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Abstract
In this paper, by the method of Tzanakis, we give all integral solutions
of parameterized quartic Thue equation
x* — 453y + (125 — 4)x°y? —8sxy® + 4y* =1, s> 18,

which are (X, y) = (1, 1), (-1, -1), (1, 0), (-1, 0).
1. Introduction

Let F(X, y) e Z[X, Y] be a homogeneous, irreducible polynomial of
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degree n >3, and let p be a nonzero integer. The equation F(X, y) = p

called a Thue equation [6] attracts a lot of attention of mathematicians.

Since 1990, Thomas [5] firstly solved a family of Thue equations with
positive discriminant, many experts have studied parameterized Thue
equations with different degrees such as [2, 3, 7], and so on.

Tzanakis [7] reduced quartic Thue equations of certain type to a system
of Pellian equations. Using the method of Tzanakis, Dujella and Jadrijevi¢

[2, 3] solved the parameterized Thue equation
xt —asxdy + (6s + 2)x2y2 —dsxy? +yt = (1.1)

Ziegler [8] studied more general equation
x* — 4sx3y — (2ab + 4(a + b)s)x2y? — 4absxy® + a%b?y* =

y ,

ue {l, -1}, (1.2)

where a, be%Z, s € Z. He indicated that when a # b, |a|>|b]|, s>

10 L V241 . . . .
723-10"|a| 4 , if equation (1.2) is solvable, then p = 1; and listed

integral solutions to equation (1.2) in the cases of @, b fixed and s sufficiently
large.

In this paper, we solve the case a = -2, b = —1 in equation (1.2) without

restriction of s large enough, and prove the following theorem:

Theorem 1.1. Let (X, y) be an integral solution to equation
x* — 4y + (125 — 4)x%y? —8sxy® +4y* =1, s>18. (1.3)
Then (x, y) = (1, 1), (-1, =1), (1, 0), (-1, 0).
2. Tzanakis Method and Some Refined Lemmas

Let us follow notations in [8], and put
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:65—2
3 9

ay = 1, a =-S, &

Applying Tzanakis method to (1.3), we have

16 2 64 16 8 1o

= _ 4 =2, Vg _S42

P 3 8s+4s°, 03 27+3s 33
P .
pl 37 Pz— 3: p3_3

Then by % — 8, > max{p;, py, p3} it follows that equation (1.3) is reduced
to

(s—2U?-sv? =22 (s-1NU%-sz2%=-1, 2.1)
where

U =x2—2y2, \Y, :x2—4xy+2y2, Z =x2—2xy+2y2.

We next discuss Pellian system of (s — 2)U2 — sV = —2 and (s — 1)U?

—sz? = —1. Observing that if (U, V, Z) is a solution to (2.1), then also
(+U, £V, +Z) is a solution to (2.1), we may assume U, V, Z > 0 without

loss of generality.

Let (Up, Z,,) be a positive solution of (s — DU? —sz? = —1. Then
ZoVs +UpVs =1 = (Vs + /s —1)(2s — 1+ 24/s(s — 1))"
= (Vs ++s —1)*M,

and

_ 1 —\2n+l —\—(2n+1)
Un—zm[(«/ng/s 1) (Vs ++/s—1) . 2

Let (Upy, Vi) be a positive solution of (s — 2)U 2 _sV?2 = -2. Then



1098 Shexi Chen and Zhigang Li

Vpvs +Unvs —2 = (Vs +4/s—2)(s —1++/s(s — 2))"

(s +s—2 )™
AEE

and

.1 Vs 452 V™ (s 4 s =2
Yem e ) U w ) [

Let (U,V, Z) be a positive solution to equation (2.1). Thus there exist

nonnegative integers m and n, such that U = U,, = Uy, that s,

o2+ (x_(an) ~ B2m+1 _ B—(2m+1)

24s -1 J2(s-2) @4
where o = /s + /s —1 and Bzw.
V2
Define
A=(2m+1)logB - (2n +1)loga + log[—“jgs__zl)j.

2m+1  loga

Lemma 2.1. If U, = Uy, with m, n positive, then 1 < ST IR Togp

and

2
0<A<2B—'B_2(2m+1)-
B -1

Proof. It is trivial that m > n. Now we can assert B2m+1 < a2n+1’ which

directly yields 1 < 2m+ 1 < log a . Otherwise BzmH > 2" and 24/s — 1
2n+1  logf

> /2(s — 2) lead to U, < Uy,. Thus we have
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| = 220+

J < —log(1 — p~22m+1)) B’ .p2Cm+),

O<A=10g( :
B -1

20
U
Lemma 2.2. U, = (-1)" (1 - 2(n +1)s) (mod16s%), Ul = (-)™(1-
m(m + 1)s) (mod 4s?).
Proof. From recurrence relations it follows that
U,=04s-2)U,.; -U,_5, Uy =02s-2)Up; —Upos.
We induce on n and m, respectively. The lemma is trivial. O

Lemma 2.3. If U, =U}, with m, n = 0, then m > 1.1547+/s —1 and

n > 0.95825vs — 0.91493.
Proof. From Lemma 2.2, U, = U/, (mod4s?) and thus
(=)™ =2n(n +1)s) = (<1)™(1 = m(m + 1)s) (mod 4s2).

We assume that m < 1.1547+/s —1 and define A = (-1)"(1-2n(n +1)s)

— (<1)™(1 = m(m +1)s). Then, we have
0 <|A|<3m(m+1)s+2<3(m+1)%s.

From assumption of m it follows that 0 <|.A| < 4s%, which contradicts

A =0 (mod4s?). Thus m > 1.1547+/s — 1 holds.

. 2m+1 loga 2m + 1
Since 1 < il < logB’ by Lemma 2.1 and then 1 < n el < 1.205,
we obtain n > 0.95825v/s — 0.91493. O

Lemma 2.4. Let (U, V, Z) be a positive solution to equation (2.1) with
s > 18. Then
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‘ s_—1_5‘<; ‘ ﬁ_l%;
s Ul u2fsis-1) S Ul u?/sis-2)
Proof.

‘zjﬁj%2+fgb‘
‘Z_b:UF 1

‘Z+\/SSIU‘ <UJs(s—1)'

Dividing U on both sides of the equation, we obtain the first inequality. We
can prove the second inequality by the same technique. O

Lemma 2.5 [1, Theorem 3.2]. If &, pj, g and N are integers for 0 <i

<2, with ag <a; <ay, aj =0 for some 0 < j <2, g nonzero and N > M,

where M = max<j<,{ aj |}, then we have

& _Pi Ly
onsliasxz{ 1+ N g }>(130Ny) q”,
where
"1+ 2 log(33Ny) -,
10g(1.7N HOSi<jS2(ai —aj) j
and

(ay - a9)*(ay — &)’

a, —a; 2 a — g,

232 —ayg —q
B 2 2
(ap —a) (& —ap) a, —a <a - a.
a; +ap —23.0

Applying Lemma 2.3, we have

Lemma 2.6. If U,, = Uy, with m, n nonnegative and s > 512, then m =
n=0.
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Proof. We assume m, n > 0 and take 8y = -2, a; =—-1,a, =0, pg =V,

=2 p=U,q=U, and N =s, M = maxo<j<p{ @ [} =2. N > M’
implies S > 512.
We have y =§ since a, —a; > a; — ay. From H0§i<j52(ai - aj)2
log(44s)

=4, we have A =1+ 3
log(0.42557)

. If 2-A >0, s>104. Combining

Lemmas 2.4 and 2.5, we obtain

0<i<2

(130Ny) U < rn_ax{

1+i—ﬂ‘}<;.
N ¢ U2J/s(s - 2)

Taking logarithms and solving for log U yields

log(10405/3) — %10g((s ~2)s)

logU < )

(2.5)

Note that U, > (45 —3)", U7, > (2s —3)™. By Lemma 2.3 it follows that

logU > nlog(4s —3) > (\/gs - IJ log(4s — 3). (2.6)

Thus, we combine (2.5) and (2.6) to deduce s < 141 which contradicts s >
512. Therefore, the lemma is proved. O

Next our aim is to discuss 18 < s < 512. We will employ Baker’s
method (cf. an improvement of Matveev [4]) to determine the upper bounds
of m and n, and use Baker-Davenport reduction method to decide existence

of solutions for many cases.
Lemma 2.7 [4, Corollary 2.3]. Let oy, o, ..., a; be algebraic numbers,
not 0, 1, and let loga;, loga,, ..., loga, represent determinations of their

logarithms. Let D be the degree over Q of the number field K =
Q(oy, 0y, ...y o), let by, by, ..., by be rational integers. Define B =
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b [}, and Aj = max{Dh(cj), |log(aj)|, 0.16}, (1 <i <),

where h(a) denotes the absolute logarithmic Weil height of . Assume that

max{|by |, |by |, ...

the number A =b;loga; + b, logo, + -+ + by loga does not vanish, then
| A| > exp{-C(l, x) D*A/A; -+ A log(eD) log(eB)},

where y =1 if K < R and y = 2 otherwise, and

X
C(l, X) = mln{l(lelj 30|+3|3'5’ 26|+20}.
x\ 2
Recall

A=(2m+1)logB - (2n +1)loga + log(—“jgs___zl)j.

We apply Lemma 2.7 to A. It is obvious that | =3, y =1, D =4, by =2m

V2(s—1)

+1, by =—2n+1), by =1, ay =a, oy =B, iy = ~——=——=. Accordingl
D ( ) 3 1 2 B 3 m gly
we obtain that B =2m+1, h(a;)= %10g a, h(a,y)= %log B, h(az)=

%log(2(s —1)(s—2)), and therefore A =2loga, A, =2logB, Ay =
log(2(s — 1) (s — 2)).
A direct computation by Lemma 2.7 shows that
C@3,1) = min{%% -3003%, 238} =1.39007 - 10,
and

log A > —2.12295 -10'3 - log o log B log(2(s — 1)(s — 2))log((2m + 1)e).
2.7)

By Lemma 2.1, we have

2
log A < log 2[3 -2(2m +1)logP < 0.03 — 2(2m + 1)logB. (2.8)
B —1
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Combining (2.7) and (2.8), we have

2(2m + 1)log — 0.03

13 3 B
log(@m + gy < 212295107 log ot logBlog(2(s — 1)(s - 2)).

For 18 < s £ 512, we solve the above inequality to get m < 1.84544 - 1013,

Lemma 2.8 [3]. Assume that M’ is a positive integer. Let g be the

convergent of the continued fraction expansion of « such that q > 10M' and
let e = || u'q|— M| xq], where || 9| denotes the distance from $ and its
nearest integer. If € > 0, then there is no solution of the inequality

0<mik—n+u <AB™™

in integers m" and n" with log(Aq/z) <m' <M.
log B
We put
2(s—1)
log 2
K:M, p=—S=2 A=B—, B =,
log a log a (B2 ~1loga

with m’=2m+1,n" =2n+1, and M’ = 1.84544-10'>. By running PARI/GP

program, we can reduce the size of the bound of m to 15. Thus the left work

is to check some special cases for m.
3. Proof of Theorem 1.1

In Section 2, we actually prove that U,, = Uy, holds if and only if m =
n = 0 whether s > 512 or s < 512. So equation (2.1) admits the only trivial
positive solution (U, V, Z) = (1, 1, 1). By assumptions on U,V,Z >0 we
know (U, V, Z) = (%1, £1, +1) are all integral solutions to (2.1).

We look back x° — 2y2 = %1, x> + 4xy + 2y2 = +1, x> — 2Xy + 2y2
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= +1. Note that x> — 2xy + 2y> = (x - y)2 +y? = +1. Hence y = +1 and
X—y=0, or x—y==1 and y =0, which can verify (x, y)=(1,1),
(-1, 1), (1, 0), (-1, 0).

So, the theorem is proved.
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