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Abstract

This paper presents a numerical solution procedure for solving second-
order differential equation of integer and fractional order subject
to fuzzy conditions. The procedure is based on the usage of tools of
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reproducing kernel Hilbert space in which every function satisfies
the initial fuzzy conditions in the second-order differential equation.
The procedure produces solutions of high accuracy and examples
are provided to illustrate the effectiveness of the solution procedure.
The proposed procedure is flexible and has the potential to be
further employed to solve problems involving other levels of order in
fractional calculus subject to fuzzy conditions.

1. Introduction

The second-order differential equations of integer order have a variety of
applications in areas such as mechanical vibration, electric circuits and signal
processing. With the establishment of fractional differential equations around
the year 1695 [1, 2], in the realm of the concept of second-order differential
equations, the equations include the level of the second-order derivative
where the order involves all cases of order oo where 1 < o, < 2.

With the emergence of fuzzy theory by Zadeh in 1965 [3], there
exist many applications involving second-order differential equations and
fuzzy values, hence requiring new solution procedure to solve the equation
that has been transformed into uncertainty state. Several researchers have
focused on the study of fractional calculus with fuzzy concepts [4, 5].
Fractional calculus involving fuzzy theory has found potential applications in
several scientific fields such as nanotechnology, engineering, bioengineering
and viscoelasticity [1, 6-10]. However, since most fuzzy fractional equations
do not have exact solutions, new methods as well as improved classical
methods have been developed such as Laplace transforms [11], Euler method
[12] and homotopy analysis transform method [13] to obtain approximate
solutions. Recently, the reproducing kernel Hilbert space has been used in
a variety of applications involving differential equations including first-order
differential equations with boundary values [14], linear Volterra integral
equations [15, 16], second-order nonlinear oscillators with initial conditions
[17], second-order differential equations with boundary values [18],
Fredholm and Volterra functional integral equations with initial conditions
[19] fourth-order boundary value problems of mixed type integrodifferential
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equations [20] second-order, two-point fuzzy boundary value problems
[21] fuzzy Fredholm-Volterra integrodifferential equations [22] and fuzzy
differential equations [23]. In fractional calculus, the reproducing kernel
Hilbert space method has also been wused to solve fractional
integrodifferential equations [24], In general, the reproducing kernel Hilbert
space method is a promising tool since the employment of the method in
those studies has been proven to be not only efficient but also convenient.
However, those studies did not consider fuzzy conditions with fractional
derivative. Therefore, this study employs the reproducing kernel Hilbert
space method towards finding the numerical solution of the *“second-order
fuzzy differential equation of integer and fractional order”, an equation that
includes all derivatives in the level of second-order with at least one set of
fuzzy values as the initial conditions.

In this paper, we consider the following second-order differential
equation of integer and fractional order subject to fuzzy conditions:

DS 1P(2) = 9(z, P(z0), PP (z0)),

p0) = 21 = (@, by, &), PY(0) = z¢ = (3, by, ©), 6y

where Df'“ is the derivative of order o in the sense of Caputo for
€[0,1]

l<a<2 z€[0,1, zp; and zg, are fuzzy initial conditions and

a(z, p(zg), p(l)(zo)) is a linear or nonlinear function depending on the
nature of the problem.

We propose a new algorithm based on the reproducing kernel Hilbert
space method tools to provide a numerical solution for equation (1).

This paper is organized as follows: First, a brief introduction of fractional
calculus, fuzzy theory and existing solution methods of fractional calculus is
given in Section 1. Basic definitions in fractional calculus, fuzzy theory and
the reproducing kernel Hilbert space are presented in Section 2. Section 3
focuses on the theoretical aspects of the solution procedure of the proposed
method based on the reproducing kernel Hilbert space. The algorithm for
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the solution procedure is given in Section 4. Two numerical examples are
provided in Section 5 to demonstrate the effectiveness of the algorithm.
Finally, the conclusion of the study is given in Section 6.

2. Basic Definitions
This section contains some main definitions related to fractional calculus
and fuzzy theory.

2.1. Caputo definitions of fractional derivatives

Caputo definition is one of the most important definitions used in
fractional calculus. There are two basic definitions in the sense of Caputo,
which can be summarized as follows:

Definition 1 [25, 26]. The left Caputo fractional derivative is defined as:
¢.0 .1 2, ala-l(a))
D @) = FraT=ay ), @V @ @

Definition 2 [25, 26]. The right Caputo fractional derivative is defined
as:

(_1)r<ﬂ

b
ch’e?a, b]y(z) = mjz (t - Z)F(ﬂ-oc—l y(r‘ﬂ)(r)dt, 3)

where | | denotes the largest integer near o, z > a in equation (2) and
z < b inequation (3).
2.2. Basic definitions in fuzzy theory

The following are the basic definitions in fuzzy theory which are related
to the aim of this paper where the notation R denotes real numbers and Rp;
denotes n-dimensional fuzzy number. For more details, refer to [3, 28-34].

Definition 3. The r-cut of ugj(z) is the crisp set [ug;(z)] that contains

all elements with degree in ugj(z) > r such that

upi() ={zeR:ug(z2)>r}, Vi=12 (4)



Numerical Solution of Second-order Fuzzy Differential ... 1331

For fuzzy number ug;(z), its r-cut is closed and bounded interval in R
and we denote it as

i (2)]" = [ug1r (2), g, 2, (2)] for i =1,
where
Up1r = minfz 2 z € [up (2)]'}
and
U or = max{z : z € [ug(z)]"} for each r < [0, 1. (5)

To fit the definition of triangular fuzzy number [35] with respect to the
conditions in equation (1), we redefine equation (1) as given in the following
definition.

Definition 4. For ugi(z) € Rp, Ug is a triangular fuzzy number
represented with three points (aj, b;, ¢j), where this representation is
interpreted as membership functions of the following form:

0, Z< g,
bz__i, aiSZSbi,
URi(2) =y 0 _ (6)
Cil—bi' b <z<g,
0, Z > G
and its r-cut is as follows:
[ugil” =[a; +r(by —a), ¢; —r(c; —by)] for r €[0,1], i=1 2.

2.3. Basic definitions of reproducing kernel

Definition 5 [36]. The function space FSY'[a, b] is defined as follows:

NOF :
FSD[a, b] = u:u‘’ is absolutely ContlanJOUS, . )
i=12 ..m-1u™ ¢ ?[a, b]
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The inner product in the function space FS5'[a, b] for any functions
u(z), v(z) € FSJ'[a, b] is generally defined as
ST U0 [ um g™
. i i m m
(U V)Es[a,b) = ;u @@+ [ v M@ @
1=
The norm in the function space FSj'[a, b] for any functions
u(z), v(z) e FSJ'[a, b] is defined as
lu |||:s§“[a,b] = U)Fsg‘[a,b]' ©)

3. The Solution Procedure

To solve equation (1) by reproducing kernel tools [36], it is necessary to
homogenize the fuzzy initial conditions P(zg) = zfq, P(l)(zo) = Zg, and to
do so, we consider the following condition:

" (2) = p(2) - (22 + (2r1 - 202F2)). (10)
Then equation (1) can be formulated as

D5.% 15(p™(2) = 6z p™ (2), pHV(2)),

pH(ze) =0, p"B(zg) =0, (11)

where
G(z p"(2). p"P(2)

= 9(z, pM (@) + (22p2 + (21 - 2022)), PPV (20) + 262).  (12)

Combining equation (11) and equation (12) yields
DSt (P (@)

= 9(z, pM(2) + (22p2 + (261 - 20262)), PV (20) + 2¢2)
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subject to the initial conditions

pH(ze) =0, p"D(ze) =0 (13)

Since zgq and zg, are fuzzy numbers, equation (13) can be formulated

in a new form as follows:
D5 4(PM (@) = 9(z, P (2) + (2(az, by, ©2) + (3, by, 1)
— 2082, by, ¢2))), P (z0) + 2¢5)
subject to the initial conditions

pH(ze) =0, p"B(zep) =0 (14)

By substituting zgq = (ag, by, ¢;) and zg, = (ay, by, ), we get the
following new formula for equation (14):

D%.2 (p" (2)) - 9(2, p" (2) + (2(az, by, €2) + (a0, by, ©1) ﬂr

relab ~7(az, by, ©2)), PHV(2) + (a2, by, )
subject to the initial conditions
pH(zr) =0, p"HB(zey) =0 (15)

By using r-cut definition, we get the following new formula for equation
(15):

Dy Z, 5(PLr (2))

= 9(z, p{'ju(2) + (zzF2, jr + (ZF1, jr — 2022, jr)) pf,'j(})(z) +2F2 jr)s
for j =1,

Dot py(PL2r(2)

= 9(z, pf'jr(2) + (zzp2, jr + (2F1 - 202F2, jr)) pﬂfi)(2)+ ZF2, jr);

for j =2, (16)
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where
Zppar = & + (b — @), zZpoar = @y +r(bp —ay),
Zpyor = C — (= y),  Zppqr =Cp —r(cy —by).

To solve by reproducing tools equation (16), we define the next
operator Ly jr : FS3[a, b] - FS3[a, b], Vj =1, 2 such that Ly, jrpﬁjr(z) =

ché?a, b] p{'jr(z), 1 < a < 2. Hence, we can write equation (16) as follows:

H H
Ly, jrPL1r(2) = 91,10 (2 PLj1(2) + (2R 2, jr + (2R, jr

- 20265 i) PP + 260 ) Vi=12 (17)

where
Zrpar =80+ 1y —ay),  Zppar = ap + (b — ),
Zryor =C - (e — b)) Zppar =Cp —r(c2 —bp),
z e[a, b], pl',*jr(z) € Fsg[a, b]

and

g1, jr(Z, pfljr(z) +(22g 2, jr t (zry, jr — 20ZF2, jr)): PHP(Z) + ZF, jr)

e FSi[a,b], Vj=1 2
We need to construct an orthogonal function system Fsg[a, b]. To
achieve that we take a countable dense set {z },_; of [a, b], let e q jr(2)
= RiKg (2) and wy 1 (2) = L‘f(“f'jrek,L jr(z), where RiK,(y) is the

reproducing kernel of FS%[a, b] and Lﬁ‘,jjr is the adjoint operator of

3
Ly, jr Wk,1, jr(2) € FS3.
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By the properties of R3K,(y), we have
(e (@), wic 1, ir () Es3[a, b]
= (pf'jr (@), B%wi 1 ir () es3[a, b]
= (Ly, jr L jr (2), Wi 1, ir (1) Eshfa, b]
=Ly jrpi'jr(2),

where R3K,(y) is the reproducing kernel of FSE’[a, b].

Theorem 1 [36]. The reproducing kernel R3K,(y) can be expressed as:

6a3+52=l<y2 —y3—1Oz2
(@a-y)?*|*(3+y)-3%10+52+y)|, z<y,

1 +2a(52% — y? +52(6 + y))

RaK,(Y) = o6 (18)

6a3+5y>!<22—z‘°’—10y2
(a—y)2 * *(3+z)—3a2(10+5y+z) , Z>Y.
+2a(5y% — 22 + 5y(6 + 2))

Theorem 2 [37]. The reproducing kernel RjK,(z) can be expressed as:

1

5ese h(b —a)(cosh(z + y —b —a)
RK,(y) = . +cosh(z -y —b +a)), z<Yy, (19)
5Cse h(b —a)(cosh(y + z—b —a)
+ cosh(y -z —b + a)), Z>y.

Lemma 1. yy q j(2) can be expressed in the form of wy 1 j-(z) =
Ly 1, jrRaK;(Y) |y=zk , Where the subscript y of L refers to the application of

the operator L to the function y.



1336 A. K. Albzeirat, M. Z. Ahmad, S. Momani and B. Maayah

Proof.
_ rad _ /ad
Wi, 1, jr(2) = L jrek, 1, jr(2) = (L jrek 1, jr(Y): RaKz2(Y))es3fa, b
= <ek,1, jr(Y): I-y,l, erSKz(y»Fs%[a‘b] = I-y,1, er3Kz(Y) |y:zk'

O
Lemma 2. If equation (1) has fractional derivatives, then yy 1 J-r(z) can

be expressed as follows:
1 Zy oo
\Vk,l, jr(Z) = mja (Zk — T)r —| o 1R3KZ(T)(|—a_DdT, k = 1, 2,

Theorem 3. Suppose that the inverse operator Liljr for equation (17)

(0,1, 2r)

exists. If {z, }_, isdense in [a, b], then {yy 1 jr(z)}(k LN

is the complete

fuzzy function system of Fsg[a, b].

Proof. fo'jr(z) e FS3[a, b], let (p{'jr(z), wk,1,jr(2)) =0, for k =
1 2, ... Then

(e (@), w1, ir(D)es3[a b) = (e (@), 5%cex 1. ir(D)es3fa, b]
= (L, jrPL e (2), e 1, ir(D)esifa, b]

=Ly Pl e (2)

=0,
where {z};_, is dense in [a, b], then Ly jrpl',*jr(z) = 0 from the existence
of inverse and the continuity of pﬂjr(z). O

©,1,2r)

k.1, jr) W€

By Gram-Schmidt orthogonalization process of {yy 1 jr(z)}E

(0,1,2r).

derive an orthonormal system {y 1 jr(z)}(k L1y -
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k
Vs r@ =D Brswsy (@) Vk=12 . and j=12,  (20)
s=1
1 1
where = =—— and
P =T 5 TP = WM,

1 k-1
ka,l, jir = M_k dis 1 jrBsp,l, ir | for p <k.
s=p

k-1
2 2
Then My 1, jr = \/|| v jr |© = D (dis,1, jr)°, where
5=

dis,1, jr = (Vk,1, jr Yk,1, jr)Fsda,b]

Theorem 4. If {z}°_, isin [a, b] and the solution pfjr(z) is unique

on FS3[a, b], then the exact solution of equation (16) is given by:

lejr(Z)

ok
= > Brs1 jr9uar (2, PLu(2) + (2262, jr

k=1s=1
H( _
+(ZF1, jr — 20ZF2, jr)) Py j(r)(z) +ZE2, jr )Wk, 1, jr(2),

Vi=12 (21

(,1,2r)

K. m. Jr) 1,1r) is the complete

Proof. By Theorem 3, {yy m Jr}(

orthonormal basis of the F82 [a, b]. Therefore, p; jr(z) can be expanded

into Fourier series about the orthonormal system {yy jr}gf’:{ err)):(l L1r)

as

ol (2) = Do @) Wi jr)wies jr(@) Vi=12,
k=1
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where we define FSS[a, b] as reproducing kernel Hilbert space. Therefore,

o0

plir(2) = D (PLjr(D). Viom, jr)Viom, (1), ¥m=1 j=12
k=1

is convergent in the sense of the norm in Definition 5. Hence

pll?'jr(z)

Ms

<p1 jr(2), Wi 1, Jr(z»\lfk 1, jr(2)

=
Il
LN

=
Il
LN

s=1

k
<p1|7|jr(z)' ZBks, m, jr(Z)\Ps, m, jr(z)> Y 1, jr(Z)
Fs30,1]

k
ZBks, m, jr(z)<p1|7|jr(z)’ Ws m, jr(Z»Fsg[o,l]Wk,ljr(Z)

S=

=
Il

LN

LN

M~

Bks, m, jr(z)<p1|?|jr(z)’ I—il,djres,l, jr(Z»Fsg[o,l]Wk,l, jr(z)

=~
1l
[N
7
Il
N

[Ms
Mx

Bis, m, jr(z)<|—1, jr pﬁjr(z)' €s,1, jr(Z»Fs%[o,l]Wk,m, jr(z)’

;\_
Il
N
7
Il
=

Ms

K H
01 jr(z, py ja(2) + (22k 2, jr + (ZE1, jr — ZoZF2, jr))
ZBKS 1 jr( < d J d 4 4 Wi, 1, jr(2)

o P(@) + 2e2, jr) &1 jr(2)

=
Il

1s=1

k
Z Bis, 1, jr(z)gl, jr(zs’ plljljl(zs) + (ZZFZ, jr

TM&;

H(L —
+ (2R jr — 202F2, o)) PLP(Z8) + 22, )Wk 1, jr(2),

Vj=12 0
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By taking finite terms, the following approximate solution for equation
(16) is obtained:

prﬁ, jr(z)

Nk
=2 Brst, ir (D)9, jr (25, pLjr (26) + (2282, jr
k=1s=1

H(L _
+(ZF1, jr — 20ZF2,jr)) Py j(r)(zs)+ ZF2, jir) Wk, jr
for j=1,2. (22)

Using equation (10), the approximate solution of p(z) in equation (1) is
as follows:

P, jr(z)

k
ZBks,l, ir (@0 jr(zs, pfje (26)

N
k=1s=1

H(L _
+(22r2, jr + (2ZF1 jr — 20ZF2, jr)) Py j(r)(zs) +ZF2 i)Wkl jr
+(22F2, jr + (ZFy, jr — Z0ZF2, jr)): (23)

4. The Algorithm

To implement the algorithm to solve equation (1) according to the
solution procedure, the input and output are as follows:

Input. Kernel function R3K,(y), interval [0, 1], the integer N and
m, the differential operator Ly 1 j. Defined the inner product
for (yi(z), ¥i(z)), fuzzy initial conditions zg; = (&, by, ¢1),
Zgo = (ag, by, ¢y), order of derivatives a € (1, 2] and the

function.

Output.  Approximate solution of p; jr(2).
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The following are the steps to implement the algorithm:
Steps
1.Fixzin [0, 1] and set y e [0, 1].
If z <y, set
6a + 5z * y2 — y3 —10z° *(3+y)
RsK,(y) = %(a —y)? *| —3a’(10+5z+Y)
+2a(52% — y? +52(6 + Y))
Otherwise,
6a° + 5y * 22 — 25 —10y? * (3 + z)
R3K,(y) =%(a—z)2 * ~3a%(10 + 5y + z)
+2a(5y% — 2% + 5y(6 + 2))
2. Vj =1, 2 do steps 3-6.
3. Fork=12.,N,j=12d =1 2, .., m do the following:
Set Iy = 0

Set 7, =274 +l

N
Setrp=0
Setry =rqg_1 + (%)

If j=1 Set zpy jy, =a + gy —ay)
Set gy, jry = a2 + g(by — ap).
If j=2; Set zpy jry, =& —fy(c —by)
Set zgp, jry =C2 —1g(C2 —b2)
Set zgp, jr, = ap + g (b — )
Set wi,1, jrg (2) = Ly, 1, jrRsKz (Y) |y, -

The output is {yy 1 i (Z)}glﬂfljzrsd))'
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4. Fork =2,..,N,s=1 2, .., k do the following:

1
Set =
N e
Set Bkk = m
4 Jld

k-1
-1
Set Pyp,1, jry = M, (Z Ais,1, jrBsp,1, jrg j p<k
s=p

K1

2 2

Set My 1, jry = \/|| v = 2 kst jirg )
s=p

dis,1, jr = (WK1, jrg (2): Wk 1, jrg (Z»Fsg[a,b]-
The output is Byg 1, jr, -
5.Fork =1, 2, ..., N,
k
Set w1, jry (z) = SZ_‘,lf’ks\Vs,l, irg (2).
The output is yy 1, jr, (2).

6.Fork =1 2, ..., N,

Set py'j, (20) = 0, pf'\) (29) = 0,

ird
pf'ir (2)
N K .
= ZBkl,l, ir ()94, jr (25, pr, ja(zs)
k=1s=1

H(L _
+(2zr2, jr +(ZF1, jr — 20ZF2, jr)) Py j(r)(zs) +ZF2, jr )Wk, 1, jr(2)
H
Set py, jiy (2) = Py e, (D) + (Z2p2, iy + (2Fy, jiy — 207F2, jiy )-

The output is py iy, (2) = [Py, 15, (2), Py, 21, (2)]
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5. Numerical Examples

Example 1. Consider the following fuzzy fractional differential
equations of order o

Dfe(foll]p(Z) =-15 p(l)(Z) + p(z) + 0.3cos(z),

p(z0) =L 2.3, pY(z)=(123). a=2

Solution. By applying fuzzy theory after homogenizing the initial
conditions, we obtain the following system:

D?e([xo,l] pr1r(z) = 15 p;(llr) + pp1r(2) + 0.3cos(z) —15(ap + (b, — a))
+[(ag + r(bp —ap))z
+[(ag + r(by — &) — zg(az + r(by — az)))ll,

DS 1yPr 2r(2) = =15p}G) + pf or(2) + 0.3c08(2) - 15(c; ~ 1(c ~ by))
+[(c2 = r(c2 —by))z
+[(cy = r(ep —by) — z(c2 — r(ca — b)))]],

plr@ =0 pa@=0 p@=0 pGHE) -

(1. [P11r(0) = 1.00, py () = 3.00, p{};(0) = 1.00, p{’}, (0) = 3.00])",

(r2, [p1,1r(0) = 2.00, py 5,(0) = 2.00, p{Y} (0) = 2.00, p{Y), (0) = 2.00])".

The exact solutions of the systemat r = 0 are:
by 1r(2) = 1.063e 71506642 (_0 057  1.£1513272 _ 0,002¢15 06647 cog[7]

+0.018e>0664Z sjn[ 7)),

p1 2r (2) = 3.186e1>00042(_0,058 + 1.61°13242 _ 0,0008¢>-0%%42 cog[7]

+0.006e'>9864Z sjn[7]).
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The exact solutions of the system at r = 1.0 are:
PL1r(2) = py,2r(2)
= 2.125¢71506642(_0 058 4+ 1 ¢1>1342

—0.001261>98642 coq[ 7]+ 0.009261> 98642 sin[ 7).

Using the proposed algorithm and taking N = 100 in the interval [0, 1],
the results of the approximate solutions are obtained and presented in
Tables 1.1-1.3 as well as in Figures 1.1-1.3. The approximate solutions are
compared with the exact solutions within the same interval and within the
same fuzzy initial values.

Table 1.1. Comparison of solutions of p; 4,(z) for Example 1 when r = 0

Exact solution Approximate solution
z Pr1r(2) Pir(z), r=0 Error

0.0 1.0 1.0 0

0.1 1.0560548492202497 1.056046406 8.443576012 x 10~
0.2 1.075580238403811 1.075564918 1531998245 x 10~
0.3 1.0870309508357805 1.087012921 1.802977793 x 10~°
0.4 1.0966990764967495 1.096680106 1.897072812 x 107>
0.5 1.1059645558430546 1.105945223 1933284215 x 107
0.6 1.1151189829045023 1.115099457 1952578409 x 10~°
0.7 1.1242133119945217 1.124193639 1.96727 0826 x107°
0.8 1.1332458945594859 1.133226086 1.980809789 x 107°
0.9 1.1422042901738525 1.142184349 1.994129163 x 107
1.0 1.1510746573241644 1.151054582 2.007518326 x 10°°

Pz

APPRONKIMATE

e

Figure 1.1. The exact solutions and approximate solutions of p; 1,(z) for

Example 1 when r = 0.



1344 A. K. Albzeirat, M. Z. Ahmad, S. Momani and B. Maayah

Table 1.2. Comparison of solutions of p; ,.(z) for Example 1 when r = 0

Exact solution Approximate solution
z Py, 2r (2) Pp2r(2). 1 =0 Error

0.0 3 3 0

0.1 3.1662366706950786 3.166157278 7.939228089 x 10°°
0.2 3.2212846442096557 3.221140568 1.440766711x 10~
0.3 3.251783337499188 3.251613775 1695621865 x 10~
0.4 3.2769221944280775 3.276743786 1.784087082 x 10~
0.5 3.3009404021469866 3.30075859 1.818122682x 107"
0.6 3.3247638172370437 3.324580191 1.836258756 x 10~*
0.7 3.348584483065339 3.348399476 1.850071319 x 107"
0.8 3.3724325295567237 3.37224625 1.862799039 x 10~
0.9 3.3963030689952367 3.396115538 1.875311865 x 10~
1.0 3.420184446225242 3.419995661 1.887849507 x 10~*

Plz)

APPROXIMATE

Figure 1.2. The exact solutions and approximate solutions of py 5 (z) for

Example 1 when r = 0.
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Table 1.3. Comparisons of solutions of p; 1,(z) = py or(z) for Example 1

when r =1.0
Exact solution Approximate solution
: PL1c(2) PLir(2), Py 2r(2), T =10 Error
0.0 2.0 2.0 0
0.1 2.111145759957664 2.11109302 5.273955193 x 107°
0.2 2.1484324413067335 2.148336733 9570880142 x 10~
0.3 2.1694071441674843 2.169294506 1.126386119 x 10~
0.4 2.1868106354624137 2.18669212 1.185152966 x 10~
0.5 2.2034524789950205 2.203331703 1.207762732x 107
0.6 2.2199414000707733 2.219819419 1.219810603 x 10~
0.7 2.2363988975299303 2.236275999 1.228986467 x 10~
0.8 2.2528392120581042 2.252715468 1.237441999 x 10~
0.9 2.269253679584544 2.269129104 1.245756262 x 10~
1.0 2.285629551774703 2.285504142 1.254093765 x 10~
230 - =

25 APPRONIMATE

Figure 1.3. The exact solutions and the approximate solutions of p; 1,(z) =

P 2r(2z) for Example 1 when r = 1.0.

Notably, Tables 1.1-1.3 and Figures 1.1-1.3 depict the accuracy of the
solution of second-order fuzzy differential equations of integer and fractional
order obtained as well as the efficiency of the proposed solution procedure
based on reproducing kernel Hilbert space.
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Example 2. Consider the following fuzzy fractional differential equation
of order a =1.7:

Dt 1jP(2) = -15pD(2) + p(2) + 0.3c0s(2),

p(z0) = L 2,3, pW(z) = (0,0, 0).

Solution. By applying fuzzy theory after homogenizing the initial
conditions, we obtain

D3 o.4PL1r(2)

= -15p, %) + pir(2) + 0.3c08(z) ~ 15(ay + (b, — ay))
+[(az +r(by —az))z + [(ag + r(by —ag) — zg(ap + r(by —a)))]l,
D’ o.41P1 2r(2)

= 15p,3) + pi 2¢(2) + 0.3c08(2) ~ 15(c; — F(c, ~ by))
+[(cp = r(cp = bp))z +[(cy — r(cy —by) — z(ca — r(c —12)))]],
i@ =0 pi2@=0 pf@=0 pGE -0

Results for Example 2 are obtained using the proposed algorithm for
N =50 in the interval [0, 1]. Table 2.1 shows the numerical solutions at

a =17 for r =0, 0.5and 1.0. It is clear that for each r = 0 and r = 0.5,

the solution is in the form of an interval, which can also be observed in
Figures 2.1 and 2.2, respectively. On the other hand, for r =1, the solution

is in the form of a point as depicted in Figure 2.3.
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Table 2.1. Numerical solutions of p; 1,(z) and py ,(z) for Example 2 with

different values of r

Approximate Approximate Approximate Approximate Approximate
solution solution solution solution solution
z P11, (2), Py, 2r (2), Py1r(2)s Py, 2r (2), Pr1r(2) = pyar(2),
r=0, r=0, r =0.5, r=0.5, r =1.0,
o =17 a=17 a=17 a=17 a=17
0.0 0.0 3.0 15 25 2.0
0.1 1.040386965 3.118544818 1.559926428 2.599005355 2.079465891
0.2 1.059052554 3.170978863 1.587034131 2.642997286 2.115015709
0.3 1.074368264 3.213254893 1.609089921 2.678533236 2.143811579
0.4 1.088230848 3.251182866 1.628968852 2.710444861 2.169706857
0.5 1.101253663 3.286666582 1.647606893 2.740313352 2.193960123
0.6 1.113709269 3.320571877 1.665424921 2.768856225 2.217140573
0.7 1.125739539 3.353365614 1.682646058 2.796459096 2.239552577
0.8 1.137425359 3.385327379 1.699400864 2.823351874 2.261376369
0.9 1.148815508 3.416637003 1.715770882 2.849681629 2.282726255
1.0 1.159940525 3.447416409 1.731809496 2.875547438 2.303678467
. Pi2r
20
Piar
02 04 08 08 w0 °

Figure 2.1. Graphs of p; 1,(z) and py »,(z) when r = 0 for Example 2.
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P{Z)

o]
o

ra

Figure 2.2. Graphs of p; 1,(z) and py »,(z) when r = 0.5 for Example 2.

Piar= Piar

0z a4 06 g 10

Figure 2.3. Graphs of p; 1,(z) = py 2r(z) when r = 1.0 for Example 2.

6. Conclusion

In this study, we have proposed a new solution procedure based on
reproducing kernel theory to solve initial value problems of second-order
fuzzy differential equations of integer and fractional order with the focus on
order o in (1, 2] in the sense of Caputo fractional derivatives. This solution

approach is considerably convenient since it requires less effort without
having to resort to more advanced mathematical tools. The accuracy of
the results obtained from the illustrated examples indicates the effectiveness
of the proposed procedure. Further research may include the utilization of
this new method in solving other types of problems in fuzzy environment
involving fractional calculus.
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