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Abstract 

This paper presents a numerical solution procedure for solving second-
order differential equation of integer and fractional order subject          
to fuzzy conditions. The procedure is based on the usage of tools of 
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reproducing kernel Hilbert space in which every function satisfies       
the initial fuzzy conditions in the second-order differential equation. 
The procedure produces solutions of high accuracy and examples       
are provided to illustrate the effectiveness of the solution procedure. 
The proposed procedure is flexible and has the potential to be     
further employed to solve problems involving other levels of order in 
fractional calculus subject to fuzzy conditions. 

1. Introduction 

The second-order differential equations of integer order have a variety of 
applications in areas such as mechanical vibration, electric circuits and signal 
processing. With the establishment of fractional differential equations around 
the year 1695 [1, 2], in the realm of the concept of second-order differential 
equations, the equations include the level of the second-order derivative 
where the order involves all cases of order α where .21 ≤α<  

With the emergence of fuzzy theory by Zadeh in 1965 [3], there        
exist many applications involving second-order differential equations and 
fuzzy values, hence requiring new solution procedure to solve the equation 
that has been transformed into uncertainty state. Several researchers have 
focused on the study of fractional calculus with fuzzy concepts [4, 5]. 
Fractional calculus involving fuzzy theory has found potential applications in 
several scientific fields such as nanotechnology, engineering, bioengineering 
and viscoelasticity [1, 6-10]. However, since most fuzzy fractional equations 
do not have exact solutions, new methods as well as improved classical 
methods have been developed such as Laplace transforms [11], Euler method 
[12] and homotopy analysis transform method [13] to obtain approximate 
solutions. Recently, the reproducing kernel Hilbert space has been used in      
a variety of applications involving differential equations including first-order 
differential equations with boundary values [14], linear Volterra integral 
equations [15, 16], second-order nonlinear oscillators with initial conditions 
[17], second-order differential equations with boundary values [18], 
Fredholm and Volterra functional integral equations with initial conditions 
[19] fourth-order boundary value problems of mixed type integrodifferential 
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equations [20] second-order, two-point fuzzy boundary value problems          
[21] fuzzy Fredholm-Volterra integrodifferential equations [22] and fuzzy 
differential equations [23]. In fractional calculus, the reproducing kernel 
Hilbert space method has also been used to solve fractional 
integrodifferential equations [24], In general, the reproducing kernel Hilbert 
space method is a promising tool since the employment of the method in 
those studies has been proven to be not only efficient but also convenient. 
However, those studies did not consider fuzzy conditions with fractional 
derivative. Therefore, this study employs the reproducing kernel Hilbert 
space method towards finding the numerical solution of the “second-order 
fuzzy differential equation of integer and fractional order”, an equation that 
includes all derivatives in the level of second-order with at least one set of 
fuzzy values as the initial conditions. 

In this paper, we consider the following second-order differential 
equation of integer and fractional order subject to fuzzy conditions: 

[ ] ( ) ( ( ) ( )( )),,, 0
1

0
,

1,0 zpzpzgzpDc
z =α
∈  

( ) ( ) ( )( ) ( ),,,0,,,0 2222
1

1111 cbazpcbazp FF ====  (1) 

where [ ]
α
∈
,

1,0
c
zD  is the derivative of order α in the sense of Caputo for 

,21 ≤α<  [ ],1,0∈z  1Fz  and 2Fz  are fuzzy initial conditions and 

( ( ) ( )( ))0
1

0 ,, zpzpzg  is a linear or nonlinear function depending on the 

nature of the problem. 

We propose a new algorithm based on the reproducing kernel Hilbert 
space method tools to provide a numerical solution for equation (1). 

This paper is organized as follows: First, a brief introduction of fractional 
calculus, fuzzy theory and existing solution methods of fractional calculus is 
given in Section 1. Basic definitions in fractional calculus, fuzzy theory and 
the reproducing kernel Hilbert space are presented in Section 2. Section 3 
focuses on the theoretical aspects of the solution procedure of the proposed 
method based on the reproducing kernel Hilbert space. The algorithm for        
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the solution procedure is given in Section 4. Two numerical examples are 
provided in Section 5 to demonstrate the effectiveness of the algorithm. 
Finally, the conclusion of the study is given in Section 6. 

2. Basic Definitions 

This section contains some main definitions related to fractional calculus 
and fuzzy theory. 

2.1. Caputo definitions of fractional derivatives 

Caputo definition is one of the most important definitions used in 
fractional calculus. There are two basic definitions in the sense of Caputo, 
which can be summarized as follows: 

Definition 1 [25, 26]. The left Caputo fractional derivative is defined as: 

[ ] ( )
⎡ ⎤( ) ( )⎡ ⎤ ⎡ ⎤( )( )∫ τττ−

α−αΓ
= α−α−αα

∈

z

a
c

baz dyzzyD .1 1,
,  (2) 

Definition 2 [25, 26]. The right Caputo fractional derivative is defined 
as: 

[ ] ( ) ( )⎡ ⎤

⎡ ⎤( ) ( )⎡ ⎤ ⎡ ⎤( )( )∫ ττ−τ
α−αΓ

−= α−α−α
α

α
∈

b

z
c

baz dyzzyD ,1 1,
,  (3) 

where ⎡ ⎤  denotes the largest integer near ,α  az >  in equation (2) and 

bz <  in equation (3). 

2.2. Basic definitions in fuzzy theory 

The following are the basic definitions in fuzzy theory which are related 

to the aim of this paper where the notation R denotes real numbers and n
FiR  

denotes n-dimensional fuzzy number. For more details, refer to [3, 28-34]. 

Definition 3. The r-cut of ( )zuFi  is the crisp set [ ( )]zuFi  that contains 

all elements with degree in ( ) rzuFi ≥  such that 

 [ ( )] { ( ) } .2,1,: =∀≥∈= irzuRzzu Fi
r

Fi  (4) 
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For fuzzy number ( ),zuFi  its r-cut is closed and bounded interval in R 

and we denote it as 

[ ( )] [ ( ) ( )]zuzuzu rr
r

Fi 2,11,1 ,=  for ,1=i  

where 

{ [ ( )] }r
Fr zuzzu ∈= :min1,1  

and 

 { [ ( )] }r
Fr zuzzu ∈= :max2,1  for each [ ].1,0∈r  (5) 

To fit the definition of triangular fuzzy number [35] with respect to the 
conditions in equation (1), we redefine equation (1) as given in the following 
definition. 

Definition 4. For ( ) ,n
FiFi Rzu ∈  Fiu  is a triangular fuzzy number 

represented with three points ( ),,, iii cba  where this representation is 

interpreted as membership functions of the following form: 

 ( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>

≤≤
−
−

≤≤
−
−

<

=

i

ii
ii

i

ii
ii
i

i

Fi

cz

czbbc
zc

bzaab
az

az

zu

,0

,,

,,

,,0

 (6) 

and its r-cut is as follows: 

[ ] ( ) ( )[ ]iiiiii
r

Fi bcrcabrau −−−+= ,  for [ ] .2,1,1,0 =∈ ir  

2.3. Basic definitions of reproducing kernel 

Definition 5 [36]. The function space [ ]baFSm ,2  is defined as follows: 

 [ ]
( )

( ) [ ]
.

,,1...,,2,1
,continuousabsolutelyis:, 22
⎭
⎬
⎫

⎩
⎨
⎧

∈−=
=

baLumi
uubaFS m

i
m  (7) 
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The inner product in the function space [ ]baFSm ,2  for any functions 

( ) ( ) [ ]baFSzvzu m ,, 2∈  is generally defined as 

[ ]
( )( ) ( )( ) ( )( ) ( )( )∑ ∫

−

=

+=
1

0
, .,

2

m

i

b

a
mmii

baFS dzzvzuavauvu m  (8) 

The norm in the function space [ ]baFSm ,2  for any functions 

( ) ( ) [ ]baFSzvzu m ,, 2∈  is defined as 

 [ ] [ ] ., ,, 22 baFSbaFS mm uuu =  (9) 

3. The Solution Procedure 

To solve equation (1) by reproducing kernel tools [36], it is necessary to 

homogenize the fuzzy initial conditions ( ) ,10 FzzP =  ( )( ) ,20
1

FzzP =  and to 

do so, we consider the following condition: 

 ( ) ( ) ( ( )).2012 FFF
H zzzzzzpzp −+−=  (10) 

Then equation (1) can be formulated as 

[ ]( ( )) ( ( ) ( )( )),,, 1,
1,0 zpzpzGzpD HHHc

z =α
∈  

( ) ( )( ) ,0,0 1
1

1 == F
H

F
H zpzp  (11) 

where 

( ( ) ( )( ))zpzpzG HH 1,,  

 ( ( ) ( ( )) ( )( ) ).,, 20
1

2012 F
H

FFF
H zzpzzzzzzpzg +−++=  (12) 

Combining equation (11) and equation (12) yields 

[ ]( ( ))zpD Hc
baz

α
∈
,

,  

( ( ) ( ( )) ( )( ) )20
1

2012 ,, F
H

FFF
H zzpzzzzzzpzg +−++=  
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subject to the initial conditions 

 ( ) ( )( ) .0,0 1
1

1 == F
H

F
H zpzp  (13) 

Since 1Fz  and 2Fz  are fuzzy numbers, equation (13) can be formulated 

in a new form as follows: 

[ ]( ( )) ( ( ) ( ( ) (( )111222
,

, ,,,,, cbacbazzpzgzpD HHc
baz ++=α

∈  

( ))) ( )( ) )20
1

2220 ,,, F
H zzpcbaz +−  

subject to the initial conditions 

 ( ) ( )( ) .0,0 1
1

1 == F
H

F
H zpzp  (14) 

By substituting ( )1111 ,, cbazF =  and ( ),,, 2222 cbazF =  we get the 

following new formula for equation (14): 

[ ]( ( )) ( ) ( ( ) (( )
( ))) ( )( ) ( )

r

H

H
Hc

baz cbazpcbaz
cbacbazzpzgzpD ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+−
++=α

∈
222

1
2220

111222,
, ,,,,,

,,,,,  

subject to the initial conditions 

 ( ) ( )( ) .0,0 1
1

1 == F
H

F
H zpzp  (15) 

By using r-cut definition, we get the following new formula for equation 
(15): 

[ ]( ( ))zpD H
r

c
baz 1,1

,
,

α
∈  

( ( ) ( ( )) ( )( ) ),,, ,2
1

,1,20,1,21,1 jrF
H

jrjrFjrFjrF
H

j zzpzzzzzzpzg +−++=  

for ,1=j  

[ ]( ( ))zpD H
r

c
baz 2,1

,
,

α
∈  

( ( ) ( ( )) ( )( ) ),,, ,2
1

,1,201,2,1 jrF
H

jrjrFFjrF
H

jr zzpzzzzzzpzg +−++=  

for ,2=j  (16) 
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where 

( ) ( ),, 2221,21111,1 abrazabraz rFrF −+=−+=  

( ) ( )., 2221,21112,1 bcrczbcrcz rFrF −−=−−=  

To solve by reproducing tools equation (16), we define the next       

operator [ ] [ ],,,: 1
2

3
2,1 baFSbaFSL jr →  2,1=∀j  such that ( ) =zpL H

jrjr ,1,1  

[ ] ( ) .21,,1
,

, ≤α<α
∈ zpD H

jr
c

baz  Hence, we can write equation (16) as follows: 

( ) ( ( ) ( ( jrFjrF
H

jr
H

rjr zzzzpzgzpL ,1,21,11,11,1,1 , ++=  

)) ( )( ) ) ,2,1,, ,2
1

,1,20 =∀+− jzzpzz jrF
H

jrjrF  (17) 

where 

( ) ( ),, 2221,21111,1 abrazabraz rFrF −+=−+=  

( ) ( ),, 2221,21112,1 bcrczbcrcz rFrF −−=−−=  

[ ] ( ) [ ]baFSzpbaz H
jr ,,, 3

2,1 ∈∈  

and 

( ( ) ( ( )) ( )( ) )jrF
H

jrjrFjrFjrF
H

jrjr zzpzzzzzzpzg ,2
1

,1,20,1,2,1,1 ,, +−++  

[ ] .2,1,,1
2 =∀∈ jbaFS  

We need to construct an orthogonal function system [ ].,3
2 baFS  To 

achieve that we take a countable dense set { }∞=1kkz  of [ ],, ba  let ( )ze jrk ,1,  

( )zKR kz1=  and ( ) ( ),,1,,,1, zeLz jrk
ad

jrkjrk =ψ  where ( )yKR z1  is the 

reproducing kernel of [ ]baFS ,1
2  and ad

jrkL ,  is the adjoint operator of 

( ) ., 3
2,1,, FSzL jrkjrk ∈ψ  
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By the properties of ( ),3 yKR z  we have 

( ) ( ) [ ]baFSjrk
H

jr zzp ,,1,,1 3
2

, ψ  

( ) ( ) [ ]baFSjrk
ad

jr
H

jr zLzp ,,1,,1,1 3
2

, ψ=  

( ) ( ) [ ]baFSjrk
H

jrjr zzpL ,,1,,1,1 1
2

, ψ=  

( ),,1,1 zpL H
jrjr=  

where ( )yKR z3  is the reproducing kernel of [ ].,3
2 baFS  

Theorem 1 [36]. The reproducing kernel ( )yKR z3  can be expressed as: 

 ( )

( ) ( ) ( )
( ( ))

( ) ( ) ( )
( ( ))⎪

⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

>
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

++−+
++−+∗

−−∗+
∗−

≤
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

++−+
++−+∗

−−∗+
∗−

−=

.,
6552
51033
1056

,,
6552
51033
1056

120
1

22

2

2323

2

22

2

2323

2

3

yz
zyzya
zyaz

yzzya
ya

yz
yzyza

yzay
zyyza

ya

yKR z  (18) 

Theorem 2 [37]. The reproducing kernel ( )zKR z1  can be expressed as: 

( )

( ) ( ( )
( ))

( ) ( ( )
( ))⎪

⎪

⎩

⎪
⎪

⎨

⎧

>+−−+

−−+−

≤+−−+

−−+−

=

.,cosh
coshcsc2

1
,,cosh

coshcsc2
1

1

yzabzy
abzyabh

yzabyz
abyzabh

yKR z  (19) 

Lemma 1. ( )zjrk ,1,ψ  can be expressed in the form of ( ) =ψ zjrk ,1,  

( ) ,3,1, kzyzjry yKRL =  where the subscript y of L refers to the application of 

the operator L to the function y. 
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Proof. 

( ) ( ) ( ) ( ) [ ]baFSzjrk
ad

jrjrk
ad

jrjrk yKRyeLzeLz ,3,1,,1,1,,1,1, 3
2

,==ψ  

( ) ( ) [ ] ( ) ., 3,1,,3,1,,1, 1
2 kzyzjrybaFSzjryjrk yKRLyKRLye ===  

  

Lemma 2. If equation (1) has fractional derivatives, then ( )zjrk ,1,ψ  can 

be expressed as follows: 

( )
⎡ ⎤( ) ( )⎡ ⎤ ( ) ⎡ ⎤( )∫ =τττ−

α−αΓ
=ψ α−α−αkz

a zkjrk kdKRzz ....,2,1,1
3

1
,1,  

Theorem 3. Suppose that the inverse operator 1
,1
−

jrL  for equation (17) 

exists. If { }∞=1kkz  is dense in [ ],, ba  then { ( )}( )
( )r

jrkjrk z 2,1,
,1,,1,

∞ψ  is the complete 

fuzzy function system of [ ].,3
2 baFS  

Proof. ( ) [ ],,3
2,1 baFSzpH

jr ∈∀  let ( ) ( ) ,0, ,1,,1 =ψ zzp jrk
H

jr  for =k  

....,2,1  Then 

( ) ( ) [ ] ( ) ( ) [ ]baFSjrk
ad

jr
H

jrbaFSjrk
H

jr zeLzpzzp ,,1,,1,1,,1,,1 3
2

3
2

,, =ψ  

( ) ( ) [ ]baFSjrk
H

jrjr zezpL ,,1,,1,1 1
2

,=  

( )zpL H
jrjr ,1,1=  

,0=  

where { }∞=1kkz  is dense in [ ],, ba  then ( ) 0,1,1 =zpL H
jrjr  from the existence 

of inverse and the continuity of ( ).,1 zpH
jr   

By Gram-Schmidt orthogonalization process of { ( )}( )
( ),2,1,

,1,,1,
r

jrkjrk z ∞ψ  we 

derive an orthonormal system { ( )}( )
( ) :2,1,

1,1,,1,
r

rkjrk z ∞ψ  
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( ) ( )∑
=

=∀ψβ=ψ
k

s
jrsksjrk kzz

1
,1,,1, ...,2,1,    and   ,2,1=j  (20) 

where 
jrk

kk
jr M ,1,,1,1

11
1,1 =β

ψ
=β  and 

,1 1

,1,,1,,1, ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
β−=β ∑

−

=

k

ps
jrspjrks

k
jrkp dM  for .kp <  

Then ( ) ,
1

2
,1,

2
,1,1,1, ∑

−

=
−ψ=

k

ps
jrksjrjrk dM  where 

[ ]., ,,1,,1,,1, 3
2 baFSjrkjrkjrksd ψψ=  

Theorem 4. If { }∞=1kkz  is in [ ]ba,  and the solution ( )zpH
jr,1  is unique 

on [ ],,3
2 baFS  then the exact solution of equation (16) is given by: 

( )zpH
jr,1  

( ( ) (∑∑
∞

= =

+β=
1 1

,21,11,1,1, ,
k

k

s
jrF

H
jrjrks zzzpzg  

( )) ( )( ) ) ( ),, ,1,,2
1

,1,20,1 zzzpzzz jrkjrF
H

jrjrFjrF ψ+−+  

      .2,1=∀j  (21) 

Proof. By Theorem 3, { }( ) ( )
( )r

rjrmkjrmk
2,1,

1,1,1,,,,
∞

=ψ  is the complete 

orthonormal basis of the [ ].,3
2 baFS  Therefore, ( )zpH

jr,1  can be expanded 

into Fourier series about the orthonormal system { }( ) ( )
( )r

rjrmkjrmk
2,1,

1,1,1,,,,
∞

=ψ  

as 

( ) ( ) ( )∑
∞

=

=∀ψψ=
1

,1,,1,,1,1 ,2,1,,
k

jrkjrk
H

jr
H

jr jzzpzp  
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where we define [ ]baFS ,3
2  as reproducing kernel Hilbert space. Therefore, 

( ) ( ) ( )∑
∞

=

==∀ψψ=
1

,,,,,1,1 2,1,1,,
k

jrmkjrmk
H

jr
H

jr jmzzpzp  

is convergent in the sense of the norm in Definition 5. Hence 

( )zpH
jr,1  

( ) ( ) ( )∑
∞

=

ψψ=
1

,1,,1,,1 ,
k

jrkjrk
H

jr zzzp  

( ) ( ) ( )
[ ]

( )∑ ∑
∞

= =

ψΨβ=
1

,1,
1,01

,,,,,1
3
2

,
k

jrk
FS

k

s
jrmsjrmks

H
jr zzzzp  

( ) ( ) ( ) [ ] ( )∑∑
∞

= =

ψΨβ=
1 1

1,1,0,,,1,, 3
2

,
k

k

s
jrkFSjrms

H
jrjrmks zzzpz  

( ) ( ) ( ) [ ] ( )∑∑
∞

= =

ψβ=
1 1

,1,1,0,1,,1,1,, 3
2

,
k

k

s
jrkFSjrs

ad
jr

H
jrjrmks zzeLzpz  

( ) ( ) ( ) [ ] ( )∑∑
∞

= =

ψβ=
1 1

,,1,0,1,,1,1,, ,, 1
2

k

k

s
jrmkFSjrs

H
jrjrjrmks zzezpLz  

( )
( ( ) ( ( ))

( )( ) ) ( )
( )∑∑

∞

= =

ψ
+

−++
β=

1 1
,1,

,1,,2
1

,1

,20,1,21,1,1
,1, ,

,,

k

k

s
jrk

jrsjrF
H

jr

jrFjrFjrF
H

jjr
jrks z

zezzp

zzzzzzpzg
z  

( ) ( ( ) (∑∑
∞

= =

+β=
1 1

,21,1,1,1, ,
k

k

s
jrFs

H
jsjrjrks zzzpzgz  

( )) ( )( ) ) ( ),, ,1,,2
1

,1,20,1 zzzpzzz jrkjrFs
H

jrjrFjrF ψ+−+  

                                                                                                             .2,1=∀j   



Numerical Solution of Second-order Fuzzy Differential … 1339 

By taking finite terms, the following approximate solution for equation 
(16) is obtained: 

( )zpH
jrm,  

( ) ( ( ) (∑∑
= =

+β=
N

k

k

s
jrFs

H
jrsjrjrks zzzpzgz

1 1
,2,1,1,1, ,  

( )) ( )( ) ) jrkjrFs
H

jrjrFjrF zzpzzz ,1,,2
1

,1,20,1 , ψ+−+  

                                                    for .2,1=j  (22) 

Using equation (10), the approximate solution of ( )zp  in equation (1) is 

as follows: 

( )zp jr,1  

( ) ( ( )∑∑
= =

β=
N

k

k

s
s

H
jrsjrjrks zpzgz

1 1
,1,1,1, ,  

( ( )) ( )( ) ) jrkjrFs
H

jrjrFjrFjrF zzpzzzzz ,1,,2
1

,1,20,1,2 , ψ+−++  

( ( )).,20,1,2 jrFjrFjrF zzzzz −++  (23) 

4. The Algorithm 

To implement the algorithm to solve equation (1) according to the 
solution procedure, the input and output are as follows: 

Input. Kernel function ( ),3 yKR z  interval [ ],1,0  the integer N and          

m, the differential operator .,1, jryL  Defined the inner product 

for ( ) ( ) ,, zz ii ψψ  fuzzy initial conditions ( ),,, 1111 cbazF =  

( ),,, 2222 cbazF =  order of derivatives ( ]2,1∈α  and the 

function. 

Output. Approximate solution of ( ).,1 zp jr  
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The following are the steps to implement the algorithm: 

Steps 

1. Fix z in [ ]1,0  and set [ ].1,0∈y  

If ,yz ≤  set 

( ) ( )
( )

( )
( ( ))

.
6552

5103
31056

120
1

22

2

2323

2
3

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

++−+
++−

+∗−−∗+
∗−−=

yzyza
yza

yzyyza
yayKR z  

Otherwise, 

( ) ( )
( )

( )
( ( ))

.
6552

5103
31056

120
1

22

2

2323

2
3

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

++−+
++−

+∗−−∗+
∗−−=

zyzya
zya

zyzzya
zayKR z  

2. 2,1=∀j  do steps 3-6. 

3. For mdjNk ...,,2,1,2,1,...,,2,1 ===  do the following: 

Set 00 =z  

Set Nzz kk
1

1 += −  

Set 00 =r  

Set .1 ⎟
⎠
⎞⎜

⎝
⎛+= − m

drr dd  

If ;1=j  Set ( )111,1 abraz djrF d −+=  

 Set ( ).222,2 abraz djrF d −+=  

If ;2=j  Set ( )111,1 bcrcz djrF d −−=  

 Set ( )222,2 bcrcz djrF d −−=  

 Set ( )222,2 abraz djrF d −+=  

 Set ( ) ( ) .3,1,,1, kd zyzjryjrk yKRLz ==ψ  

The output is { ( )}( )
( ).2,1,

,1,,1,
d

dd
rN

jrkjrk zψ  



Numerical Solution of Second-order Fuzzy Differential … 1341 

4. For ksNk ...,,2,1,...,,2 ==  do the following: 

Set 
djr,1,1

11
1

ψ
=β  

Set 
djrk

kk M ,1,

1=β  

Set kpdM

k

ps
jrspjrks

k
jrkp dd <

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
β−=β ∑

−

=
,1 1

,1,,1,,1,  

Set ( ) ,
1

2
,1,

2
,1,1,1, ∑

−

=
−ψ=

k

ps
jrksjrjrk dd dM  

( ) ( ) [ ]., ,,1,,1,,1, 3
2 baFSjrkjrkjrks zzd dd ψψ=  

The output is .,1, djrksβ  

5. For ,...,,2,1 Nk =  

Set ( ) ( )∑
=

ψβ=ψ
k

s
jrsksjrk zz dd

1
,1,,1, .  

The output is ( ).,1, zdjrkψ  

6. For ,...,,2,1 Nk =  

Set ( ) ( ) ( ) ,0,0 0
1

,10,1 == zpzp H
jr

H
jr dd

 

( )zpH
jr,1  

( ) ( ( )∑∑
= =

β=
N

k

k

s
s

H
jsjrjrkl zpzgz

1 1
1,1,1,1, ,  

( ( )) ( )( ) ) ( )zzzpzzzzz jrkjrFs
H

jrjrFjrFjrF ,1,,2
1

,1,20,1,2 , ψ+−++  

Set ( ) ( ) ( ( )).,20,1,2,1,1 ddddd jrFjrFjrF
H

jrjr zzzzzzpzp −++=  

The output is ( ) [ ( ) ( )]., 2,11,1,1 zpzpzp ddd rrjr =  
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5. Numerical Examples 

Example 1. Consider the following fuzzy fractional differential 
equations of order α: 

[ ] ( ) ( )( ) ( ) ( ),cos3.015 1,
1,0 zzpzpzpDc

z ++−=α
∈  

( ) ( ) ( )( ) ( ) .2,3,2,1,3,2,1 0
1

0 =α== zpzp  

Solution. By applying fuzzy theory after homogenizing the initial 
conditions, we obtain the following system: 

[ ] ( ) ( ) ( ) ( ) ( )( )2221,1
1
1,11,1

,
1,0 15cos3.015 abrazzppzpD rrr

c
z −+−++−= ∗∗∗α
∈  

[ ( )( ) zabra 222 −++  

[ ( ) ( )( )( )]],2220111 abrazabra −+−−++  

[ ] ( ) ( ) ( ) ( ) ( )( )2222,1
1
2,12,1

,
1,0 15cos3.015 bcrczzppzpD rrr

c
z −−−++−= ∗∗∗α
∈  

[ ( )( ) zbcrc 222 −−+  

[ ( ) ( )( )( )]],2220111 bcrczbcrc −−−−−+  

( ) ( ) ( )( ) ( ) ( ) ,0,0,0,0 1
2,1

1
1,12,11,1 ==== ∗∗∗∗ zpzpzpzp rrrr  

( [ ( ) ( ) ( ) ( ) ( ) ( ) ]) ,00.30,00.10,00.30,00.10, 1
2,1

1
1,12,11,10

T
rrrr ppppr ====  

( [ ( ) ( ) ( ) ( ) ( ) ( ) ]) .00.20,00.20,00.20,00.20, 1
2,1

1
1,12,11,12

T
rrrr ppppr ====  

The exact solutions of the system at 0=r  are: 

( ) ( [ ]zeeezp zzz
r cos002.0.1057.0063.1 0664.151327.150664.15

1,1 −+−= −  

[ ]),sin018.0 0664.15 ze z+  

( ) ( [ ]zeeezp zzz
r cos0008.0.1058.0186.3 0664.151324.150664.15

2,1 −+−= −  

[ ]).sin006.0 0664.15 ze z+  
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The exact solutions of the system at 0.1=r  are: 

( ) ( )zpzp rr 2,11,1 =  

( zz ee 134.150664.15 .1058.0125.2 +−= −  

[ ] [ ]).sin0092.0cos0012.0 0664.150664.15 zeze zz +−  

Using the proposed algorithm and taking 100=N  in the interval [ ],1,0  
the results of the approximate solutions are obtained and presented in      
Tables 1.1-1.3 as well as in Figures 1.1-1.3. The approximate solutions are 
compared with the exact solutions within the same interval and within the 
same fuzzy initial values. 

Table 1.1. Comparison of solutions of ( )zp r1,1  for Example 1 when 0=r  

z 
Exact solution 

( )zp r1,1  
Approximate solution 

( ) 0,1,1 =rzp r  Error 

0.0 1.0 1.0 0 

0.1 1.0560548492202497 1.056046406 61028.44357601 −×  

0.2 1.075580238403811 1.075564918 51051.53199824 −×  

0.3 1.0870309508357805 1.087012921 51031.80297779 −×  

0.4 1.0966990764967495 1.096680106 51021.89707281 −×  

0.5 1.1059645558430546 1.105945223 51051.93328421 −×  

0.6 1.1151189829045023 1.115099457 51091.95257840 −×  

0.7 1.1242133119945217 1.124193639 5100826 1.96727 −×  

0.8 1.1332458945594859 1.133226086 51091.98080978 −×  

0.9 1.1422042901738525 1.142184349 51031.99412916 −×  

1.0 1.1510746573241644 1.151054582 51062.00751832 −×  

 
Figure 1.1. The exact solutions and approximate solutions of ( )zp r1,1  for 

Example 1 when .0=r  
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Table 1.2. Comparison of solutions of ( )zp r2,1  for Example 1 when 0=r  

z 
Exact solution 

( )zp r2,1  
Approximate solution 

( ) 0,2,1 =rzp r  Error 

0.0 3 3 0 

0.1 3.1662366706950786 3.166157278 51097.93922808 −×  

0.2 3.2212846442096557 3.221140568 41011.44076671 −×  

0.3 3.251783337499188 3.251613775 41051.69562186 −×  

0.4 3.2769221944280775 3.276743786 41021.78408708 −×  

0.5 3.3009404021469866 3.30075859 41021.81812268 −×  

0.6 3.3247638172370437 3.324580191 41061.83625875 −×  

0.7 3.348584483065339 3.348399476 41091.85007131 −×  

0.8 3.3724325295567237 3.37224625 41091.86279903 −×  

0.9 3.3963030689952367 3.396115538 41051.87531186 −×  

1.0 3.420184446225242 3.419995661 41071.88784950 −×  

 

Figure 1.2. The exact solutions and approximate solutions of ( )zp r2,1  for 

Example 1 when .0=r  
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Table 1.3. Comparisons of solutions of ( ) ( )zpzp rr 2,11,1 =  for Example 1 

when 0.1=r  

z 
Exact solution 

( )zp r1,1  
Approximate solution 
( ) ( ) 0.1,, 2,11,1 =rzpzp rr  Error 

0.0 2.0 2.0 0 

0.1 2.111145759957664 2.11109302 51035.27395519 −×  

0.2 2.1484324413067335 2.148336733 41029.57088014 −×  

0.3 2.1694071441674843 2.169294506 41091.12638611 −×  

0.4 2.1868106354624137 2.18669212 41061.18515296 −×  

0.5 2.2034524789950205 2.203331703 41021.20776273 −×  

0.6 2.2199414000707733 2.219819419 41031.21981060 −×  

0.7 2.2363988975299303 2.236275999 41071.22898646 −×  

0.8 2.2528392120581042 2.252715468 41091.23744199 −×  

0.9 2.269253679584544 2.269129104 41021.24575626 −×  

1.0 2.285629551774703 2.285504142 41051.25409376 −×  

 

Figure 1.3. The exact solutions and the approximate solutions of ( ) =zp r1,1  

( )zp r2,1  for Example 1 when .0.1=r  

Notably, Tables 1.1-1.3 and Figures 1.1-1.3 depict the accuracy of the 
solution of second-order fuzzy differential equations of integer and fractional 
order obtained as well as the efficiency of the proposed solution procedure 
based on reproducing kernel Hilbert space. 
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Example 2. Consider the following fuzzy fractional differential equation 
of order :7.1=α  

[ ] ( ) ( )( ) ( ) ( ),cos3.015 1,
1,0 zzpzpzpDc

z ++−=α
∈  

( ) ( ) ( )( ) ( ).0,0,0,3,2,1 0
1

0 == zpzp  

Solution. By applying fuzzy theory after homogenizing the initial 
conditions, we obtain 

[ ] ( )zpD r
c
z

∗α
∈ 1,1
,

1,0  

( ) ( ) ( ) ( )( )2221,1
1
1,1 15cos3.015 abrazzpp rr −+−++−= ∗∗  

[ ( )( ) [ ( ) ( )( )( )]],2220111222 abrazabrazabra −+−−++−++  

[ ] ( )zpD r
c
z

∗α
∈ 2,1
,

1,0  

( ) ( ) ( ) ( )( )2222,1
1
2,1 15cos3.015 bcrczzpp rr −−−++−= ∗∗  

[ ( )( ) [ ( ) ( )( )( )]],2220111222 bcrczbcrczbcrc −−−−−+−−+  

( ) ( ) ( )( ) ( ) ( ) .0,0,0,0 1
2,1

1
1,12,11,1 ==== ∗∗∗∗ zpzpzpzp rrrr  

Results for Example 2 are obtained using the proposed algorithm for 
50=N  in the interval [ ].1,0  Table 2.1 shows the numerical solutions at 

7.1=α  for ,0=r  0.5 and 1.0. It is clear that for each 0=r  and ,5.0=r  
the solution is in the form of an interval, which can also be observed in 
Figures 2.1 and 2.2, respectively. On the other hand, for ,1=r  the solution 
is in the form of a point as depicted in Figure 2.3. 
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Table 2.1. Numerical solutions of ( )zp r1,1  and ( )zp r2,1  for Example 2 with 

different values of r 

Z 

Approximate 
solution 

( ),1,1 zp r  

,0=r  

7.1=α  

Approximate 
solution 

( ),2,1 zp r   

,0=r  

7.1=α  

Approximate 
solution 

( ),1,1 zp r  

,5.0=r  

7.1=α  

Approximate 
solution 

( ),2,1 zp r  

,5.0=r  

7.1=α  

Approximate 
solution 
( ) ( ),2,11,1 zpzp rr =  

,0.1=r  

7.1=α  

0.0 0.0 3.0 1.5 2.5 2.0 
0.1 1.040386965 3.118544818 1.559926428 2.599005355 2.079465891 
0.2 1.059052554 3.170978863 1.587034131 2.642997286 2.115015709 
0.3 1.074368264 3.213254893 1.609089921 2.678533236 2.143811579 
0.4 1.088230848 3.251182866 1.628968852 2.710444861 2.169706857 
0.5 1.101253663 3.286666582 1.647606893 2.740313352 2.193960123 
0.6 1.113709269 3.320571877 1.665424921 2.768856225 2.217140573 
0.7 1.125739539 3.353365614 1.682646058 2.796459096 2.239552577 
0.8 1.137425359 3.385327379 1.699400864 2.823351874 2.261376369 
0.9 1.148815508 3.416637003 1.715770882 2.849681629 2.282726255 
1.0 1.159940525 3.447416409 1.731809496 2.875547438 2.303678467 

 

Figure 2.1. Graphs of ( )zp r1,1  and ( )zp r2,1  when 0=r  for Example 2. 
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Figure 2.2. Graphs of ( )zp r1,1  and ( )zp r2,1  when 5.0=r  for Example 2. 

 

Figure 2.3. Graphs of ( ) ( )zpzp rr 2,11,1 =  when 0.1=r  for Example 2. 

6. Conclusion 

In this study, we have proposed a new solution procedure based on 
reproducing kernel theory to solve initial value problems of second-order 
fuzzy differential equations of integer and fractional order with the focus on 
order α in ( ]2,1  in the sense of Caputo fractional derivatives. This solution 

approach is considerably convenient since it requires less effort without 
having to resort to more advanced mathematical tools. The accuracy of          
the results obtained from the illustrated examples indicates the effectiveness 
of the proposed procedure. Further research may include the utilization of 
this new method in solving other types of problems in fuzzy environment 
involving fractional calculus. 
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