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Abstract 

Within the study of parametric geometry of numbers, Schmidt and 

Summerer introduced so-called regular graphs. Roughly speaking,        

the successive minima functions for the classical simultaneous 

Diophantine approximation problem have a very special pattern if the 

vector ζ  induces a regular graph. The regular graph is, in particular, 

of interest due to a conjecture by Schmidt and Summerer concerning 

classic approximation constants. This paper aims to provide several 

new results on the behavior of the successive minima functions for the 

regular graph. Moreover, we improve the best known upper bounds for 

the classic approximation constants ( ),ˆ ζnw  provided that the Schmidt-

Summerer conjecture is true. 
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1. Introduction 

1.1. Outline 

This paper aims, on one hand, to give a better understanding of the 
regular graph defined by Schmidt and Summerer, and on the other hand, to 
establish a connection to the uniform approximation constants .ˆnw  Theorems 

2.4 and 2.6 in this paper are the main results. In Subsection 1.3, we will 
define the regular graph and explain its significance for simultaneous 
Diophantine approximation. We recommend the reader to look at the 
illustrations of combined graphs and, in particular, the regular graph in        
[23, p. 90], another sketch adopted from [19, p. 72] is visible in Subsection 
1.3. See also [19] for Matlab plots of the combined graph for special choices 
of real vectors. Finally, in Section 4, we discuss the consequences of another 
reasonable conjecture to uniform approximation. 

1.2. Geometry of numbers 

We start with a classical problem of simultaneous approximation. 

Assume ( )nζζ=ζ ...,,1  in nR  is given. For ,11 +≤≤ nj  let =λ jn,  

( )ζλ jn,  be the supremum of real ν for which there are arbitrarily large X 

such that the system 

ν−

≤≤
≤−ζ≤ XyxXx jj

kj1
max,  (1) 

has j linearly independent solution vectors ( )nyyx ...,,, 1  in .1+nZ  

Moreover, let ( )ζλ=λ jnjn ,,
ˆˆ  be the supremum of ν such that the system (1) 

has j linearly independent integer vector solutions ( )nyyx ...,,, 1  for all 

large X. For ,1,nλ  we will also simply write ,nλ  and similarly nλ̂  for .ˆ
1,nλ  

For all ,nR∈ζ  Minkowski’s first lattice point theorem (or Dirichlet’s 
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theorem) implies the estimates 

.1ˆ
nnn ≥λ≥λ  (2) 

More generally, it can be shown that 

( ),111
10,11,1

,2, +≤≤
−

≤λ≤≤λ≤∞≤λ≤ njjnn jnnn  (3) 

and similarly 

( ) .1ˆ0,21ˆ0,1ˆ1
1,, nnjjn nnjnn ≤λ≤≤≤≤λ≤≤λ≤ +  (4) 

See [19, (14)-(18)]. Moreover, 1,,
ˆ

−λ≥λ jnjn  holds for 12 +≤≤ nj  as 

pointed out in [21]. 

Schmidt and Summerer investigated a parametric version of the 
simultaneous approximation problem above [21, 22]. We will now introduce 
some concepts and results of the evolved parametric geometry of numbers 
from [21]. Our notation will partially deviate from [21] for technical reasons. 

Keep 1≥n  an integer and ( )nζζ=ζ ...,,1  a fixed vector in .nR  For any 

parameter 1>Q  and any ,11 +≤≤ nj  consider the largest number ν such 

that 

ν+−

≤≤

ν+ ≤−ζ≤ n
jj

kj
QyxQx 1

1
1 max,  

has j linearly independent integral solution vectors ( ) ....,,, 1
1

+∈ n
nyyx Z  

Denote by ( )Qjn,ψ  this value. Dirichlet’s theorem yields ( ) 01, <ψ Qn  for 

all .1>Q  Further, let 

( ) ( ).suplim,inflim ,, QQ j
Q

jnj
Qjn ψ=ψψ=ψ

∞→∞→
 

It is not hard to see that 

( ) ( ) ( ) ,1,11 1,2,1, >≤ψ≤≤ψ≤ψ≤− + QnQQQ nnnn  
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and, in particular, 

.11,11 ,, +≤≤≤ψ≤ψ≤− njnjnjn  

For ,log Qq =  consider the derived functions 

( ) ( ) .11,,, +≤≤ψ= njQqqL jnjn  (5) 

They have the nice property of being piecewise linear with slope among 
{ }.1,1 n−  The functions jn,ψ  and the derived jnL ,  can alternatively be 

defined via a classical successive minima problem of a parametrized family 
of convex bodies with respect to a lattice. For the details, see [21]. A crucial 
observation from this point of view is that Minkowski’s second theorem 
yields pointed out in [21] is that the sum of jnL ,  over j is uniformly bounded 

by absolute value for .0>q  The connection between the constants jn,λ  

and the functions jn,ψ  is given by the formula 

( ) ( ) ( ) ( ) .11,11ˆ111 ,,,, +≤≤+=ψ+λ+=ψ+λ+ njn
n

jnjnjnjn  

This was pointed out in [19, (13)], which generalized [21, Theorem 1.4]. In 
particular, for ,11 +≤≤ nj  we have the equivalences 

.1ˆ0,10 ,,,, nn jnjnjnjn >λ⇔<ψ>λ⇔<ψ  (6) 

We now briefly introduce the dual problem studied in [21] as well. 
Define the classic approximation constants jnw ,  and ,ˆ , jnw  respectively, as 

the supremum of ν such that the system 

{ } ν−≤ζ++ζ+≤ XyyxXyyx nnn 111 ,...,,,max  

has j linearly independent integer vector solutions for arbitrarily large X and 
all large X, respectively. Again, we also write nw  instead of 1,nw  and nŵ  

instead of .ˆ 1,nw  In this context, Minkowski’s first lattice point theorem        
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(or Dirichlet’s theorem) implies 

.ˆ nww nn ≥≥  (7) 

As already mentioned in [18, (1.24)], it can be shown that 

.11,ˆ
1,ˆ

1
2,

,
2,

, +≤≤=λ
λ

=
−+−+

njww
jnn

jn
jnn

jn  (8) 

Together with the bounds in (3) and (4), for the spectra of the exponents 
we obtain 

nwnjwjnwn nnjnn ≤≤≤≤∞≤≤−+∞≤≤ +1,, 1,2,2,  (9) 

such as 

.ˆ0,ˆ1,11,ˆ1 1,,, nwnwnjwjn nnnnjn ≤≤≤≤−≤≤∞≤≤−+ +  (10) 

Schmidt and Summerer studied a parametric version of the linear form 
problem as well in [21], however, the above classic exponents will suffice for 
our purposes. 

1.3. The regular graph and the Schmidt-Summerer conjecture 

For fixed 1≥n  and a parameter [ ],,1 ∞∈ρ  in [23] Schmidt and 

Summerer defined what is called the regular graph. This geometrically 
describes a special pattern of the combined graph of the successive minima 
functions ( ) ( )QLqL jnjn log,, =  from Subsection 1.2. We refer to [23,        

p. 90] for an idealized illustration of the functions ( )qL jn,  for the regular 

graph connected to approximation of three numbers, i.e., 3=n  in our 
notation. Figure 1 depicts a sketch for ,2=n  which was already presented 

in [19, p. 72]. The solid lines depict the graphs of the functions ,1,2L  

3,22,2 , LL  whereas the dotted lines correspond to the quantities jj ,2,2 , ψψ  

for .31 ≤≤ j  Notice that jj ,21,2 ψ=ψ +  in the regular graph. 
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Figure 1. Sketch of the regular graph for .2=n  

Roughly speaking, the integers ( ) 1≥kkx  that induce a not too short 

falling period of all ( ),, qL jn  coincide for all 11 +≤≤ nj  and have the 

additional property that the logarithmic quotients kk xx loglog 1+  tend to 

.ˆ
nn λλ  An immediate consequence already mentioned in [19, Section 3]        

is that all quotients jnjnjnjn ,,1,, λ̂λ=λλ +  coincide for .11 +≤≤ nj  

That is, 

,ˆ

ˆ

ˆ
ˆ

1,

,

2,2,

1,

3,

2,

2, ++

+

λ

λ
==

λ
λ

=
λ
λ

==
λ
λ

=
λ
λ

nn

nn

n

n
nn

nn

n

n

n
n  (11) 

where we have put ,ˆ: 1,2, ++ λ=λ nnnn  which shall remain for the sequel. 

Moreover, it is obvious from its definition that the regular graph satisfies 

.22,ˆ
1,, +≤≤λ=λ − njjnjn  (12) 
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In view of (11) and (12), all jnjn ,,
ˆ, λλ  are determined by one real 

parameter .1 n≥λ  According to (8), this applies to all exponents jnw ,  and 

jnw ,ˆ  as well. The parameter [ ]∞∈ρ ,1  in Schmidt-Summerer notation 

coincides with the value nn λλ ˆ  in (11). We will use a different 

parametrization. We consider the equivalent situation that the constant nλ          

is prescribed in the interval [ ].,1 ∞n  Any such choice again uniquely 

determines a regular graph in dimension n and vice versa. Thus, we have the 
assignment 

( ) ( ) [ ],,1,,...,,,, 2,1,2, ∞∈λλλλλ→λ ++ nn nnnnnn  (13) 

where .λ=λn  We call the graph arising from (13) the regular graph in 

dimension n with parameter λ. For ,2=n  the graphs of the functions j,2λ  

are illustrated in Figure 2: 

 

Figure 2. The functions ( ) ( ) ( ) ( )λλλλλλλλ 4,23,22,21,2 ,,,  in the interval 

[ ].4,21∈λ  

It is rather obvious and will follow from (28) in Subsection 5.1 that      
the right hand side in (13) depends continuously on λ. In view of (12), the 

assignment (13) contains the entire information on all exponents .ˆ, ,, jnjn λλ  

We will also write ( )λλ jn,  and ( )λλ jn,
ˆ  for the quantities jn,λ  and ,ˆ

, jnλ  

respectively, in the regular graph in dimension n and parameter λ. It is worth 
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noting that for nn 1=λ=λ  all constants in (13) take the value ,1 n  which 

is a very general elementary consequence of Minkowski’s second theorem. 
Moreover, in the other degenerate case of the regular graph ,∞=λ  it is not 

hard to see that ( ) 12, =∞λn  and ( ) 0, =∞λ jn  hold for ,23 +≤≤ nj  see 

also Proposition 2.3. Roy [16] proved that for any pair ( )λ,n  as in (13), 

there exist Q -linearly independent vectors ζ  (together  with { })1  that induce 

the corresponding regular graph. The existence of the regular graph for the 
special “degenerate” case ∞=λ  had already been constructively proved 
before by the author [19, Theorem 4]. 

The importance of the regular graph stems, in particular, from a 
conjecture by Schmidt and Summerer [23]. It suggests that the regular graph 

with assignment (13) maximizes the value nλ̂  among all ζ  that are Q - 

linearly independent with 1 and share the prescribed value ( ) .λ=ζλn  A 

dual version of the conjecture states that nŵ  is maximized for given value    

of nw  in the regular graph as well. For convenience, we introduce some 

notation. 

Definition 1. Let nφ  be the function that expresses nŵ  in terms of 

[ ]∞∈ ,nwn  and nϑ  the function that expresses the value nλ̂  in terms of 

[ ]∞∈λ ,1 nn  in the regular graph. 

Note that ( )λϑn  coincides with ( ) ( )λλ=λλ 2,
ˆ

nn  defined above. The 

Schmidt-Summerer conjecture can now be stated in the following way. 

Conjecture 1.1 (Schmidt and Summerer). For any positive integer n and 

every nR∈ζ  which is Q -linearly independent together with { },1  we have 

( ) ( ( ))ζφ≤ζ nnn wŵ  and ( ) ( ( )).ˆ ζλϑ≤ζλ nnn  In particular, for any real 

transcendental ζ and 1≥n , we have ( ) ( )( )ζφ≤ζ nnn wŵ  and ( ) ≤ζλn
ˆ  

( )( ).ζλϑ nn  
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For { },3,2∈n  Schmidt and Summerer settled Conjecture 1.1 in [22] 

and [23], see also German and Moshchevitin [9]. For ,4≥n  it is open. As 

mentioned above, equality holds for suitable ,ζ  so Conjecture 1.1 would lead 

to sharp bounds. 

2. Structural Study of the Regular Graph 

2.1. Fixed λ 

In this short subsection, let 0>λ  be given. We investigate constants 

jn,λ  in the regular graph for prescribed value λ=λn  in dependence of n, 

for which, obviously, it is necessary and sufficient to assume .1kj −λ≥n  

Recall the notations ( )λλ jn,  and ( )λλ jn,
ˆ  for the constants ,, jnλ  jn,λ̂  

obtained in the regular graph in dimension n and the parameter 
.1, λ=λ=λ nn  Our first result shows, roughly speaking, that for fixed 

,λ=λn  the remaining constants ( )λλ jn,  for fixed 2≥j  are decreasing as 

the dimension n increases. 

Proposition 2.1. Let 0>λ  be fixed and 1121 ≥−≥> jnn  be integers 

such that .1
2 kj −λ≥n  Then the constants ( ) { }2,1,, ∈λλ ijni  in the regular 

graph in dimensions 1n  and ,2n  respectively, and parameter λ are well-

defined and satisfy ( ) ( ).,, 21 λλ<λλ jnjn  

Remark 1. The proposition can be used to obtain the following. 
Consider the regular graphs in some fixed dimension 2≥n  and let the 
parameter λ tend to infinity. Then we have the asymptotic behaviour 

( )
,0ˆ1lim =

λλ
λ−+λ

∞→λ n
 (14) 

with λ=λn  and ( )λλn
ˆ  as in Subsection 1.3. The formula (14) was 

remarked but not proved in [19]. Observe that (14), in particular, yields 
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( ) ( ) .1limˆlim 2, =λλ=λλ
∞→λ∞→λ

nn  

This property can be roughly seen in Figure 1. 

Corollary 2.2. Let 2≥j  be an integer and 0>λ  be a fixed parameter. 

Consider the regular graphs in all dimensions kj 1−λ≥n  with λ=λn  as in 

(13), which are well-defined. Then we have 

( )
( ) 1,
1 −λ+

λ≥λλ jjn  

and the asymptotic behavior 

( ) ( )
( )

.
1

limˆlim 1,1, −∞→
−

∞→ λ+
λ=λλ=λλ jjn

n
jn

n
 

2.2. Fixed n and Schmidt’s conjecture 

First we state a (by now settled) conjecture of Schmidt. Recall the 
simultaneous approximation problem from Subsection 1.2 can be interpreted 
as a successive minima problem of a parametrized family of convex bodies 
with respect to a lattice. Schmidt conjectured that for any integers 

11 −≤≤ nT  there exist vectors ζ  that are Q -linearly independent together 

with { },1  and for which the corresponding Tth successive minimum tends to 

0 whereas the ( )2+T nd tends to infinity. In the language of Subsection 1.2, 

this means precisely that the function ( )qL Tn,  tends to ∞−  whereas 

( )qL Tn 2, +  tends to ∞+  as .∞→q  For convenience, we introduce some 

notation. 

Definition 2. Let n, T be integers with .11 −≤≤ nT  We say nR∈ζ  

satisfies Schmidt’s property for ( )Tn,  if ζ  is Q -linearly independent 

together with { }1  and the induced functions jnL ,  from Subsection 1.2 satisfy 

( ) ∞−=∞→ qL Tnq ,lim  and ( ) .lim 2, ∞=+∞→ qL Tnq  
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So Schmidt’s conjecture claims that for any reasonable pair ( ),, Tn  the 

set of vectors that satisfy Schmidt’s property is non-empty. The conjecture 
was proved in a complicated non-constructive way by Moshchevitin [14]. In 
case of T not too close to n, where the condition nnT log<  is sufficient,       

it was reproved constructively in [19]. We should remark that the modified 
Schmidt property for TnL ,  and 1, +TnL  instead of TnL ,  and 2, +TnL  cannot 

be satisfied if ζ  is Q -linearly independent together with { }.1  Indeed, it must 

fail since then ( ) ( )qLqL jnjn 1,, +=  has arbitrarily large solutions q for any 

,1 nj ≤≤  see [21, Theorem 1.1]. On the other hand, if one drops the linear 

independence condition, then the conjecture would be true as well by a rather 
easy argument, as carried out in [14]. 

By (5), a sufficient condition for a vector to satisfy Schmidt’s conjecture 
is given by .0 2,, +

ψ<<ψ TnTn  In view of (6), that is in turn equivalent to 

.ˆ1 ,2, TnTn n λ<<λ +  In this context, recall that for the regular graph we 

have .ˆ
1,, +λ=λ TnTn  We will investigate below how the quantities jn,λ  for 

the regular graph in fixed dimension n depends on the parameter .1 n≥λ  

Concretely, when we ask for the largest index j such that jn,λ  is larger than 

n1  in such intervals, then the above correspondence indicates the close 

connection to Schmidt’s conjecture. Indeed, Theorem 2.6 will provide the 
link. We start with an easy but important preparatory observation. 

Proposition 2.3. Let 2≥n  and .21 +≤≤ nj  Then the quantities 

( ) ( )λλ=λλ −1,,
ˆ

jnjn  for the regular graph in dimension n with parameter λ 

satisfy 

( )
( ) [ ].,1,

1
2

,1 ∞∈λλ≤λλ≤
λ+
λ −

− nj
jnj  

In particular, if ,3≥j  then ( )λλ jn,  tends to 0 as λ tends to infinity. 
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Proof. The left inequality was already established in Corollary 2.2.      

For the right estimate, observe ( ) ( ) 1ˆ
2, ≤λλ=λλ nn  always holds by (3). 

Together with the constant quotients property (11), we have ( ) =λλ jn,  

( ) ,ˆˆ 22 jj
nn

−− λ≤λλλ  which clearly tends to 0 for 3≥j  as .∞→λ  ~ 

In particular, ( ) j
jn

−λλλ 2
, ~  for 21 +≤≤ nj  as .∞→λ  Dually, if 

we denote by ( )ww jn,  the constants jnw ,  for the regular graph for the 

parameter ,1, wwn =  then with (8) we deduce ( ) ( ) njn
jn www 1

, ~ +−  as 

∞→w  for .21 +≤≤ nj  The next theorem provides more detailed 

information on the functions ( )λλ jn,  in (13). 

Theorem 2.4. Let 3≥j  and 2−≥ jn  be integers. If ,22 −≥ jn  then 

there exist ( )nn,1~
∈λ  with the following properties. The regular graph in 

dimension n with parameter λ satisfies ( ) njn 1, >λλ  for ( ),~,1 λ∈λ n  

( ) njn 1, =λλ  for { }λ∈λ
~,1 n  and ( ) njn 1, <λλ  for ( ].,~

∞λ∈λ  If on          

the other hand ,32 −≤ jn  then for all ( ]∞∈λ ,1 n  the regular graph in 

dimension n with parameter λ satisfies ( ) .1, njn <λλ  

It is easy to check the following consequence of Theorem 2.4. 

Corollary 2.5. Precisely in case of 3≤n  none of the functions 

( ) njn 1, −λλ  changes sign on ( ).,1 ∞∈λ n  

The claims of Theorem 2.4 and Corollary 2.5 are (to some degree) 
visible in Figure 3 for .8=n  
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Figure 3. The functions ( ) ( )λλλλ 10,81,8 ...,,  in the interval [ ].2,81∈λ  

Remark 2. For { }2,1∈j  and ,2≥n  clearly we have ( ) njn 1, >λλ  for 

all ( ]∞∈λ ,1 n  by (3) and (4), with equality in both inequalities only for 

.1 n=λ  See also Proposition 2.1. A similar dual argument shows ( )λλ jn,  

n1<  for { },2,1 ++∈ nnj  as we will carry out in the proof. In particular, 

for 2=n  it is clear that ( ) ( ) ( ) ( )λλ>λλ>>λλ>λλ 4,3,2,21,2 21 nn  for 

all ,21>λ  and it can be shown easily that all functions ( )λλ i,2  are 

monotonic on [ ],,1 ∞n  see also Figure 2. On the other hand, for 3=n  the 

above argument is already too weak to imply ( ) 313,3 <λλ  for all ,31>λ  

as Theorem 2.4 does. 

Moreover, it should be true that the derivative of ( )λλ jn,  with respect to 

the parameter λ changes sign at most once, and precisely for ,2
33 +<≤ nj  

somewhere in the interval ( )λ~,1 n  with λ~  from Theorem 2.4. However, we 

omit a most likely cumbersome proof. 

From Theorem 2.4, it is not hard to deduce explicit examples for 
Schmidt’s property if T does not exceed roughly .2n  

Theorem 2.6. Let 2≥n  be an integer. Then for any  21 nT ≤≤  

there exists a non-empty subinterval ( )TII =  of ( )nn,1  such that for all 
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I∈λ  the regular graph in dimension n with parameter λ satisfies 

( ) ( ) .1,1ˆ
2,, nn TnTn <λλ>λλ +  

In other words, for any pair ( )Tn,  with  21 nT ≤≤  there exist ζ  

that induce the regular graph and satisfy Schmidt’s property for ( )., Tn  For 

 2nT >  such ζ  does not exist. 

Proof. First let   .123 +≤≤ nj  Then the first case of Theorem 2.4 

applies and yields ( ) njn 1~
, =λλ  and ( ) ntjn 1, >λ  for some n1~

>λ  and 

( ).~,1 λ∈ nt  Since jnjn ,1, λ<λ +  unless both are equal to ,1 n=λ  we 

have ( ) .1~
1, njn <λλ +  Hence, by continuity of the function ( )λλ +1, jn  in 

the parameter λ, there exists some non-empty interval ( ) ( )δε−δ== ,jJJ  

such that for Jt ∈0  the inequalities ( ) ( )0,01, 1 tnt jnjn λ<<λ +  are 

satisfied. Since in the regular graph jnjn ,1,
ˆ λ=λ −  holds by (12), the claim 

follows for 2≥T  with ,1−= jT  and the fact that ζ  inducing the 

corresponding regular graphs exist as mentioned above. For ,1=T  a very 

similar argument applies with .2=j  We may take any value λ sufficiently 

large that ( ) ,013, <−λλ nn  observing ( ) nn 12, >λλ  for n1>λ  but 

( ) nn 13, −λλ  changes sign somewhere in ( ).,1 nn  Finally, concerning the 

claim for   ,2nT >  suitable ζ  cannot exist, since ( ) ( )λλ=λλ + TnTn ,1,
ˆ  

n1<  for all n1>λ  by the last claim of Theorem 2.4.  

Remark 3. For ,enT <  the claim concerning Schmidt’s property could 

be derived directly from Proposition 2.3 instead of the deeper Theorem 2.4, 
where e is Euler’s number. 
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3. Implications of Conjecture 1.1 for Uniform Approximation 

In this section, we restrict to the case of successive powers 

( )....,,, 2 nζζζ  We will write ( )ζjnw ,  for ( )n
jnw ζζζ ...,,, 2

,  and 

similarly for ( ) ( ) ( ).ˆ,,ˆ ,,, ζλζλζ jnjnjnw  We will also consider related 

constants connected to approximation by algebraic numbers. For a given real 

number ζ, let ( )ζ∗
nw  be the supremum of ν such that 

( ) 10 −ν−α≤α−ζ< H  

has infinitely many real algebraic solutions α of degree at most n. Here 
( )αH  is the height of the irreducible minimal polynomial P of α over [ ],XZ  

which is the maximum modulus among its coefficients. Similarly, let the 

uniform constant ( )ζ∗
nŵ  be the supremum of real ν for which the system 

( ) ( ) ν−−α≤α−ζ<≤α XHXH 10,  

has a solution as above for all large values of X. For all 1≥n  and all real ζ, 
the estimates 

( ) ( ) ( ) ( ) ( ) ( ) 1ˆˆˆ,1 −+ζ≤ζ≤ζ−+ζ≤ζ≤ζ ∗∗∗∗ nwwwnwww nnnnnn  (15) 

are well-known, see [2, Lemma A8]. We aim to establish a conditional 

improvement of the known upper bound for the exponents ( ) ( )ζζ ∗
nn ww ˆ,ˆ  

valid for all transcendental real ζ, under the assumption of Conjecture 1.1. 
The bound ( ) 12ˆ −≤ζ nwn  was given by Davenport and Schmidt [7]. This 

has recently been refined in [6, Theorem 2.1] to 

( ) .4
522

1ˆ 2 +−+−≤ζ nnnwn  (16) 

For large n, the right hand side in (16) is of order ( ).1232 on +−  For 

,3=n  the stronger estimate 

( ) ...4142.423ˆ3 ≈+≤ζw  (17) 
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was established in [6, Theorem 2.1]. For ,2=n  the bound in (16) is best 

possible as proved by Roy, see [17]. Our main result of this section is the 
following asymptotic estimation, conditioned on Conjecture 1.1. 

Theorem 3.1. Suppose Conjecture 1.1 holds for every .2≥n  Let 

5693.0≈τ  be the solution ( )1,0∈y  of ,21 eye y =  where e is Euler’s 

number, and put ( ) .2564.212log: ≈+τ=∆  Then for any 0>ε  there 

exists ( )ε= 00 nn  such that for all real transcendental numbers ζ we have 

( ) .,2ˆ 0nnnwn ≥ε+∆−≤ζ∗  (18) 

The same bound holds for ( )ζnŵ  unless ( ) ( ) ( ).12 ζ=ζ<ζ −− nnn www  In 

any case, we have 

( ) .10,22ˆ ≥−≤ζ nnwn  (19) 

Furthermore, in Subsection 5.3, we will derive conditioned concrete 

upper bounds for ( ) ( )ζζ ∗
nn ww ˆ,ˆ  for certain values of n, see (52). We close 

this section with another related result, whose proof will be omitted as it is 
very similar to that of Theorem 3.1. Assume that the estimate 

11
1

ˆ ++≤ n
n

nnn wnw  (20) 

is satisfied. Then for every 0>ε  there exists ( )ε= 00 nn  such that 

( ) .,2log12ˆ 0nnnwn ≥ε+−−≤ζ  (21) 

Observe that (21) is still stronger than (16), although it is weaker than 
(18). On the other hand, we will see in Subsection 5.1 that the involved 
assumption (20) is reasonably weaker than the assumption of Conjecture 1.1 
in Theorem 3.1. 
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4. Conditioned Results under Assumption of Another Conjecture 

4.1. Uniform approximation 

Let 1≥n  be an integer and ζ be a real number. We call [ ]XP Z∈  of 

degree at most n a best approximation for ( )ζ,n  if there is no [ ]XQ Z∈  of 

degree at most n with strictly smaller height ( ) ( )PHQH <  that satisfies 

( ) ( ) .ζ<ζ PQ  Obviously, every real transcendental ζ induces a sequence 

of best approximation polynomials ...,, 21 PP  with ( ) ( ) >ζ>ζ 21 PP  

and ( ) ( ) .21 ≤≤ PHPH  Similarly, for ( )nζζ=ζ ...,,1  define the best 

approximations for ( )ζ,n  for the linear forms in .ζ  

Conjecture 4.1. For any 1≥n  and any real transcendental ζ, there        
exist infinitely many k such that 1+n  successive best approximations 

nkkk PPP ++ ...,,, 1  for ( )ζ,n  are linearly independent (i.e.,  the coefficient 

vectors span the entire space ).1+nR  

Remark 4. The claim is known to hold for .2=n  More generally, for 
any n there are three linearly independent consecutive best approximations 
infinitely often, see [21]. On the other hand, Moshchevitin [13] proved the 

existence of counterexamples for the analogous claim for vectors nR∈ζ  

that are Q -linearly independent together with { },1  for .2>n  Vectors can 

even be chosen such that the ( ) ( )11 +×+ nn -matrix whose columns are 

formed by 1+n  successive best approximation vectors has rank at most 3 
for all large k. However, it seems plausible that such vectors cannot lie on the 
Veronese curve. 

Theorem 4.2. For any 2≥n  and any real vector ζ  linearly 

independent over Q  together with { },1  we have 

( )
( )
( ) .

ˆ 2

3, ζ
ζ

≥ζ
n

n
n w

w
w  (22) 



Johannes Schleischitz 132 

If ( )ζ,n  satisfies the assumption of Conjecture 4.1, then 

( )
( )
( )

11,
ˆ

2

1

, +≤≤
ζ

ζ
≥ζ −

−
ni

w

w
w i

n

i
n

in  (23) 

and 

( ) ( )
( )

.1
1ˆ

ˆ 1
1
−









−
−ζ

ζ≥ζ
nn

nn n
w

ww  (24) 

Analogous claims of (22) and (23) hold for jnjn ,,
ˆ, λλ  with respect to the 

obvious dual definition of the best approximations and Conjecture 4.1, and 
(24) has to be replaced by 

( ) ( )
( ) ( )

( )
.ˆ1

ˆ1ˆ 1
1
−












ζλ−

ζλ−
⋅ζλ≥ζλ

n

n

n
nn

n
 (25) 

For ,2=n  the estimate (24) is unconditioned by Remark 4 and yields 

the inequality ( ) ( ) ( ( ) )1ˆˆ 222 −ζζ≥ζ www  known by Laurent [11]. There is 

equality in all inequalities of Theorem 4.2 for ( )2, ζζ  when ζ is an extremal 

number defined by Roy, see for example [17]. See also Moshchevitin [15, 
Section 3] for results related to (24) and (25). For us, the main purpose of 
Theorem 4.2 is the connection to uniform approximation, portrayed in the 
following theorem. 

Theorem 4.3. Assume Conjecture 4.1 is true. Then (21) holds. 

5. Proofs 

5.1. Preliminary results 

In this section, we establish several identities involving the exponents 

jnjnjnjn ww ,,,, ˆ,,ˆ, λλ  in the regular graph, to prepare the proofs of the 

main results. They are essentially derived by algebraic rearrangements of the 
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identity 

( ) ( )
,ˆ

1ˆ1

1,

1
1,1

+

+
+

+

λ

+λ
=

λ
+λ

nn

n
nn

n

n
n  (26) 

which was proved in [19, (95) in Section 3]. In view of (26), we define the 
auxiliary functions 

( ) ( ) .1:
1

x
xxf

n
n

++=  (27) 

It is easily verified that nf  decays on ( )n1,0  and increases on ( ).,1 ∞n  

Hence, we see that for given [ ],,1 ∞∈λ nn  the constant 1,
ˆ

+λ nn  is the 

unique solution of (26) in the interval [ ].1,0 n  Observe that by (26) and        

the constant quotients (11), the constants λ=λn  and ( )λλ jn,  satisfy the 

implicit equation 

( ) ( ( ) )

( )

.
11

1
1

,
1
11

11
1

,
1
11

1

−
+−

+−

+
−
+−

+−
+

λλλ

λλλ+
=

λ
λ+

j
n

jn
j
n

nj
n

jn
j
n

n
 (28) 

Moreover, from (26) and (11) we infer 

.
ˆ

ˆˆ
1

1

1,1
1

1,
1

+++
+

+










λ

λ
λ=λλ=λ

n

n

nn
n

n
nn

n
n

nn  (29) 

By combining (26) with (29), after some rearrangements, we derive an 

implicit polynomial equation involving nλ  and nλ̂  of the form 

( ) ,0ˆˆ1ˆ 11 =λ−λλ+λ−λ +− n
n

n
nn

n
nn  (30) 

where in the special case ∞=λn  we have to put .1ˆ =λn  Noticing that 

nn λ=λ̂  is a solution of (30) not of interest, we can decrease the degree by 

one 
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( )
nn

n
n

n
n

nn
n
n λ−λ

λ−λ
λ+−λλ

−−
−

ˆ
ˆˆ1ˆ

11
21  

( ) ( ) .0ˆˆˆ1ˆ 23221 =λ++λλ+λλ+−λλ= −−−− n
nn

n
n

n
nnn

n
n  

Now we want to establish the dual results. One can either proceed similarly 
as in [19] for (26), or immediately apply (8) to (26), to derive 

( ) ( )
n

nn

n
nn

n
n

n
n

w

w

w
w

1,

1
1,1

ˆ

ˆ11

+

+
+

+ +
=

+  (31) 

for the regular graph. Observe that [ ]nw nnn ,01ˆ 1, ∈λ=+  by (8) and (2), 

whereas [ ]∞∈ ,nwn  by (7). In particular, it is not hard to see that for given 

[ ]∞∈ ,nwn  the approximation constant 1,ˆ +nnw  is the unique real solution 

of (31) in the interval [ ].,0 n  Moreover, again for the regular graph all 

quotients jnjnjnjn wwww ,,1,, ˆ=+  coincide for ,11 +≤≤ nj  where we 

put .ˆ: 1,2, ++ = nnnn ww  This yields 

.
ˆ

ˆˆ
1

1
1,1

1

1,
1 +++

+
+ 








==

n

n

nn
n

n
nn

n
n

nn w
w

wwww  (32) 

From (32) and the most right inequality of (10), we obtain (20), where 
equality holds only in case of nw nn =+1,ˆ  or equivalently .nwn =  

Expressing nŵ  in terms of nn ww ˆ,  by rearranging (32) and inserting in (31), 

some further rearrangements lead to the nice implicit equation 

.ˆ1ˆ
n

n
n

nn w
www 






=+−  (33) 

We summarize the above observations in a proposition. 

Proposition 5.1. The function nφ  coincides with the unique solution of 

nŵ  in (33) in terms of nw  in the interval [ ),, nwn  unless ( ) =φ= nnn ww  



Notes on the Regular Graph 135 

.ˆ nwn =  The function nϑ  coincides with the unique solution of nλ̂  in (30) in 

terms of nλ  in the interval [ ),,1 nn λ  unless ( ) .1ˆ nnnnn =λ=λϑ=λ  

Proof. The asserted uniqueness can be easily proved. It has been 
established that (33) and (30) are satisfied and the claim on the intervals 

follows from (2) and (7).  

We remark that similarly to (28), one can obtain an implicit         
equation involving nw  and 1,, ˆ −= jnjn ww  for ,22 +≤≤ nj  and dual 

interpretations of Theorem 2.4 and Remark 2 provide some information on 
the monotonicity of the functions jnw ,  in dependence of .nw  We do not 

carry this out. 

5.2. Proofs of Section 2 

For the first proof, recall the functions nf  from (27) and their properties. 

Proof of Proposition 2.1. By the assumptions, the regular graphs with 
parameter λ in dimensions 21, nn  are well-defined (and exist due to Roy 

[16]). Since in the regular graph the quotients (11) coincide, it suffices to 

prove that ( ) ( )λλ=λλ nn
ˆ

2,  decreases for fixed λ as n increases. 

Recall the functions nf  defined in Section 2. We have ( ) ( )λλ+ nn ff 1  

λ+= 1  and hence in view of (26) also 

( ( ))
( ( ))

.1ˆ

ˆ

1,

2,11 λ+=
λλ

λλ

+

+++

nnn

nnn

f

f
 (34) 

On the other hand, we claim that 

( ) ( ).ˆˆ
1,2,1 λλ<λλ +++ nnnn  (35) 

In case of ( ) ( ),11ˆ
1, +>λλ + nnn  this is trivial since ( ) ≤λλ ++ 2,1

ˆ
nn  

( ).11 +n  If otherwise ( ) ( ),11ˆ
1, +≤λλ + nnn  then (35) follows from the 
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decay of the function 1+nf  on ( )( )11,0 +n  and 

( ( )) ( ( )) ( ) ,1ˆ1ˆˆ
1,1,1,1 λ+≤λλ+=λλλλ ++++ nnnnnnnn ff  

in combination with (34). From (35), we deduce 

( ( )) ( ( )) 2
1,

2
2,1

ˆ1ˆ1 +
+

+
++ λλ+≤λλ+ n

nn
n

nn  

( ( ))
( ( ))
( ( ))

.ˆ

ˆ
ˆ1

1,

1,11
1, λλ

λλ
λλ+=

+

+++
+

nnn

nnnn
nn f

f
 

Observe the left and middle quantities are the nominators of 

( ( ))λλ ++ 1,1
ˆ

nnnf  and ( ( )),ˆ
2,11 λλ +++ nnnf  respectively. Together with (34),  

we infer 

( )
( ) ( )

.ˆ
1

ˆ

ˆ

1,2,1

1,

λλ
λ+>

λλ

λλ

+++

+

nnnn

nn  (36) 

The identities (29) for 1, +nn  yield 

( ) ( ) ( ) ( ),ˆˆ 11
1,

1 +
+

+ λλλ=λλ n
nn

nn
n  

( ) ( ) ( ) ( ) ( ).ˆˆ 21
2,1

21
1

+
++

++
+ λλλ=λλ n

nn
nn

n  

Taking quotients, with 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,212111121 11 −− ++=+−+=+−++ nnnnnnnn  

we get 

( )
( )

( ) ( ) ( )( ) ( )
( )
( )

.ˆ

ˆ
ˆ

ˆ
ˆ 2

1

2,1

1,
21

1
1,

21
1

1

+

++

+
+++

++
−

+











λλ

λλ
λλλ≥

λλ
λλ n

nn

nn
nnnn

nn

n

n  

Inserting the bound (36), for the last expression we obtain 

( )
( )

( ) ( ) ( )( ) ( )
( )

.ˆ
1ˆ

ˆ
ˆ 2

1

1,
21

1
1,

21
1

1

+

+
+++

++
−

+











λλ
λ+λλλ≥

λλ
λλ n

nn
nnnn

nn

n

n  (37) 
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One readily checks that the right hand side in (37) equals 1, since this is 

equivalent to ( ) ( ( )),ˆ
1, λλ=λ +nnkk ff  which is (26). This finishes the proof.  

 ~ 

Proof of Corollary 2.2. It was shown in [21, Proposition 5] that we have 

( ) ( ) 11ˆ −+λ>λλλn  in the regular graph with parameter .λ=λn  On the 

other hand, the quotients 1,, +λλ jnjn  are identical for all 11 +≤≤ nj  by 

(11). Hence 

( ) ( ) ( )
( )

.
1

ˆˆ
1

1

,1, −

−

−
λ+
λ≥








λ
λλ

λ=λλ=λλ j

j
n

jnjn  

In Proposition 2.1, we proved that the values ( ) ( )λλ=λλ − jnjn ,1,
ˆ  

decay as n increases, hence the limit of ( )λλ jn,  as ∞→n  exists and equals 

at least the given quantity. We have to show equality. Again, as all the 
quotients jnjn ,1, λλ −  are identical, it obviously suffices to show this for 

.2=j  For ( )λλλ n
ˆ,  as above, define ( )nα  implicitly by 

( ) ( ) .1
ˆ

λ+
λα=λλ nn  (38) 

Then the sequence ( ) 1≥α n  decreases to some limit at least 1 and we have 

to show ( ) .1lim =α∞→ nn  Observe a rearrangement of (29) and (38) yields 

( ) ( ) ( ) .1
ˆˆ

11

1,
++

+ 






λ+
αλ=








λ
λλ

λ=λλ
nn

n
nn

n  

Inserting the right hand side in the identity (26), elementary 
rearrangements lead to 

( ) ( ) .11
1+








λ+
αλ+=α

nnn  (39) 

If we had ( ) ,1lim +λ≥α∞→ nn  then ( ) ( ),ˆ λλ=λ≥λλ nn  a contradiction. 
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Thus, ( ) .1lim +λ<α∞→ nn  Hence the right hand side of (39) converges to 

1 as ,∞→n  and thus the left hand side does as well. This completes the 

proof.  

For the proof of Theorem 2.4, we consider λ in small intervals of the 

form ( ).1,1 ε+nn  

Proof of Theorem 2.4. Clearly, njn 1, =λ  for all 21 +≤≤ nj  if 

.1 n=λ  Further, observe that by the most left inequalities of (9) and (10), 

and (8), we have ( ) ( ) nwnnn 1ˆ 1
1, ≤λ=λλ −

+  and ( ) .11
2, nwnnn ≤λ=λ −

+  

Equality holds only if the quantities equal n1  anyway, where we put ( )λnw  

for the value nw  induced for the regular graph with parameter .1, λ=λn  

Thus, we can restrict to .2 nj ≤≤  

So let 1≥n  and nj ≤≤2  be arbitrary but fixed. Write nn α=λ=λ  

for ,1>α  where we consider only α slightly larger than 1. Then (28) 

becomes 

.

1
1

1
1

,
1
11

1
1
1

,
1
11

1

−
+

−
+−

+

−
+

−
+−

+






 αλ





 α



















 αλ





 α+

=
α






 α+

j
n

jn
j
n

n
j
n

jn
j
n

n

nn

nn

n

n  (40) 

We ask for which values of j it is possible to have nnjn 1, =




 αλ  for 

some .1>α  So we insert nnjn 1, =




 αλ  in (40), and rearrange (40) in the 

following way. We multiply with ,nα  then divide by the denominator of                

the right hand side and take the ( )1+n st root. After further elementary 

rearrangements and simplification, we end up with the equivalent identity 
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.

11
1

1
1

−α

α−α=
−

−
−−

j

j
nj

n  (41) 

Let .: 1
1
−α=θ j  Clearly, 1>θ  is equivalent to .1>α  Furthermore, (41) 

is equivalent to 

( ).:1
1

,
1321 θχ=θ++θ+θ=

−θ
−θθ= −−−−−−

jn
njjj

n
njn  (42) 

By construction, ( ) .1, njn =χ  First consider 32 −≤ jn  or equivalently 

.2
3+≥ nj  We calculate 

( ) ( ) ( ) ( ) 243
, 132 −−−− −−++−+−=χ′ njjj

jn tnjtjtjt  

and 

( ) ( ) ( ) ( ) ( ) 54
, 4332 −− −−+−−=χ′′ jj

jn tjjtjjt  

( ) ( ) .21 3−−−−−−++ njtnjnj  

It is easy to verify ( ) 0, >χ ′′ tjn  for all .0>t  Indeed, any expression in the 

sum is non-negative, and for 4≥j  the first and for 3=j  the last is strictly 

positive. Hence it suffices to show ( ) 01, >χ′ jn  to see that ( ) ntjn >χ ,  for 

all .1>t  Indeed, for 2
3+≥ nj  we verify 

( ) ( ) ( ) ( )1321, −−++−+−=χ′ njjjjn  

∑
+

=

≥+−=−=
1

2

2
.02

3n

i

nnnjinj  (43) 

We conclude ( ) njn 1, ≠λλ  for all .1 n>λ  By the continuity of ,, jnλ  

we must have either ( ) njn 1, <λλ  for all n1>λ  or ( ) njn 1, >λλ  for     
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all .1 n>λ  However, since ,3≥j  we can exclude the latter since in 

Proposition 2.3 we showed 

( ) .3,0lim , ≥=λλ
∞→λ

jjn  (44) 

We have proved all claims for .2
3+≥ nj  Now let ,2

3+< nj  which is 

equivalent to .22 −≥ jn  Then 

( ) .02
31

2
, <+−=χ′ nnnjjn  

Hence, since ( ) 0, >χ ′′ tjn  for all ,0>t  there exists precisely one value 

10 >µ  for which ( ) ,0, njn =µχ  or equivalently precisely one n1~
>λ  with 

( ) .1~
, njn =λλ  Again, by (44) and continuity, we must have ( ) njn 1, <λλ  

for .~
λ>λ  Moreover, again by intermediate value theorem, either ( )λλ jn,  

n1>  for all ( )λ∈λ
~,1 n  or ( ) njn 1, <λλ  for all ( ).~,1 λ∈λ n  Suppose 

conversely to the claim of the theorem, the latter is true. Recall the implicit 
equation (28) involving λ=λn  and ( )., λλ jn  Denote 

( ) ( ) ( ) ( ) ,1,,1 11

xy
xyyxGx

xxF
nn ++ +=+=  

such that (28) becomes ( ) ( ( ) )., 1
11

,
1
11

−
+−−

+−
λλλ=λ j

n
jn

j
n

GF  Proceeding as 

above, we will show next that for λ close to n1  we have 

( ) ( ( ) ) ( ( ) ).1,, 1
11

11
1
1

,
1
11

−
+−

+−
−
+−

+−
λ<λλλ=λ j

nj
n

j
n

jn
j
n

nGGF  (45) 

Observe that with ,nα=λ  inequality (45) is equivalent to 

.

11
1

1
1

−α

α−α>
−

−
−−

j

j
nj

n  (46) 
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Proceeding as above subsequent to (41), we see that for (46) the 

condition ( ) 01, >χ′ jn  is sufficient. We readily verify that for 2
3+< nj  and 

α sufficiently close to 1, with a very similar calculation as in (43). Thus, we 
have shown (45). Hence, if ( ) njn 1, <λλ  for such λ, then by intermediate 

value theorem of differentiation, we must have 

( ) 0,1
11

>ηλ −
+− j

n

dy
dG  (47) 

for some pair ( )ηλ,  with n1≥λ  and ( ( ) ( ) ).1, 1
1

1
1

, −
+

−
+

λλ∈η j
n

j
n

jn n  We 

disprove this. We calculate 

( ) ( ) ( ) .111,
2xy

xynxydy
yxdG n+−=  

Hence the sign of the partial derivative of G in (47) equals that of 
.1−nxy  Our hypothesis yields 

11 1
111

1
1
11

<α=










 α≤λη −

+−−
+

−
+−

j
n

j
n

j
n

nnnn  

since 1>α  and the exponent is negative. Hence ( ) 0,1
11

<ηλ −
+−

dydG j
n

 for 

all ( ( ) ( ) ).1, 1
1

1
1

, −
+

−
+

λλ∈η j
n

j
n

jn n  This contradicts (47). Hence the hypothesis 

was wrong and we must have ( ) njn 1, >λλ  for all ( ).~,1 λ∈λ n  

Finally, the fact that n<λ
~  follows from combination of ( ) njn 1~

, =λλ  

and ( ) nj
jn <λ≤λ<λλ −− 12

,
~~~  for n1~

>λ  and ,3≥j  see the proof of 

Proposition 2.3. ~ 
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5.3. Proofs of Section 3 

We turn towards the proof of Theorem 3.1. We briefly outline a sketch of 
the proof. The essential tools for the proof of Theorem 3.1 are special cases 
of [6, Theorems 2.2, 2.3 and 2.4] comprised in Theorem 5.2. 

Theorem 5.2 (Bugeaud and Schleischitz). Let 2≥n  and ζ be real 
transcendental. We have 

( ) ( )
( ) .1

ˆ
+−ζ

ζ
≤ζ∗

nw
nww

n
n

n  (48) 

If ( ) ( ),1 ζ>ζ −nn ww  then we have the stronger estimate 

( ) ( )
( ) .1

ˆ
+−ζ

ζ
≤ζ nw

nww
n

n
n  (49) 

If otherwise for nm <  we have ( ) ( ),ζ=ζ nm ww  then 

( ) .221ˆ −≤−+≤ζ nnmwn  (50) 

Throughout assume Conjecture 1.1 holds. Before we prove Theorem 3.1, 
we want to provide some better numeric results for not too large n. We point 
out that the functions nφ  are increasing. This fact is rather obvious from the 

definition of the regular graph, we omit a rigorous proof. Let ( )ζnw~  be the 

solution of the implicit equation 

( ( )) ( )
( ) .1~

~~
+−ζ

ζ
=ζφ nw

wnw
n

n
nn  (51) 

Since nφ  increases whereas the right hand side of (51) decreases, it 

follows from (15) and Theorem 5.2 that the corresponding value ( ( ))ζφ nn w~  

is an upper bound for ( ),ˆ ζ∗
nw  and in case of ( ( )) 22~ −≥ζφ nwnn  for       

( )ζnŵ  as well. For { },3,2∈n  this procedure leads precisely to the bounds 

( ) 253 +  and 23 +  in (16) and (17), respectively. For 4≥n  not too 

large, Mathematica can determine a numerical solution of (51). We provide 
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the implied bounds 

( ) ( ) ( ) .7996.97ˆ,8787.37ˆ,2875.6ˆ 50204 <ζ<ζ<ζ ∗∗ www  (52) 

Unless ζ satisfies ( ) ( ) ( ),12 ζ=ζ<ζ −− nnn www  the above bounds for 

{ }50,20∈n  are valid for ( )ζnŵ  as well, and we believe the additional 

condition is, in fact, not necessary. The numeric data suggests that 
( ( ))ζφ− nn wn ~2  converges to some constant not much larger than the value 

approximately 0.2004 we compute with the given bound for 50=n  above. 
In view of this indication, Theorem 3.1 is rather satisfactory. Its proof 
essentially relies on the above idea, along with asymptotic estimates for the 
values ( ( ))ζφ nn w~  for large n. For these estimates, we will frequently use the 

well-known fact that 

( ) xn
n

enx =+
∞→

1lim  (53) 

for real x, where the left hand side sequence is monotonic increasing. We 
shall also use the variation of (53) that for 1,1 >θ≥n  we have 

( )
( )

( )
( ) .1log
log1

1
log1

111
++θ

θ−=

+
θ+

<θ +−
n

n

n  (54) 

Proof of Theorem 3.1. First we show (18). From the assumption of 
Conjecture 1.1 together with Proposition 5.1 and (15), we obtain 

( ) ( ) ( )( ).ˆˆ ζφ≤ζ≤ζ∗
nnnn www  (55) 

Together with (48), we derive 

( ) ( )
( ) ( )( ) .,1minˆ







 ζφ

+−ζ
ζ

≤ζ∗
nn

n
n

n wnw
nww  (56) 

Let ( )∆∈ ,1D  be fixed and consider large n, in particular, .3Dn >  Let 

( ) ( ) .12: Dn
nDn

n −
−−=κ  
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First assume ( ) .nnw κ≥ζ  Then ( ) ( )( ) Dnnwnw nn −≤+−ζζ 21  such 

that (18) follows from (56). Since all nφ  are increasing, it only remains to be 

shown that ( ) Dnnn −≤κφ 2  for large n, to derive (56) in case of ≤n  

( ) nnw κ<ζ  as well. Hence we may assume ( ) .nnw κ=ζ  It is easy to check 

( ) ( ) ( ).122212222 nODnnODnnn +−+=+−+−=κ  (57) 

In particular, ( ).2 nonn +=κ  Let 

( ) ( ) ( ) ( ).1111 1
xx

x
xx n

n

n
n ++=+=ϕ

+
 

With (53), we infer 

( ) ( ) ( ) ( )( )nonnon

n
n

n

n
nn +







+
+=+κ








κ
+=κϕ 22

11111  

( ( )) .12 noe +=  

From (31), we further deduce 

( ( )) ( )( ) ( ) ( ( )) .12ˆ 1, noeww nnnnnnn +=κϕ=ζϕ=ζϕ +  

We noticed preceding the theorem that ( ) .ˆ 1, nw nn ≤ζ+  Thus, if we write 

( ) ,ˆ 1, bnw nn =ζ+  then ( ) [ ],1,0∈= nbb  and again (53) yields that b satisfies 

( )121 oebe b +=  as .∞→n  This yields ( ) ( )1onb +τ=  as ,∞→n  

where 5693.0≈τ  is the solution ( )1,0∈y  to .21 eye y =  Together with 

(57), we infer 

( ) ( )
( )

( )

( )11
1,ˆ +
+









ζ
ζ

ζ=κφ
n

n

nn
nn w

w
w  

( )( ) ( )
( )

.121222
11 +






 +τ+−+=

n
ooDn  (58) 
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Inserting (54) with 5128.32: ≈τ=θ  in (58) yields 

( ) ( )( ) ( )( )
( )( ) .112log

12log11222 






+++τ
+τ−+−+≤κφ no

ooDnn  (59) 

One checks that if ( ) 12log +τ=∆<D  and n is large, then the right 

hand side of (59) is smaller than .2 Dn −  To finish the proof of (18), let D 
tend to ∆. 

Now we show the estimates for ( ).ˆ ζnw  In case of ( ) ( ),2 ζ=ζ− nn ww  

from (50) with 2−= nm  we derive ( ) ,232ˆ ∆−<−≤ζ nnwn  which 

proves the claim. In case of ( ) ( ),1 ζ<ζ− nn ww  we may apply (49) and obtain 

the same bounds for nŵ  as in (56), and can proceed as in the proof of (18). 

Hence only possibly in case of ( ) ( ) ( )ζ=ζ<ζ −− nnn www 12  the bounds may 

fail, as asserted. Finally, for (19), we need precise error terms in dependence 
of n. First observe that (55) and Theorem 5.2 imply 

( ) ( )
( ) ( )( ) .,1,22maxminˆ







 ζφ









+−ζ
ζ

−≤ζ nn
n

n
n wnw

nwnw  (60) 

To derive (19), we use (33) directly. With above argument applied         

to ,2=D  we see that ( ) ( ) ( )212 2 −−≥ζ nnwn  implies ( )ζnnw  

( )( ) .221 −≤+−ζ nnwn  Thus, (60) implies (19). Hence again since nφ  are 

monotonic increasing, it remains to be checked that ( ) 22 −≤φ nwn  for 

,10≥n  where ( ) ( ).212: 2 −−= nnw  Let 

( ) .1,
n

y
xyxyxH 




−+−=  

Recall ( ) ( )( )( ) ( ( ) ( ))ζζ=ζφζ nnnnn wwww ˆ,,  satisfy (33). In particular, 

( )( ) 0, =φ wwH  or ( )wnφ  is the solution wy <0  of 

( ) ( ) ( )
( ) .02

1212
12,

0

2
0

2
0 =








−
−++−

−
−=

n

yn
nyn

nywH  
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Some elementary calculation shows 

( )
n

n
n

nnwH 






−
−−+

−
=− 2

132
222,  

.2
112

1132
2 22








−
+







−
+−+

−
=

−

nnn

n
 

Together with (53) and some computation for small n, the right hand side 
can be easily checked to be positive for .10≥n  On the other hand, we have 

( ) ,1, 1−−+−= nn ynwywdy
dH  

which is positive for any ( )wy nφ<  by (20). Thus, indeed the root 

( )wy nφ=0  of ( ) 0, 0 =ywH  must be smaller than .22 −n  This finishes 

the proof. ~ 

5.4. Proofs of Section 4 

In the proof of Theorem 4.2, we will apply the transference inequality 

( )
( ) ( )

( )
( ) ( )ζ−

−ζ
≥ζλ≥

+−ζ
ζ

n

n
n

n

n
wn

w
nw

w
ˆ1

1ˆˆ
1ˆ

ˆ
 (61) 

due to German [8], valid for all 1≥n  and nR∈ζ  that are Q -linearly 

independent together with { }.1  

Proof of Theorem 4.2. Too keep the notation simple, we restrict to 

vectors ( ),...,,, 2 nζζζ  the proof can be readily generalized to linear forms 

in arbitrary .ζ  Let .0>ε  By definition of ( ),ˆ ζnw  for any sufficiently large 

k we have 

( ) ( ) ( ) ( ) .ˆ
11

ε+ζ−
++ <ζ<ζ nw

kkk PHPP  (62) 

On the other hand, it follows from the definitions of ( )ζnw  and      

( )ζnŵ  that for large l two successive best approximations 1, +ll PP  satisfy 
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( ) ( ) ( ) ( ) ,ˆloglog 1 ε+ζζ≤+ nnll wwPHPH  or equivalently 

( ) ( ) ( ) ( ) ,~ˆloglog 1 ε−ζζ≥+ nnll wwPHPH  

where ε~  tends to 0 as ε does. This same argument applied repeatedly for l 
from 1+k  to 2−+ ik  shows that 

( )
( )

( )
( ) ,~ˆ

log
log

1
2

1
1 ε−








ζ
ζ

≥
−

−+
+

i

n
n

ik
k

w
w

PH
PH  (63) 

for some 1
~ε  which depends on ε and tends to 0 as ε tends to 0. Combination 

of (62) and (63) yields 

( )
( )

( )
( )

( )
( )1

1
11 log

log
log
log

log
log

−+
+

+−+
⋅

ζ
−=

ζ
−

ik
k

k
k

ik
k

PH
PH

PH
P

PH
P  

( ( ) ) ( )
( ) .~ˆˆ 1

2











ε−








ζ
ζ

ε−ζ≥
−i

n
n

n w
ww  

Since ( ) ( ) ( ) ,1 ζ>>ζ>ζ ++ nkkk PPP  we infer that 

( )
( ) ( ) ( )

( ) ,10,~ˆˆ
log
log

2
1

1
−≤≤ε+








ζ
ζ

ζ≥
ζ

−
−

−+

+ ijw
wwPH

P n

n
n

n
ik

jk  

for some 2
~ε  which again depends on ε and tends to 0 as ε does. Moreover, 

by our assumption, we can find arbitrarily large k such that the polynomials 

nkkk PPP ++ ...,,, 1  are linearly independent. Hence and since ( )nkPH +  

( )jkPH +≥  for ,0 nj ≤≤  we obtain (23) as we may take ε arbitrarily     

small. The estimate (22) is unconditioned since for 3=i  Conjecture 4.1 is 
unconditioned, see Remark 4. 

Finally, (24) follows from (23) with 1+= ni  combined with 

( )
( )

( ) ( )
( ) ,1ˆ

ˆ1
ˆ

1
1, −ζ

ζ−
≤

ζλ
=ζ+

n
n

n
nn w

wnw  

by elementary rearrangements. The right above inequality is obtained from 

(61) by taking reciprocals. The dual estimates for the constants jnjn ,,
ˆ, λλ  
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are obtained very similarly, where for (25) we applied 

( ) ( )
( ) ,1

ˆ1
ˆ

1
1, −

ζλ−
≤

ζ
=ζλ + nw

n
n

nn  

where again we used (61). ~ 

Proof of Theorem 4.3. By assumption and Theorem 4.2, inequality (24) 
holds, which is stronger than (20). As mentioned at the end of Section 3, this 

estimation in turn implies the claim (21).  
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