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Abstract

We consider a 2-dimensional representation of the Hecke algebra
H(G;, u), where Gy is the complex reflection group and U is the set
of indeterminates U = (X, Xp, Y1, Y2, Y3, 4> Z, Z3). After specializing

the indeterminates to non-zero complex numbers on the unit circle, we
prove that the representation is unitary relative to a Hermitian positive
definite matrix. We then determine a necessary and sufficient

condition for an element of H(Gj7, u) to belong to the kernel of the

complex specialization of the representation of the Hecke algebra
H(G7, U).

1. Introduction

Let V be a complex vector space and W be a finite irreducible subgroup

of GL(V) generated by complex reflections. Let R be the set of reflections in
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W. For any element s of R, denote by H its pointwise fixed hyperplane. We

define the set V"8 =V — U, p H, and denote by ¥ the quotient V"¢ /I

The braid group associated to (W, V) is the fundamental group B(W) =

0 (V, X) of V' with respect to any point X, € V.

We choose the set of indeterminates, u = (i, j) 1> where s

5,0<j<o(s

runs over the generators of /¥ and u if s and ¢ are conjugate in V.

s,j T Ui

Here o(s) denotes the order of 5. The cyclotomic Hecke algebra associated

to W is the quotient of the group algebra Z[u, u ']B(W) by the ideal

?(s)—l

generated by the relations HJ: 0

(s — ”s,j)-

In [9], Malle and Michel constructed on the cyclotomic Hecke algebra
H(G7, u) of the complex reflection group, G7, an irreducible representation
1
o : H(G7, u) > My(C(u?,u 2)), where u is the set of indeterminates
u= (xlv X25 V1> V25 V35 215 22, Z3)'

In our work, we specialize the indeterminates x;, x5, ¥y, Y2, ¥3, 21, 22
and z3 to nonzero complex numbers on the unit circle. We then get a
representation ¢ : H(G7, u) = GLy(C). In Section 2, we recall, from an
earlier work, some results that determine necessary and sufficient conditions
for the irreducibility of the representation ¢ [6]. In Section 3, we determine a
necessary and sufficient condition that shows that ¢ is unitary relative to a
non-zero invertible Hermitian matrix if and only if y;y, = 1 and x; # x,
(Theorem 4, Proposition 2). In Section 4, we find complex specializations
under which the Hermitian matrices found in Section 3 are positive definite,
and in which the representation ¢ remains to be irreducible (Theorem 5). In
Section 5, we find a necessary and sufficient condition for an element of

H(G7, u) to belong to the kernel of the representation ¢ (Theorem 8).
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2. Definitions, Notations and Theorems

Definition 1 [8]. Let ' be a complex vector space of dimension .
A complex reflection of GL(V) is a non-trivial element of GL(V') which

acts trivially on a hyperplane.

Definition 2 [8]. Let V' be a complex vector space of dimension n.
A complex reflection group is the subgroup of GL(V') generated by complex

reflections.

Examples of complex reflection groups include dihedral groups and

symmetric groups. For n > 3, the dihedral group, D,,, is the group of the

isometries of the plane preserving a regular polygon, with the operation

being composition.

A classification of all irreducible reflection groups shows that there are
34 primitive irreducible reflection groups [10]. The starting point was with
Cohen, who provided a data for those irreducible complex reflection groups
of rank 2 [7].

Definition 3 [4]. The complex reflection group, G5, is an abstract group

defined by the presentation
G; = (t, u, s/t2 =ud =5 =1, tus = ust = stu).
Theorem 1 [2]. The braid group of G7 is isomorphic to the group
B = (s1, 53, 53/515253 = 52535 = 535152)-
Definitions and properties of braid groups are found in [3].

Definition 4 [9]. Let u be the set of indeterminates u = (x1, x5, |,

Y2, V3, 71> 22, 23). The cyclotomic Hecke algebra H(G7, u) of G5 is the

quotient of the group algebra of B over Z[u, u_l] by the relations

(- -2 =0, [T 2a-v)=0, [ (ss-2)=0.
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For more details about the Hecke algebra of G5, see [5].

Any 2-dimensional representation of B gives a representation of

H(G7, u) (see [9]).

Definition 5 [9]. Let u =(x1, x5, V|, V2, V3, 21> 22, 23 )- The representation
¢ is defined as follows:

41
¢ : H(Gy, u) > M, (Clu 2)),

ity (z+2z)x 1
x - +
o(sy) =| ! N1y2 r . O(sp) = Lyl 2

0 X2

-yyaxp 0
and

0 —-r
0(s3) = Nyaxixy |,
r 2] + Zy

where 7 = \/x1X211122125 .

We specialize the indeterminates xi, x5, V1, V2, V3, 21, 2, and z3 to
non-zero complex numbers on the unit circle. We then get a representation
(2 H(G’/, M) - GLz((C)

Definition 6. Principal square root function is defined as follows: for
(04

l'_
z=(1 0), vz =e 2, where -t < o < .

Since a € (-, w, it follows that Vz? =z for any complex number z.

We now recall two theorems that determine necessary and sufficient
conditions that guarantee the irreducibility of ¢.

Theorem 2 [6]. Suppose that x| = x,. Then the representation ¢ is

irreducible if and only if z; # 2122

z
and z; # 222
Y1
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Theorem 3 [6]. Suppose that x; # x,. Then the representation @ is
irreducible if and only if x\yyzy # X221, X|V1Z2 # XpV2Z], X|V2Z] #

XoNzp and xjy\z) # Xp¥2).
3. ¢ : H(G7, u) > GL,(C) is Unitary Relative to a Hermitian Matrix

We find a necessary and sufficient condition that proves that ¢ is unitary
relative to a Hermitian invertible matrix.

Notation 1. Let (*) : M,,(C[/*!]) be an involution defined as follows:

(fij(f))* = fji(t_l)a fij(t) e ).
Definition 7. Let U be an element of GL,(C). Then U is called unitary
if U'U = UU" = I,.
Definition 8. Let H and U be elements of GL,(C). Then U is called
unitary relative to H if UHU™ = H.

Proposition 1 (Schur’s Lemma). Suppose that L is an nxn matrix
such that Lo(g) = o(g)L for each g e G, where o is an irreducible
representation of the group G. Then L = A\l for some A € C, where I is the

n x n identity matrix.

Theorem 4. The images of the generators of H(Gy, u) under the

irreducible representation ¢ are unitary relative to some non-zero invertible

matrix K if and only if y1y, = £1 and x; # x,.
Proof. Suppose that the images of the generators of H(G7, u) under ¢

. . . a b
are unitary relative to a non-zero matrix K = , where a, b, ¢ and

c d
d € C. We consider the matrix of the image of s; under the representation ¢

and still denoted by s;. Here i =1, 2, 3. Simple computations show that

53Ks3(1,1) = d and 5,Ks5(2, 2) = ayiy3.
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Since s3Ks3 = s,Ks5 = K, it follows that d = a = ayfy3. This implies
that a(yy3 —1) = 0.

If we suppose that @ = 0 then, by simple computations, we get that

K = 0. Therefore, y;y, = *I.

Now, suppose to get a contradiction that x; = x,. We have two cases to

investigate:
1 zZ1 + 2y
bxy + a[— + - J
Case 1. yy, = 1. Since s;Ks; (1, 2) = ad VIIZ2 ) p

X2
= K(l, 2), it follows that yl(zl + 22) = 42122 (1 + y12)

Squaring both the sides, we obtain that (y?z, — z)(yiz — z) = 0.

This implies that z; = ylzzz or zp = ylzzl, which contradicts the conditions

of irreducibility of ¢ (Theorem 2).

bx +a[L—y - Zl+22j
2 N ! A —Z12p _

Case 2. y;y, = —1. Since 5,Ks1 (1, 2) = 5

b = K(1, 2), it follows that y;(z; + z5) = \J—z125 (1 = 7).

Squaring both the sides, we obtain that (y?zy + z;)(yz| + z;) = 0.
This implies that z; = —y12 Zy Of zp = —ylz z1, which contradicts the
conditions of irreducibility of ¢ (Theorem 2).

On the other hand, suppose that x; # x, and y;y, = 1. We prove that

the representation ¢ is unitary relative to a Hermitian matrix that will be

determined explicitly. We have two cases to investigate:

Case 3. x; # x, and y;y, =1. Direct computations show that the

images of the generators of H(G7, u) under the representation ¢ are unitary
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relative to a matrix M given by
1 M
e ( 1,2)5
M2’ 1 1

where

2
My, = —x(L+ i) z120 + yivxixz122 (21 + 23)
’ x(x = x2) 37125 ’

2
My = X1 (1 + y{) 212 — yi¥1X02125 (2 + Zz)).

(xl - xz)ylzlzz

Case 4. x| # x, and y;y, = —1. Direct computations show that the
images of the generators of H(G7, u) under the representation ¢ are unitary

relative to a matrix N given by

1 N,
NZ( Lz]’
Ny 1

2
N = xi(=1+ yi)z1zp = »iv—x1%2125 (2 + 23)
1,2 — >

Xl(xl - xz)ymzz

2
Ny = X (e (=1 + y{) 2129 — yi/—X1X02125 (271 + Zz)).

(xl - xz)ymzz

where

It is easy to show that the matrices M and N are invertible because of the

irreducibility of the representation ¢ and the fact that y;y, = £1. O

Proposition 2. The matrices M and N determined in Theorem 4 are

Hermitian (M™ = M, N* = N).

Proof. Since the conjugate of any complex number on the unit circle

equals its inverse, it follows that
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2
—(1+ yD)Vx1x2120 + xiy1(21 + 23)
2
M1 2) = X1 21224 X1X021 22

Xy — X1
2
X1 X2 12122

2
_ [FO+ yiNxxz1zp + (7 + 2)]xxp _ M@, 1)

(xz - xl))’l\/xlx2zlz2

and

2
(=i + D=x1x0212p = xiy1(21 + 23)
2
N, 2) X1Vi 2129 —X1X22122

X - X
2
X1 X2 12122

2
(R e RN R

(xy = X)) y1/-x1322129

This implies that M* = M and N* = N. O

We then show that the matrix M is unique up to scalar multiplication

when x; # x, and y;y, =1. Similarly, for the matrix N when x; # x, and
vz =-1

Proposition 3. If the irreducible representation ¢ is unitary relative to

an invertible matrix A, then A is unique up to scalar multiplication.

Proof. Suppose that the irreducible representation ¢ is unitary relative to

an invertible matrix 4. This implies that sl-As;k =A4,i=1,2,3.

If there exists another invertible matrix B such that s;Bs; = B, then we

get that
(s;4s7) (s B 1571y = 4B7

This implies that s;(4B™') = (4B )s;.
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By Schur’s Lemma, we have that AB7! = cl, for some constant c.

Therefore, A = cB. O

4. The Matrices M and N are Positive Definite for
Some Complex Specializations

We determine complex specializations for the indeterminates under
which the matrices M and N, computed in Section 3, are positive definite,
and in which the representation ¢ remains to be irreducible. We consider

two cases. In the case (x; # x, and y;y, = 1), we consider the matrix M
obtained in Case 3 of Theorem 4. Similarly, in the case (x; # x, and
12 = —1), we consider the matrix N obtained in Case 4 of Theorem 4. In
both cases, we show that M and N are positive definite matrices.

Theorem 5. If xy = —x;, z1 =1, yy =€, y, =¢ ™ and z, = €',
T T T
— <0< and -
4 2

and unitary relative to a positive definite Hermitian matrix M.

where < a < T, then the representation ¢ is irreducible

Proof. Since x, = —x; and z; =1, it follows that, by Theorem 3, ¢ is
irreducible if and only if y1222 #—1 and z, # —ylz. We then substitute y;

and z, by " and &, respectively. We get that ¢ is irreducible if and only
if 20+ o # (2k+1)n and 20 — o # (2k + ).

Under the hypothesis, we have that © < 20 + a < 27 and —g <20-a

T

<2

. We now verify that ¢ is irreducible.

In contrary, suppose that the representation is reducible. So, either
20+a =2k +1)m or 20 — o = (2k + )7 for some k € Z.

If 20 + o = (2k +1)n for some k € Z, then 7 < (2k + )7 < 2n. This

implies that 1 < 2k + 1 < 2, a contradiction.
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T

If 20 —a =(2k+1)n for some k € Z, then —%<(2k+l)n< 3

This implies that —% <2k+1< %, a contradiction.

In Theorem 4, we proved that the representation ¢ is unitary relative to

the matrix M, when x; # x, and y;y, = 1. We now show that M is positive

definite.

We denote the principal minors of M by d;, where i =1, 2. We have
dl =1 and d2 = Det(M).
Under the hypothesis, we have

Oz yEz) (@ 4 ) (0 4+ 20r)y

Det(M) =

.(a-i—b) 5
One can easily show that ¢/ + ¢? = 2¢\ 2 cos(a ; ) This implies
that
i(2e+a) 20 i(26+aj 20
2e 2 cos( 2_ OL)?,e 2 COS(%)
Det(M) = - 101207a)
— _cos 20 — a cos 20 + a
B 2 2 )
Since %< 26; < and —Tn < 262—a < %, it follows that

005(292+ a) <0 and 008(262— oc) > 0. Therefore, d, > 0. O

We might also want to consider another specialization of ¢ under which

the matrix N is positive definite.
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Theorem 6. If x, = —x;, z1 =1, yy =€, yy = - and z, = &',

T T . . .
7 and 5 <o < m, then the representation ¢ is irreducible

where 0 <0 <
and unitary relative to a positive definite Hermitian matrix N.

Proof. Since x, = —x; and z; =1, it follows that ¢ is irreducible if and
only if ylzzz #1 and z, # y12. We then substitute y; and z, by " and

i

e'*, respectively. We get that ¢ is irreducible if and only if 20 + a # 2kmn
and 20 — o # 2km.

Under the hypothesis, we have that g <20+a< 3775 and -m <
20 — a < 0. We now verify that ¢ is irreducible.

In contrary, suppose that the representation is reducible. So, either
20 + o = 2km or 20 — o0 = 2kn for some k € Z.

If 20+ o = 2kn for some k € Z, then % < 2km < 3775 This implies
1 3 -
that 1 <k< 1 a contradiction.

If 20 — o = 2kn for some k € Z, then —n < 2kn < 0. This implies that

—% < k < 0, a contradiction.

We now show that N is positive definite.
We denote the principal minors of N by d;, where i =1, 2. We have
dl =1 and dz = Det(N)

Under the hypothesis, we have

Det(N) = Of —2) (L +)77) _ (€20 =) (™ + 20

4y1222 461(294—0()
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; a+b+m

One can also show that ¢ — ¢? = 2e( 2 jcos(iz_nj. This

implies that

i(26+a+n) 20 i(n+26+oc) 20
2ol 2 Cos(#) 2ol 2 COS(%)
Det(N) = 101207a)
- _sin 20— a sin 20+ a
h 2 2 )
. n 20+a _ 3m - 20—« .
Since 7 < 5 < vy and > < <0, it follows that
sin(zegL oc) >0 and sin(zgz_ oc) < 0. Therefore, d, > 0. O

5. Necessary and Sufficient Condition for an Element of
H(G7, u) to belong to the Kernel of ¢

We show that under the hypothesis of Theorem 5 (or Theorem 6), the

representation ¢ is conjugate to a unitary representation.

Theorem 7. For some complex specialization of the indeterminates
defined in Theorem 5 or Theorem 6, the representation ¢ is conjugate to a

unitary representation.

Proof. We have that s;Ms; = M or s;Ns; = N under the hypothesis

of Theorem 5 or Theorem 6, respectively. Without loss of generality, we
consider the matrix M.

Since M is positive definite, it follows that A/ = VV*. This implies that
Vs sy = v s v si ) = 1L

Set U; = V™ ls;V. We have that U;U; = I. Similarly, UU; = I. So,
U; is unitary. O
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After we have shown that the representation ¢ is conjugate to a unitary
representation, we find a necessary and sufficient condition for an element
of H(G7, u) to belong to the kernel of the representation. This argument
is similar to that used in [1], where a criterion for the faithfulness of the
Gassner representation of the pure braid group is given.

Theorem 8. An element of H(G7, u) belongs to the kernel of the

representation if and only if the trace of its image is equal to 2.

Proof. We show that if the trace of the image of an element s; is 2, then

s; belongs to the kernel of the representation ¢.
Since trace(s;) = 2 and U; = V" \s;V/, it follows that trace(U;) = 2.

U; is unitary. This implies that Pl-_lUl-Pl- = D; for some nonsingular
matrix F.. Here, D; is a diagonal matrix which has its diagonal elements the

eigenvalues of U;.

Since trace(U;) = 2, it follows that A; + A, = 2, where A;’s are the
eigenvalues of U;. Being unitary, the eigenvalues of U; are on the unit
circle. This implies that A; = A, =1. It follows that D; is the identity

matrix and so is U;. This implies that s; = I. O
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