THE HECKE ALGEBRA REPRESENTATION OF THE COMPLEX REFLECTION GROUP G_{7} IS UNITARY

Mohammad Y. Chreif and Mohammad N. Abdulrahim
Department of Mathematics
Beirut Arab University
P. O. Box 11-5020, Beirut, Lebanon

Abstract

We consider a 2 -dimensional representation of the Hecke algebra $\mathcal{H}\left(G_{7}, u\right)$, where G_{7} is the complex reflection group and u is the set of indeterminates $u=\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}\right)$. After specializing the indeterminates to non-zero complex numbers on the unit circle, we prove that the representation is unitary relative to a Hermitian positive definite matrix. We then determine a necessary and sufficient condition for an element of $\mathcal{H}\left(G_{7}, u\right)$ to belong to the kernel of the complex specialization of the representation of the Hecke algebra $\mathcal{H}\left(G_{7}, u\right)$.

1. Introduction

Let V be a complex vector space and W be a finite irreducible subgroup of $G L(V)$ generated by complex reflections. Let R be the set of reflections in

[^0]W. For any element s of R, denote by H_{s} its pointwise fixed hyperplane. We define the set $V^{r e g}=V-\bigcup_{s \in R} H_{S}$ and denote by \bar{V} the quotient $V^{r e g} / W$.

The braid group associated to (W, V) is the fundamental group $B(W)=$ $\pi_{1}\left(\bar{V}, \bar{x}_{0}\right)$ of \bar{V} with respect to any point $\bar{x}_{0} \in \bar{V}$.

We choose the set of indeterminates, $u=\left(u_{s, j}\right)_{s, 0 \leq j \leq o(s)-1}$, where s runs over the generators of W and $u_{s, j}=u_{t, j}$ if s and t are conjugate in W. Here $o(s)$ denotes the order of s. The cyclotomic Hecke algebra associated to W is the quotient of the group algebra $\mathbb{Z}\left[u, u^{-1}\right] B(W)$ by the ideal generated by the relations $\prod_{j=0}^{o(s)-1}\left(s-u_{s, j}\right)$.

In [9], Malle and Michel constructed on the cyclotomic Hecke algebra $\mathcal{H}\left(G_{7}, u\right)$ of the complex reflection group, G_{7}, an irreducible representation $\phi: \mathcal{H}\left(G_{7}, u\right) \rightarrow M_{2}\left(\mathbb{C}\left(u^{\frac{1}{2}}, u^{-\frac{1}{2}}\right)\right)$, where u is the set of indeterminates $u=\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}\right)$.

In our work, we specialize the indeterminates $x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}$ and z_{3} to nonzero complex numbers on the unit circle. We then get a representation $\varphi: \mathcal{H}\left(G_{7}, u\right) \rightarrow G L_{2}(\mathbb{C})$. In Section 2, we recall, from an earlier work, some results that determine necessary and sufficient conditions for the irreducibility of the representation φ [6]. In Section 3, we determine a necessary and sufficient condition that shows that φ is unitary relative to a non-zero invertible Hermitian matrix if and only if $y_{1} y_{2}= \pm 1$ and $x_{1} \neq x_{2}$ (Theorem 4, Proposition 2). In Section 4, we find complex specializations under which the Hermitian matrices found in Section 3 are positive definite, and in which the representation φ remains to be irreducible (Theorem 5). In Section 5, we find a necessary and sufficient condition for an element of $\mathcal{H}\left(G_{7}, u\right)$ to belong to the kernel of the representation φ (Theorem 8).

2. Definitions, Notations and Theorems

Definition 1 [8]. Let V be a complex vector space of dimension n. A complex reflection of $G L(V)$ is a non-trivial element of $G L(V)$ which acts trivially on a hyperplane.

Definition 2 [8]. Let V be a complex vector space of dimension n. A complex reflection group is the subgroup of $G L(V)$ generated by complex reflections.

Examples of complex reflection groups include dihedral groups and symmetric groups. For $n \geq 3$, the dihedral group, D_{n}, is the group of the isometries of the plane preserving a regular polygon, with the operation being composition.

A classification of all irreducible reflection groups shows that there are 34 primitive irreducible reflection groups [10]. The starting point was with Cohen, who provided a data for those irreducible complex reflection groups of rank 2 [7].

Definition 3 [4]. The complex reflection group, G_{7}, is an abstract group defined by the presentation

$$
G_{7}=\left\langle t, u, s / t^{2}=u^{3}=s^{3}=1, t u s=u s t=s t u\right\rangle .
$$

Theorem 1 [2]. The braid group of G_{7} is isomorphic to the group

$$
B=\left\langle s_{1}, s_{2}, s_{3} / s_{1} s_{2} s_{3}=s_{2} s_{3} s_{1}=s_{3} s_{1} s_{2}\right\rangle .
$$

Definitions and properties of braid groups are found in [3].
Definition 4 [9]. Let u be the set of indeterminates $u=\left(x_{1}, x_{2}, y_{1}\right.$, $\left.y_{2}, y_{3}, z_{1}, z_{2}, z_{3}\right)$. The cyclotomic Hecke algebra $\mathcal{H}\left(G_{7}, u\right)$ of G_{7} is the quotient of the group algebra of B over $\mathbb{Z}\left[u, u^{-1}\right]$ by the relations

$$
\left(s_{1}-x_{1}\right)\left(s_{1}-x_{2}\right)=0, \quad \prod_{i=1}^{3}\left(s_{2}-y_{i}\right)=0, \quad \prod_{i=1}^{3}\left(s_{3}-z_{i}\right)=0 .
$$

For more details about the Hecke algebra of G_{7}, see [5].
Any 2-dimensional representation of B gives a representation of $\mathcal{H}\left(G_{7}, u\right)$ (see [9]).

Definition 5 [9]. Let $u=\left(x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}\right)$. The representation ϕ is defined as follows:

$$
\begin{aligned}
& \phi: \mathcal{H}\left(G_{7}, u\right) \rightarrow M_{2}\left(\mathbb{C}\left(u^{ \pm \frac{1}{2}}\right)\right), \\
& \phi\left(s_{1}\right)=\left(\begin{array}{cc}
x_{1} & \frac{y_{1}+y_{2}}{y_{1} y_{2}}-\frac{\left(z_{1}+z_{2}\right) x_{2}}{r} \\
0 & x_{2}
\end{array}\right), \quad \phi\left(s_{2}\right)=\left(\begin{array}{cc}
y_{1}+y_{2} & \frac{1}{x_{1}} \\
-y_{1} y_{2} x_{1} & 0
\end{array}\right)
\end{aligned}
$$

and

$$
\phi\left(s_{3}\right)=\left(\begin{array}{cc}
0 & \frac{-r}{y_{1} y_{2} x_{1} x_{2}} \\
r & z_{1}+z_{2}
\end{array}\right)
$$

where $r=\sqrt{x_{1} x_{2} y_{1} y_{2} z_{1} z_{2}}$.
We specialize the indeterminates $x_{1}, x_{2}, y_{1}, y_{2}, y_{3}, z_{1}, z_{2}$ and z_{3} to non-zero complex numbers on the unit circle. We then get a representation $\varphi: \mathcal{H}\left(G_{7}, u\right) \rightarrow G L_{2}(\mathbb{C})$.

Definition 6. Principal square root function is defined as follows: for $z=(1, \alpha), \sqrt{z}=e^{i \frac{\alpha}{2}}$, where $-\pi<\alpha \leq \pi$.

Since $\alpha \in(-\pi, \pi]$, it follows that $\sqrt{z^{2}}=z$ for any complex number z.
We now recall two theorems that determine necessary and sufficient conditions that guarantee the irreducibility of φ.

Theorem 2 [6]. Suppose that $x_{1}=x_{2}$. Then the representation φ is irreducible if and only if $z_{1} \neq \frac{y_{1} z_{2}}{y_{2}}$ and $z_{1} \neq \frac{y_{2} z_{2}}{y_{1}}$.

Theorem 3 [6]. Suppose that $x_{1} \neq x_{2}$. Then the representation φ is irreducible if and only if $x_{1} y_{2} z_{2} \neq x_{2} y_{1} z_{1}, \quad x_{1} y_{1} z_{2} \neq x_{2} y_{2} z_{1}, \quad x_{1} y_{2} z_{1} \neq$ $x_{2} y_{1} z_{2}$ and $x_{1} y_{1} z_{1} \neq x_{2} y_{2} z_{2}$.
3. $\varphi: \mathcal{H}\left(G_{7}, u\right) \rightarrow G L_{2}(\mathbb{C})$ is Unitary Relative to a Hermitian Matrix

We find a necessary and sufficient condition that proves that φ is unitary relative to a Hermitian invertible matrix.

Notation 1. Let $(*): M_{m}\left(\mathbb{C}\left[t^{ \pm 1}\right]\right)$ be an involution defined as follows:

$$
\left(f_{i j}(t)\right)^{*}=f_{j i}\left(t^{-1}\right), \quad f_{i j}(t) \in \mathbb{C}\left[t^{ \pm 1}\right] .
$$

Definition 7. Let U be an element of $G L_{2}(\mathbb{C})$. Then U is called unitary if $U^{*} U=U U^{*}=I_{2}$.

Definition 8. Let H and U be elements of $G L_{2}(\mathbb{C})$. Then U is called unitary relative to H if $U H U^{*}=H$.

Proposition 1 (Schur's Lemma). Suppose that L is an $n \times n$ matrix such that $L \alpha(g)=\alpha(g) L$ for each $g \in G$, where α is an irreducible representation of the group G. Then $L=\lambda I$ for some $\lambda \in \mathbb{C}$, where I is the $n \times n$ identity matrix.

Theorem 4. The images of the generators of $\mathcal{H}\left(G_{7}, u\right)$ under the irreducible representation φ are unitary relative to some non-zero invertible matrix K if and only if $y_{1} y_{2}= \pm 1$ and $x_{1} \neq x_{2}$.

Proof. Suppose that the images of the generators of $\mathcal{H}\left(G_{7}, u\right)$ under φ are unitary relative to a non-zero matrix $K=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, where a, b, c and $d \in \mathbb{C}$. We consider the matrix of the image of s_{i} under the representation φ and still denoted by s_{i}. Here $i=1,2,3$. Simple computations show that $s_{3} K s_{3}^{*}(1,1)=d$ and $s_{2} K s_{2}^{*}(2,2)=a y_{1}^{2} y_{2}^{2}$.

Since $s_{3} K s_{3}^{*}=s_{2} K s_{2}^{*}=K$, it follows that $d=a=a y_{1}^{2} y_{2}^{2}$. This implies that $a\left(y_{1}^{2} y_{2}^{2}-1\right)=0$.

If we suppose that $a=0$ then, by simple computations, we get that $K=0$. Therefore, $y_{1} y_{2}= \pm 1$.

Now, suppose to get a contradiction that $x_{1}=x_{2}$. We have two cases to investigate:

Case 1. $y_{1} y_{2}=1$. Since $s_{1} K s_{1}^{*}(1,2)=\frac{b x_{2}+a\left(\frac{1}{y_{1}}+y_{1}-\frac{z_{1}+z_{2}}{\sqrt{z_{1} z_{2}}}\right)}{x_{2}}=b$ $=K(1,2)$, it follows that $y_{1}\left(z_{1}+z_{2}\right)=\sqrt{z_{1} z_{2}}\left(1+y_{1}^{2}\right)$.

Squaring both the sides, we obtain that $\left(y_{1}^{2} z_{2}-z_{1}\right)\left(y_{1}^{2} z_{1}-z_{2}\right)=0$. This implies that $z_{1}=y_{1}^{2} z_{2}$ or $z_{2}=y_{1}^{2} z_{1}$, which contradicts the conditions of irreducibility of φ (Theorem 2).

Case 2. $y_{1} y_{2}=-1$. Since $s_{1} K s_{1}^{*}(1,2)=\frac{b x_{2}+a\left(\frac{1}{y_{1}}-y_{1}-\frac{z_{1}+z_{2}}{\sqrt{-z_{1} z_{2}}}\right)}{x_{2}}=$ $b=K(1,2)$, it follows that $y_{1}\left(z_{1}+z_{2}\right)=\sqrt{-z_{1} z_{2}}\left(1-y_{1}^{2}\right)$.

Squaring both the sides, we obtain that $\left(y_{1}^{2} z_{2}+z_{1}\right)\left(y_{1}^{2} z_{1}+z_{2}\right)=0$. This implies that $z_{1}=-y_{1}^{2} z_{2}$ or $z_{2}=-y_{1}^{2} z_{1}$, which contradicts the conditions of irreducibility of φ (Theorem 2).

On the other hand, suppose that $x_{1} \neq x_{2}$ and $y_{1} y_{2}= \pm 1$. We prove that the representation φ is unitary relative to a Hermitian matrix that will be determined explicitly. We have two cases to investigate:

Case 3. $x_{1} \neq x_{2}$ and $y_{1} y_{2}=1$. Direct computations show that the images of the generators of $\mathcal{H}\left(G_{7}, u\right)$ under the representation φ are unitary
relative to a matrix M given by

$$
M=\left(\begin{array}{cc}
1 & M_{1,2} \\
M_{2,1} & 1
\end{array}\right)
$$

where

$$
\begin{aligned}
& M_{1,2}=\frac{-x_{1}\left(1+y_{1}^{2}\right) z_{1} z_{2}+y_{1} \sqrt{x_{1} x_{2} z_{1} z_{2}}\left(z_{1}+z_{2}\right)}{x_{1}\left(x_{1}-x_{2}\right) y_{1} z_{1} z_{2}} \\
& M_{2,1}=\frac{x_{1}\left(x_{2}\left(1+y_{1}^{2}\right) z_{1} z_{2}-y_{1} \sqrt{x_{1} x_{2} z_{1} z_{2}}\left(z_{1}+z_{2}\right)\right)}{\left(x_{1}-x_{2}\right) y_{1} z_{1} z_{2}} .
\end{aligned}
$$

Case 4. $x_{1} \neq x_{2}$ and $y_{1} y_{2}=-1$. Direct computations show that the images of the generators of $\mathcal{H}\left(G_{7}, u\right)$ under the representation φ are unitary relative to a matrix N given by

$$
N=\left(\begin{array}{cc}
1 & N_{1,2} \\
N_{2,1} & 1
\end{array}\right)
$$

where

$$
\begin{aligned}
& N_{1,2}=\frac{x_{1}\left(-1+y_{1}^{2}\right) z_{1} z_{2}-y_{1} \sqrt{-x_{1} x_{2} z_{1} z_{2}}\left(z_{1}+z_{2}\right)}{x_{1}\left(x_{1}-x_{2}\right) y_{1} z_{1} z_{2}}, \\
& N_{2,1}=\frac{x_{1}\left(x_{2}\left(-1+y_{1}^{2}\right) z_{1} z_{2}-y_{1} \sqrt{-x_{1} x_{2} z_{1} z_{2}}\left(z_{1}+z_{2}\right)\right)}{\left(x_{1}-x_{2}\right) y_{1} z_{1} z_{2}} .
\end{aligned}
$$

It is easy to show that the matrices M and N are invertible because of the irreducibility of the representation φ and the fact that $y_{1} y_{2}= \pm 1$.

Proposition 2. The matrices M and N determined in Theorem 4 are Hermitian $\left(M^{*}=M, N^{*}=N\right)$.

Proof. Since the conjugate of any complex number on the unit circle equals its inverse, it follows that

$$
\begin{aligned}
\overline{M(1,2)} & =\frac{\frac{-\left(1+y_{1}^{2}\right) \sqrt{x_{1} x_{2} z_{1} z_{2}}+x_{1} y_{1}\left(z_{1}+z_{2}\right)}{x_{1} y_{1}^{2} z_{1} z_{2} \sqrt{x_{1} x_{2} z_{1} z_{2}}}}{\frac{x_{2}-x_{1}}{x_{1}^{2} x_{2} y_{1} z_{1} z_{2}}} \\
& =\frac{\left[-\left(1+y_{1}^{2}\right) \sqrt{x_{1} x_{2} z_{1} z_{2}}+x_{1} y_{1}\left(z_{1}+z_{2}\right)\right] x_{1} x_{2}}{\left(x_{2}-x_{1}\right) y_{1} \sqrt{x_{1} x_{2} z_{1} z_{2}}}=M(2,1)
\end{aligned}
$$

and

$$
\begin{aligned}
\overline{N(1,2)} & =\frac{\frac{\left(-y_{1}^{2}+1\right) \sqrt{-x_{1} x_{2} z_{1} z_{2}}-x_{1} y_{1}\left(z_{1}+z_{2}\right)}{x_{1} y_{1}^{2} z_{1} z_{2} \sqrt{-x_{1} x_{2} z_{1} z_{2}}}}{\frac{x_{2}-x_{1}}{x_{1}^{2} x_{2} y_{1} z_{1} z_{2}}} \\
& =\frac{\left[\left(-y_{1}^{2}+1\right) \sqrt{-x_{1} x_{2} z_{1} z_{2}}-x_{1} y_{1}\left(z_{1}+z_{2}\right)\right] x_{1} x_{2}}{\left(x_{2}-x_{1}\right) y_{1} \sqrt{-x_{1} x_{2} z_{1} z_{2}}}=N(2,1) .
\end{aligned}
$$

This implies that $M^{*}=M$ and $N^{*}=N$.
We then show that the matrix M is unique up to scalar multiplication when $x_{1} \neq x_{2}$ and $y_{1} y_{2}=1$. Similarly, for the matrix N when $x_{1} \neq x_{2}$ and $y_{1} y_{2}=-1$.

Proposition 3. If the irreducible representation φ is unitary relative to an invertible matrix A, then A is unique up to scalar multiplication.

Proof. Suppose that the irreducible representation φ is unitary relative to an invertible matrix A. This implies that $s_{i} A s_{i}^{*}=A, i=1,2,3$.

If there exists another invertible matrix B such that $s_{i} B s_{i}^{*}=B$, then we get that

$$
\left(s_{i} A s_{i}^{*}\right)\left(s_{i}^{*-1} B^{-1} s_{i}^{-1}\right)=A B^{-1} .
$$

This implies that $s_{i}\left(A B^{-1}\right)=\left(A B^{-1}\right) s_{i}$.

By Schur's Lemma, we have that $A B^{-1}=c I_{2}$ for some constant c. Therefore, $A=c B$.

4. The Matrices M and N are Positive Definite for Some Complex Specializations

We determine complex specializations for the indeterminates under which the matrices M and N, computed in Section 3, are positive definite, and in which the representation φ remains to be irreducible. We consider two cases. In the case $\left(x_{1} \neq x_{2}\right.$ and $\left.y_{1} y_{2}=1\right)$, we consider the matrix M obtained in Case 3 of Theorem 4. Similarly, in the case ($x_{1} \neq x_{2}$ and $y_{1} y_{2}=-1$), we consider the matrix N obtained in Case 4 of Theorem 4. In both cases, we show that M and N are positive definite matrices.

Theorem 5. If $x_{2}=-x_{1}, z_{1}=1, y_{1}=e^{i \theta}, y_{2}=e^{-i \theta}$ and $z_{2}=e^{i \alpha}$, where $\frac{\pi}{4}<\theta<\frac{\pi}{2}$ and $\frac{\pi}{2}<\alpha<\pi$, then the representation φ is irreducible and unitary relative to a positive definite Hermitian matrix M.

Proof. Since $x_{2}=-x_{1}$ and $z_{1}=1$, it follows that, by Theorem 3, φ is irreducible if and only if $y_{1}^{2} z_{2} \neq-1$ and $z_{2} \neq-y_{1}^{2}$. We then substitute y_{1} and z_{2} by $e^{i \theta}$ and $e^{i \alpha}$, respectively. We get that φ is irreducible if and only if $2 \theta+\alpha \neq(2 k+1) \pi$ and $2 \theta-\alpha \neq(2 k+1) \pi$.

Under the hypothesis, we have that $\pi<2 \theta+\alpha<2 \pi$ and $-\frac{\pi}{2}<2 \theta-\alpha$ $<\frac{\pi}{2}$. We now verify that φ is irreducible.

In contrary, suppose that the representation is reducible. So, either $2 \theta+\alpha=(2 k+1) \pi$ or $2 \theta-\alpha=(2 k+1) \pi$ for some $k \in \mathbb{Z}$.

If $2 \theta+\alpha=(2 k+1) \pi$ for some $k \in \mathbb{Z}$, then $\pi<(2 k+1) \pi<2 \pi$. This implies that $1<2 k+1<2$, a contradiction.

If $2 \theta-\alpha=(2 k+1) \pi$ for some $k \in \mathbb{Z}$, then $-\frac{\pi}{2}<(2 k+1) \pi<\frac{\pi}{2}$. This implies that $-\frac{1}{2}<2 k+1<\frac{1}{2}$, a contradiction.

In Theorem 4, we proved that the representation φ is unitary relative to the matrix M, when $x_{1} \neq x_{2}$ and $y_{1} y_{2}=1$. We now show that M is positive definite.

We denote the principal minors of M by d_{i}, where $i=1$, 2 . We have

$$
d_{1}=1 \text { and } d_{2}=\operatorname{Det}(M) .
$$

Under the hypothesis, we have
$\operatorname{Det}(M)=-\frac{\left(y_{1}^{2}+z_{2}\right)\left(1+y_{1}^{2} z_{2}\right)}{4 y_{1}^{2} z_{2}}=-\frac{\left(e^{i 2 \theta}+e^{i \alpha}\right)\left(e^{i 0}+e^{i(2 \theta+\alpha)}\right)}{4 e^{i(2 \theta+\alpha)}}$.
One can easily show that $e^{i a}+e^{i b}=2 e^{i\left(\frac{a+b}{2}\right)} \cos \left(\frac{a-b}{2}\right)$. This implies that

$$
\begin{aligned}
\operatorname{Det}(M) & =-\frac{2 e^{i\left(\frac{2 \theta+\alpha}{2}\right)} \cos \left(\frac{2 \theta-\alpha}{2}\right) 2 e^{i\left(\frac{2 \theta+\alpha}{2}\right)} \cos \left(\frac{2 \theta+\alpha}{2}\right)}{4 e^{i(2 \theta+\alpha)}} \\
& =-\cos \left(\frac{2 \theta-\alpha}{2}\right) \cos \left(\frac{2 \theta+\alpha}{2}\right) .
\end{aligned}
$$

Since $\frac{\pi}{2}<\frac{2 \theta+\alpha}{2}<\pi$ and $\frac{-\pi}{4}<\frac{2 \theta-\alpha}{2}<\frac{\pi}{4}$, it follows that $\cos \left(\frac{2 \theta+\alpha}{2}\right)<0$ and $\cos \left(\frac{2 \theta-\alpha}{2}\right)>0$. Therefore, $d_{2}>0$.

We might also want to consider another specialization of φ under which the matrix N is positive definite.

Theorem 6. If $x_{2}=-x_{1}, z_{1}=1, y_{1}=e^{i \theta}, y_{2}=-e^{-i \theta}$ and $z_{2}=e^{i \alpha}$, where $0<\theta<\frac{\pi}{4}$ and $\frac{\pi}{2}<\alpha<\pi$, then the representation φ is irreducible and unitary relative to a positive definite Hermitian matrix N.

Proof. Since $x_{2}=-x_{1}$ and $z_{1}=1$, it follows that φ is irreducible if and only if $y_{1}^{2} z_{2} \neq 1$ and $z_{2} \neq y_{1}^{2}$. We then substitute y_{1} and z_{2} by $e^{i \theta}$ and $e^{i \alpha}$, respectively. We get that φ is irreducible if and only if $2 \theta+\alpha \neq 2 k \pi$ and $2 \theta-\alpha \neq 2 k \pi$.

Under the hypothesis, we have that $\frac{\pi}{2}<2 \theta+\alpha<\frac{3 \pi}{2}$ and $-\pi<$ $2 \theta-\alpha<0$. We now verify that φ is irreducible.

In contrary, suppose that the representation is reducible. So, either $2 \theta+\alpha=2 k \pi$ or $2 \theta-\alpha=2 k \pi$ for some $k \in \mathbb{Z}$.

If $2 \theta+\alpha=2 k \pi$ for some $k \in \mathbb{Z}$, then $\frac{\pi}{2}<2 k \pi<\frac{3 \pi}{2}$. This implies that $\frac{1}{4}<k<\frac{3}{4}$, a contradiction.

If $2 \theta-\alpha=2 k \pi$ for some $k \in \mathbb{Z}$, then $-\pi<2 k \pi<0$. This implies that $-\frac{1}{2}<k<0$, a contradiction.

We now show that N is positive definite.
We denote the principal minors of N by d_{i}, where $i=1,2$. We have

$$
d_{1}=1 \text { and } d_{2}=\operatorname{Det}(N)
$$

Under the hypothesis, we have

$$
\operatorname{Det}(N)=\frac{\left(y_{1}^{2}-z_{2}\right)\left(-1+y_{1}^{2} z_{2}\right)}{4 y_{1}^{2} z_{2}}=\frac{\left(e^{i 2 \theta}-e^{i \alpha}\right)\left(e^{i \pi}+e^{i(2 \theta+\alpha)}\right)}{4 e^{i(2 \theta+\alpha)}}
$$

One can also show that $e^{i a}-e^{i b}=2 e^{i\left(\frac{a+b+\pi}{2}\right)} \cos \left(\frac{a-b-\pi}{2}\right)$. This implies that

$$
\begin{aligned}
\operatorname{Det}(N) & =\frac{2 e^{i\left(\frac{2 \theta+\alpha+\pi}{2}\right)} \cos \left(\frac{2 \theta-\alpha-\pi}{2}\right) 2 e^{i\left(\frac{\pi+2 \theta+\alpha}{2}\right)} \cos \left(\frac{\pi-2 \theta-\alpha}{2}\right)}{4 e^{i(2 \theta+\alpha)}} \\
& =-\sin \left(\frac{2 \theta-\alpha}{2}\right) \sin \left(\frac{2 \theta+\alpha}{2}\right) .
\end{aligned}
$$

Since $\frac{\pi}{4}<\frac{2 \theta+\alpha}{2}<\frac{3 \pi}{4}$ and $\frac{-\pi}{2}<\frac{2 \theta-\alpha}{2}<0$, it follows that $\sin \left(\frac{2 \theta+\alpha}{2}\right)>0$ and $\sin \left(\frac{2 \theta-\alpha}{2}\right)<0$. Therefore, $d_{2}>0$.

5. Necessary and Sufficient Condition for an Element of $\mathcal{H}\left(G_{7}, u\right)$ to belong to the Kernel of φ

We show that under the hypothesis of Theorem 5 (or Theorem 6), the representation φ is conjugate to a unitary representation.

Theorem 7. For some complex specialization of the indeterminates defined in Theorem 5 or Theorem 6, the representation φ is conjugate to a unitary representation.

Proof. We have that $s_{i} M s_{i}^{*}=M$ or $s_{i} N s_{i}^{*}=N$ under the hypothesis of Theorem 5 or Theorem 6, respectively. Without loss of generality, we consider the matrix M.

Since M is positive definite, it follows that $M=V V^{*}$. This implies that

$$
\left(V^{-1} s_{i} V\right)\left(V^{-1} s_{i} V\right)^{*}=V^{-1} s_{i}\left(V V^{*}\right) s_{i}^{*}\left(V^{*}\right)^{-1}=I .
$$

Set $U_{i}=V^{-1} s_{i} V$. We have that $U_{i} U_{i}^{*}=I$. Similarly, $U_{i}^{*} U_{i}=I$. So, U_{i} is unitary.

After we have shown that the representation φ is conjugate to a unitary representation, we find a necessary and sufficient condition for an element of $\mathcal{H}\left(G_{7}, u\right)$ to belong to the kernel of the representation. This argument is similar to that used in [1], where a criterion for the faithfulness of the Gassner representation of the pure braid group is given.

Theorem 8. An element of $\mathcal{H}\left(G_{7}, u\right)$ belongs to the kernel of the representation if and only if the trace of its image is equal to 2 .

Proof. We show that if the trace of the image of an element s_{i} is 2 , then s_{i} belongs to the kernel of the representation φ.

Since $\operatorname{trace}\left(s_{i}\right)=2$ and $U_{i}=V^{-1} s_{i} V$, it follows that $\operatorname{trace}\left(U_{i}\right)=2$.
U_{i} is unitary. This implies that $P_{i}^{-1} U_{i} P_{i}=D_{i}$ for some nonsingular matrix P_{i}. Here, D_{i} is a diagonal matrix which has its diagonal elements the eigenvalues of U_{i}.

Since $\operatorname{trace}\left(U_{i}\right)=2$, it follows that $\lambda_{1}+\lambda_{2}=2$, where λ_{i} 's are the eigenvalues of U_{i}. Being unitary, the eigenvalues of U_{i} are on the unit circle. This implies that $\lambda_{1}=\lambda_{2}=1$. It follows that D_{i} is the identity matrix and so is U_{i}. This implies that $s_{i}=I$.

References

[1] M. Abdulrahim, A faithfulness criterion for the Gassner representation of the pure braid group, Proc. of AMS 125 (1997), 1249-1257.
[2] D. Bessis and J. Michel, Explicit presentations for exceptional braid groups, Experiment. Math. 13(3) (2004), 257-266.
[3] J. Birman, Braids, Links and Mapping Class Groups, Annals of Mathematical Studies, Princeton University Press, Vol. 82, 1975.
[4] M. Broué, G. Malle and R. Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998), 127-190.

164 Mohammad Y. Chreif and Mohammad N. Abdulrahim
[5] M. Chlouveraki, Degree and valuation of the Schur elements of cyclotomic Hecke algebras, J. Algebra 320(11) (2008), 3935-3949.
[6] M. Chreif and M. Abdulrahim, On the irreducibility of the complex specialization of the representation of the Hecke algebra of the complex reflection group G_{7}, J. Linear Topological Algebra 5(4) (2016), 263-270.
[7] A. Cohen, Finite complex reflection groups, Ann. Sci. École Norm. Sup. (4) 9(3) (1976), 379-436.
[8] I. Gordon and S. Griffeth, Catalan numbers for complex reflection groups, Amer. J. Math. 134(6) (2012), 1491-1502.
[9] G. Malle and J. Michel, Constructing representations of Hecke algebras for complex reflection groups, LMS J. Comput. Math. 13 (2010), 426-450.
[10] G. Shephard and J. Todd, Finite unitary reflection groups, Canadian J. Math. 6 (1954), 274-304.

[^0]: Received: September 13, 2016; Accepted: November 11, 2016
 2010 Mathematics Subject Classification: 20F36.
 Keywords and phrases: braid group, Hecke algebra, irreducible, reflections.

