbers on the unit circle. We then get a representation $\varphi: \mathcal{H}(G_7, u) \to GL_2(\mathbb{C})$.

Definition 6. Principal square root function is defined as follows: for $z = (1, \alpha), \sqrt{z} = e^{i\frac{\alpha}{2}}$, where $-\pi < \alpha \le \pi$.

Since $\alpha \in (-\pi, \pi]$, it follows that $\sqrt{z^2} = z$ for any complex number z.

We now recall two theorems that determine necessary and sufficient conditions that guarantee the irreducibility of φ .

Theorem 2 [6]. Suppose that $x_1 = x_2$. Then the representation φ is irreducible if and only if $z_1 \neq \frac{y_1 z_2}{y_2}$ and $z_1 \neq \frac{y_2 z_2}{y_1}$.

The Hecke Algebra Representation of the Complex Reflection ... 155

Theorem 3 [6]. Suppose that $x_1 \neq x_2$. Then the representation φ is irreducible if and only if $x_1y_2z_2 \neq x_2y_1z_1$, $x_1y_1z_2 \neq x_2y_2z_1$, $x_1y_2z_1 \neq x_2y_1z_2$ and $x_1y_1z_1 \neq x_2y_2z_2$.

3. $\varphi: \mathcal{H}(G_7, u) \to GL_2(\mathbb{C})$ is Unitary Relative to a Hermitian Matrix

We find a necessary and sufficient condition that proves that φ is unitary relative to a Hermitian invertible matrix.

Notation 1. Let (*): $M_m(\mathbb{C}[t^{\pm 1}])$ be an involution defined as follows:

$$(f_{ij}(t))^* = f_{ji}(t^{-1}), \quad f_{ij}(t) \in \mathbb{C}[t^{\pm 1}].$$

Definition 7. Let U be an element of $GL_2(\mathbb{C})$. Then U is called *unitary* if $U^*U = UU^* = I_2$.

Definition 8. Let H and U be elements of $GL_2(\mathbb{C})$. Then U is called *unitary* relative to H if $UHU^* = H$.

Proposition 1 (Schur's Lemma). Suppose that L is an $n \times n$ matrix such that $L\alpha(g) = \alpha(g)L$ for each $g \in G$, where α is an irreducible representation of the group G. Then $L = \lambda I$ for some $\lambda \in \mathbb{C}$, where I is the $n \times n$ identity matrix.

Theorem 4. The images of the generators of $\mathcal{H}(G_7, u)$ under the irreducible representation φ are unitary relative to some non-zero invertible matrix K if and only if $y_1y_2 = \pm 1$ and $x_1 \neq x_2$.

Proof. Suppose that the images of the generators of $\mathcal{H}(G_7, u)$ under φ are unitary relative to a non-zero matrix $K = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where a, b, c and $d \in \mathbb{C}$. We consider the matrix of the image of s_i under the representation φ and still denoted by s_i . Here i = 1, 2, 3. Simple computations show that $s_3Ks_3^*(1, 1) = d$ and $s_2Ks_2^*(2, 2) = ay_1^2y_2^2$.

Since $s_3Ks_3^* = s_2Ks_2^* = K$, it follows that $d = a = ay_1^2y_2^2$. This implies that $a(y_1^2y_2^2 - 1) = 0$.

If we suppose that a = 0 then, by simple computations, we get that K = 0. Therefore, $y_1y_2 = \pm 1$.

Now, suppose to get a contradiction that $x_1 = x_2$. We have two cases to investigate:

Case 1.
$$y_1y_2 = 1$$
. Since $s_1Ks_1^*(1, 2) = \frac{bx_2 + a\left(\frac{1}{y_1} + y_1 - \frac{z_1 + z_2}{\sqrt{z_1 z_2}}\right)}{x_2} = b$
= $K(1, 2)$, it follows that $y_1(z_1 + z_2) = \sqrt{z_1 z_2}(1 + y_1^2)$.

Squaring both the sides, we obtain that $(y_1^2 z_2 - z_1)(y_1^2 z_1 - z_2) = 0$. This implies that $z_1 = y_1^2 z_2$ or $z_2 = y_1^2 z_1$, which contradicts the conditions of irreducibility of φ (Theorem 2).

Case 2.
$$y_1y_2 = -1$$
. Since $s_1Ks_1^*(1, 2) = \frac{bx_2 + a\left(\frac{1}{y_1} - y_1 - \frac{z_1 + z_2}{\sqrt{-z_1z_2}}\right)}{x_2} = b = K(1, 2)$, it follows that $y_1(z_1 + z_2) = \sqrt{-z_1z_2}(1 - y_1^2)$.

Squaring both the sides, we obtain that $(y_1^2 z_2 + z_1)(y_1^2 z_1 + z_2) = 0$. This implies that $z_1 = -y_1^2 z_2$ or $z_2 = -y_1^2 z_1$, which contradicts the conditions of irreducibility of φ (Theorem 2).

On the other hand, suppose that $x_1 \neq x_2$ and $y_1y_2 = \pm 1$. We prove that the representation φ is unitary relative to a Hermitian matrix that will be determined explicitly. We have two cases to investigate:

Case 3. $x_1 \neq x_2$ and $y_1y_2 = 1$. Direct computations show that the images of the generators of $\mathcal{H}(G_7, u)$ under the representation φ are unitary

$$M = \begin{pmatrix} 1 & M_{1,2} \\ M_{2,1} & 1 \end{pmatrix},$$

where

$$M_{1,\,2} = \frac{-x_1(1+y_1^2)z_1z_2 + y_1\sqrt{x_1x_2z_1z_2}(z_1+z_2)}{x_1(x_1-x_2)y_1z_1z_2},$$

$$M_{2,1} = \frac{x_1(x_2(1+y_1^2)z_1z_2 - y_1\sqrt{x_1x_2z_1z_2}(z_1+z_2))}{(x_1-x_2)y_1z_1z_2}.$$

Case 4. $x_1 \neq x_2$ and $y_1y_2 = -1$. Direct computations show that the images of the generators of $\mathcal{H}(G_7, u)$ under the representation φ are unitary relative to a matrix N given by

$$N = \begin{pmatrix} 1 & N_{1,2} \\ N_{2,1} & 1 \end{pmatrix},$$

where

$$N_{1,2} = \frac{x_1(-1+y_1^2)z_1z_2 - y_1\sqrt{-x_1x_2z_1z_2}(z_1+z_2)}{x_1(x_1-x_2)y_1z_1z_2},$$

$$N_{2,1} = \frac{x_1(x_2(-1+y_1^2)z_1z_2 - y_1\sqrt{-x_1x_2z_1z_2}(z_1+z_2))}{(x_1-x_2)y_1z_1z_2}.$$

It is easy to show that the matrices M and N are invertible because of the irreducibility of the representation φ and the fact that $y_1y_2 = \pm 1$.

Proposition 2. The matrices M and N determined in Theorem 4 are Hermitian $(M^* = M, N^* = N)$.

Proof. Since the conjugate of any complex number on the unit circle equals its inverse, it follows that

$$\overline{M(1, 2)} = \frac{\frac{-(1 + y_1^2)\sqrt{x_1x_2z_1z_2} + x_1y_1(z_1 + z_2)}{x_1y_1^2z_1z_2\sqrt{x_1x_2z_1z_2}}}{\frac{x_2 - x_1}{x_1^2x_2y_1z_1z_2}}$$

$$= \frac{[-(1 + y_1^2)\sqrt{x_1x_2z_1z_2} + x_1y_1(z_1 + z_2)]x_1x_2}{(x_2 - x_1)y_1\sqrt{x_1x_2z_1z_2}} = M(2, 1)$$

and

$$\overline{N(1, 2)} = \frac{\frac{(-y_1^2 + 1)\sqrt{-x_1x_2z_1z_2} - x_1y_1(z_1 + z_2)}{x_1y_1^2z_1z_2\sqrt{-x_1x_2z_1z_2}}}{\frac{x_2 - x_1}{x_1^2x_2y_1z_1z_2}}$$

$$= \frac{[(-y_1^2 + 1)\sqrt{-x_1x_2z_1z_2} - x_1y_1(z_1 + z_2)]x_1x_2}{(x_2 - x_1)y_1\sqrt{-x_1x_2z_1z_2}} = N(2, 1).$$

This implies that $M^* = M$ and $N^* = N$.

We then show that the matrix M is unique up to scalar multiplication when $x_1 \neq x_2$ and $y_1y_2 = 1$. Similarly, for the matrix N when $x_1 \neq x_2$ and $y_1y_2 = -1$.

Proposition 3. If the irreducible representation φ is unitary relative to an invertible matrix A, then A is unique up to scalar multiplication.

Proof. Suppose that the irreducible representation φ is unitary relative to an invertible matrix A. This implies that $s_i A s_i^* = A$, i = 1, 2, 3.

If there exists another invertible matrix B such that $s_i B s_i^* = B$, then we get that

$$(s_i A s_i^*)(s_i^{*-1} B^{-1} s_i^{-1}) = A B^{-1}.$$

This implies that $s_i(AB^{-1}) = (AB^{-1})s_i$.

By Schur's Lemma, we have that $AB^{-1} = cI_2$ for some constant c. Therefore, A = cB.

4. The Matrices M and N are Positive Definite for Some Complex Specializations

We determine complex specializations for the indeterminates under which the matrices M and N, computed in Section 3, are positive definite, and in which the representation φ remains to be irreducible. We consider two cases. In the case $(x_1 \neq x_2 \text{ and } y_1y_2 = 1)$, we consider the matrix M obtained in Case 3 of Theorem 4. Similarly, in the case $(x_1 \neq x_2 \text{ and } y_1y_2 = -1)$, we consider the matrix N obtained in Case 4 of Theorem 4. In both cases, we show that M and N are positive definite matrices.

Theorem 5. If $x_2 = -x_1$, $z_1 = 1$, $y_1 = e^{i\theta}$, $y_2 = e^{-i\theta}$ and $z_2 = e^{i\alpha}$, where $\frac{\pi}{4} < \theta < \frac{\pi}{2}$ and $\frac{\pi}{2} < \alpha < \pi$, then the representation φ is irreducible and unitary relative to a positive definite Hermitian matrix M.

Proof. Since $x_2 = -x_1$ and $z_1 = 1$, it follows that, by Theorem 3, φ is irreducible if and only if $y_1^2 z_2 \neq -1$ and $z_2 \neq -y_1^2$. We then substitute y_1 and z_2 by $e^{i\theta}$ and $e^{i\alpha}$, respectively. We get that φ is irreducible if and only if $2\theta + \alpha \neq (2k+1)\pi$ and $2\theta - \alpha \neq (2k+1)\pi$.

Under the hypothesis, we have that $\pi < 2\theta + \alpha < 2\pi$ and $-\frac{\pi}{2} < 2\theta - \alpha$ $< \frac{\pi}{2}$. We now verify that φ is irreducible.

In contrary, suppose that the representation is reducible. So, either $2\theta + \alpha = (2k+1)\pi$ or $2\theta - \alpha = (2k+1)\pi$ for some $k \in \mathbb{Z}$.

If $2\theta + \alpha = (2k+1)\pi$ for some $k \in \mathbb{Z}$, then $\pi < (2k+1)\pi < 2\pi$. This implies that 1 < 2k+1 < 2, a contradiction.

that

If $2\theta - \alpha = (2k+1)\pi$ for some $k \in \mathbb{Z}$, then $-\frac{\pi}{2} < (2k+1)\pi < \frac{\pi}{2}$. This implies that $-\frac{1}{2} < 2k+1 < \frac{1}{2}$, a contradiction.

In Theorem 4, we proved that the representation φ is unitary relative to the matrix M, when $x_1 \neq x_2$ and $y_1y_2 = 1$. We now show that M is positive definite.

We denote the principal minors of M by d_i , where i = 1, 2. We have

$$d_1 = 1$$
 and $d_2 = Det(M)$.

Under the hypothesis, we have

$$Det(M) = -\frac{(y_1^2 + z_2)(1 + y_1^2 z_2)}{4y_1^2 z_2} = -\frac{(e^{i2\theta} + e^{i\alpha})(e^{i\theta} + e^{i(2\theta + \alpha)})}{4e^{i(2\theta + \alpha)}}.$$

One can easily show that $e^{ia} + e^{ib} = 2e^{i\left(\frac{a+b}{2}\right)}\cos\left(\frac{a-b}{2}\right)$. This implies

$$Det(M) = -\frac{2e^{i\left(\frac{2\theta+\alpha}{2}\right)}\cos\left(\frac{2\theta-\alpha}{2}\right)2e^{i\left(\frac{2\theta+\alpha}{2}\right)}\cos\left(\frac{2\theta+\alpha}{2}\right)}{4e^{i(2\theta+\alpha)}}$$
$$= -\cos\left(\frac{2\theta-\alpha}{2}\right)\cos\left(\frac{2\theta+\alpha}{2}\right).$$

Since
$$\frac{\pi}{2} < \frac{2\theta + \alpha}{2} < \pi$$
 and $\frac{-\pi}{4} < \frac{2\theta - \alpha}{2} < \frac{\pi}{4}$, it follows that $\cos\left(\frac{2\theta + \alpha}{2}\right) < 0$ and $\cos\left(\frac{2\theta - \alpha}{2}\right) > 0$. Therefore, $d_2 > 0$.

We might also want to consider another specialization of φ under which the matrix N is positive definite.

The Hecke Algebra Representation of the Complex Reflection ... 161

Theorem 6. If $x_2 = -x_1$, $z_1 = 1$, $y_1 = e^{i\theta}$, $y_2 = -e^{-i\theta}$ and $z_2 = e^{i\alpha}$, where $0 < \theta < \frac{\pi}{4}$ and $\frac{\pi}{2} < \alpha < \pi$, then the representation φ is irreducible and unitary relative to a positive definite Hermitian matrix N.

Proof. Since $x_2 = -x_1$ and $z_1 = 1$, it follows that φ is irreducible if and only if $y_1^2 z_2 \neq 1$ and $z_2 \neq y_1^2$. We then substitute y_1 and z_2 by $e^{i\theta}$ and $e^{i\alpha}$, respectively. We get that φ is irreducible if and only if $2\theta + \alpha \neq 2k\pi$ and $2\theta - \alpha \neq 2k\pi$.

Under the hypothesis, we have that $\frac{\pi}{2} < 2\theta + \alpha < \frac{3\pi}{2}$ and $-\pi < 2\theta - \alpha < 0$. We now verify that φ is irreducible.

In contrary, suppose that the representation is reducible. So, either $2\theta + \alpha = 2k\pi$ or $2\theta - \alpha = 2k\pi$ for some $k \in \mathbb{Z}$.

If $2\theta + \alpha = 2k\pi$ for some $k \in \mathbb{Z}$, then $\frac{\pi}{2} < 2k\pi < \frac{3\pi}{2}$. This implies that $\frac{1}{4} < k < \frac{3}{4}$, a contradiction.

If $2\theta - \alpha = 2k\pi$ for some $k \in \mathbb{Z}$, then $-\pi < 2k\pi < 0$. This implies that $-\frac{1}{2} < k < 0$, a contradiction.

We now show that *N* is positive definite.

We denote the principal minors of N by d_i , where i = 1, 2. We have

$$d_1 = 1 \text{ and } d_2 = Det(N).$$

Under the hypothesis, we have

$$Det(N) = \frac{(y_1^2 - z_2)(-1 + y_1^2 z_2)}{4y_1^2 z_2} = \frac{(e^{i2\theta} - e^{i\alpha})(e^{i\pi} + e^{i(2\theta + \alpha)})}{4e^{i(2\theta + \alpha)}}.$$

One can also show that $e^{ia}-e^{ib}=2e^{i\left(\frac{a+b+\pi}{2}\right)}\cos\left(\frac{a-b-\pi}{2}\right)$. This implies that

$$Det(N) = \frac{2e^{i\left(\frac{2\theta + \alpha + \pi}{2}\right)}\cos\left(\frac{2\theta - \alpha - \pi}{2}\right)2e^{i\left(\frac{\pi + 2\theta + \alpha}{2}\right)}\cos\left(\frac{\pi - 2\theta - \alpha}{2}\right)}{4e^{i(2\theta + \alpha)}}$$

$$= -\sin\left(\frac{2\theta - \alpha}{2}\right)\sin\left(\frac{2\theta + \alpha}{2}\right).$$
Since $\frac{\pi}{4} < \frac{2\theta + \alpha}{2} < \frac{3\pi}{4}$ and $\frac{-\pi}{2} < \frac{2\theta - \alpha}{2} < 0$, it follows that $\sin\left(\frac{2\theta + \alpha}{2}\right) > 0$ and $\sin\left(\frac{2\theta - \alpha}{2}\right) < 0$. Therefore, $d_2 > 0$.

5. Necessary and Sufficient Condition for an Element of $\mathcal{H}(G_7,\,u)$ to belong to the Kernel of ϕ

We show that under the hypothesis of Theorem 5 (or Theorem 6), the representation φ is conjugate to a unitary representation.

Theorem 7. For some complex specialization of the indeterminates defined in Theorem 5 or Theorem 6, the representation φ is conjugate to a unitary representation.

Proof. We have that $s_i M s_i^* = M$ or $s_i N s_i^* = N$ under the hypothesis of Theorem 5 or Theorem 6, respectively. Without loss of generality, we consider the matrix M.

Since M is positive definite, it follows that $M = VV^*$. This implies that

$$(V^{-1}s_iV)(V^{-1}s_iV)^* = V^{-1}s_i(VV^*)s_i^*(V^*)^{-1} = I.$$

Set $U_i = V^{-1} s_i V$. We have that $U_i U_i^* = I$. Similarly, $U_i^* U_i = I$. So, U_i is unitary.

After we have shown that the representation φ is conjugate to a unitary representation, we find a necessary and sufficient condition for an element of $\mathcal{H}(G_7, u)$ to belong to the kernel of the representation. This argument is similar to that used in [1], where a criterion for the faithfulness of the Gassner representation of the pure braid group is given.

Theorem 8. An element of $\mathcal{H}(G_7, u)$ belongs to the kernel of the representation if and only if the trace of its image is equal to 2.

Proof. We show that if the trace of the image of an element s_i is 2, then s_i belongs to the kernel of the representation φ .

Since
$$trace(s_i) = 2$$
 and $U_i = V^{-1}s_iV$, it follows that $trace(U_i) = 2$.

 U_i is unitary. This implies that $P_i^{-1}U_iP_i=D_i$ for some nonsingular matrix P_i . Here, D_i is a diagonal matrix which has its diagonal elements the eigenvalues of U_i .

Since $trace(U_i) = 2$, it follows that $\lambda_1 + \lambda_2 = 2$, where λ_i 's are the eigenvalues of U_i . Being unitary, the eigenvalues of U_i are on the unit circle. This implies that $\lambda_1 = \lambda_2 = 1$. It follows that D_i is the identity matrix and so is U_i . This implies that $s_i = I$.

References

- [1] M. Abdulrahim, A faithfulness criterion for the Gassner representation of the pure braid group, Proc. of AMS 125 (1997), 1249-1257.
- [2] D. Bessis and J. Michel, Explicit presentations for exceptional braid groups, Experiment. Math. 13(3) (2004), 257-266.
- [3] J. Birman, Braids, Links and Mapping Class Groups, Annals of Mathematical Studies, Princeton University Press, Vol. 82, 1975.
- [4] M. Broué, G. Malle and R. Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998), 127-190.

Mohammad Y. Chreif and Mohammad N. Abdulrahim

- [5] M. Chlouveraki, Degree and valuation of the Schur elements of cyclotomic Hecke algebras, J. Algebra 320(11) (2008), 3935-3949.
- [6] M. Chreif and M. Abdulrahim, On the irreducibility of the complex specialization of the representation of the Hecke algebra of the complex reflection group G_7 , J. Linear Topological Algebra 5(4) (2016), 263-270.
- [7] A. Cohen, Finite complex reflection groups, Ann. Sci. École Norm. Sup. (4) 9(3) (1976), 379-436.
- [8] I. Gordon and S. Griffeth, Catalan numbers for complex reflection groups, Amer. J. Math. 134(6) (2012), 1491-1502.
- [9] G. Malle and J. Michel, Constructing representations of Hecke algebras for complex reflection groups, LMS J. Comput. Math. 13 (2010), 426-450.
- [10] G. Shephard and J. Todd, Finite unitary reflection groups, Canadian J. Math. 6 (1954), 274-304.