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Abstract 

In this paper, by the method of Tzanakis, we give all integral solutions 

of parameterized quartic Thue equation 

( ) ,18,1484124 432234 >=+−−+− sysxyyxsysxx  

which are ( ) ( ) ( ) ( ) ( ).0,1,0,1,1,1,1,1, −−−=yx  

1. Introduction 

Let ( ) [ ]YXyxF ,, Z∈  be a homogeneous, irreducible polynomial of 
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degree ,3≥n  and let μ be a nonzero integer. The equation ( ) μ=yxF ,  

called a Thue equation [6] attracts a lot of attention of mathematicians. 

Since 1990, Thomas [5] firstly solved a family of Thue equations with 
positive discriminant, many experts have studied parameterized Thue 
equations with different degrees such as [2, 3, 7], and so on. 

Tzanakis [7] reduced quartic Thue equations of certain type to a system 
of Pellian equations. Using the method of Tzanakis, Dujella and Jadrijević 
[2, 3] solved the parameterized Thue equation 

 ( ) .4264 432234 μ=+−++− ysxyyxsysxx  (1.1) 

Ziegler [8] studied more general equation 

( )( ) ,4424 42232234 μ=+−++−− ybaabsxyyxsbaabysxx  

{ },1,1 −∈μ  (1.2) 

where ,4
1, Z∈ba  .Z∈s  He indicated that when ,ba ≠  ,ba >  >s  

,1023.7 4
2412910 +

⋅ a  if equation (1.2) is solvable, then ;1=μ  and listed 

integral solutions to equation (1.2) in the cases of a, b fixed and s sufficiently 
large. 

In this paper, we solve the case 1,2 −=−= ba  in equation (1.2) without 

restriction of s large enough, and prove the following theorem: 

Theorem 1.1. Let ( )yx,  be an integral solution to equation 

 ( ) .18,1484124 432234 >=+−−+− sysxyyxsysxx  (1.3) 

Then ( ) ( ) ( ) ( ) ( ).0,1,0,1,1,1,1,1, −−−=yx  

2. Tzanakis Method and Some Refined Lemmas 

Let us follow notations in [8], and put 
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.4,2,3
26,,1 43210 =−=−=−== asasasaa  

Applying Tzanakis method to (1.3), we have 

.3
8

3
16

27
64,483

16 2
3

2
2 ssgssg −+−=+−=  

.3
2,3

4,3
2

321 =ρ−=ρ+−=ρ ss  

Then by { }3212
0

2
1 ,,max ρρρ≥− aa

a  it follows that equation (1.3) is reduced 

to 

 ( ) ( ) ,11,22 2222 −=−−−=−− sZUssVUs  (2.1) 

where 

.22,24,2 222222 yxyxZyxyxVyxU +−=+−=−=  

We next discuss Pellian system of ( ) 22 22 −=−− sVUs  and ( ) 21 Us −  

.12 −=− sZ  Observing that if ( )ZVU ,,  is a solution to (2.1), then also 

( )ZVU ±±± ,,  is a solution to (2.1), we may assume 0,, >ZVU  without 

loss of generality. 

Let ( )nn ZU ,  be a positive solution of ( ) .11 22 −=−− sZUs  Then 

( ) ( ( ))nnn ssssssUsZ 121211 −+−−+=−+  

( ) ,1 12 +−+= nss  

and 

 [( ) ( ) ( ) ].11
12

1 1212 +−+ −+−−+
−

= nn
n ssss

s
U  (2.2) 

Let ( )mm VU ,′  be a positive solution of ( ) .22 22 −=−− sVUs  Then 
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( ) ( ( ))mmm ssssssUsV 2122 −+−−+=−′+  

,
2

22
12 +

⎟
⎠

⎞
⎜
⎝

⎛ −+=
mss  

and 

( )

( )
.

2
2

2
2

22
1 1212

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −+−⎟
⎠

⎞
⎜
⎝

⎛ −+
−

=′
+−+ mm

m
ssss

s
U  (2.3) 

Let ( )ZVU ,,  be a positive solution to equation (2.1). Thus there exist 

nonnegative integers m and n, such that ,mn UUU ′==  that is, 

 
( ) ( )

( )
,

2212

12121212

−
β−β=

−
α−α +−++−+

ss

mmnn
 (2.4) 

where 1−+=α ss  and .
2

2−+=β ss  

Define 

( ) ( ) ( ) .
2
12loglog12log12 ⎟
⎠

⎞
⎜
⎝

⎛
−
−+α+−β+=Λ

s
snm  

Lemma 2.1. If mn UU ′=  with m, n positive, then 
β
α<

+
+< log

log
12
121 n

m  

and 

( ).
1

0 122
2

2
+−β⋅

−β

β<Λ< m  

Proof. It is trivial that .nm >  Now we can assert ,1212 ++ α<β nm  which 

directly yields .log
log

12
121

β
α<

+
+< n

m  Otherwise 1212 ++ α≥β nm  and 12 −s  

( )22 −> s  lead to .mn UU ′<  Thus we have 
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( )

( ) ( ( ) ) ( ).
1

1log
1
1log0 122

2

2
122

122

122
+−+−

+−

+−
β⋅

−β

β<β−−<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

β−

α−=Λ< mm
m

n
 

 ~ 

Lemma 2.2. ( ) ( )( ) ( ),16mod1211 2ssnU n
n +−−≡  ( ) ( −−≡′ 11 m

mU  

( ) ) ( ).4mod1 2ssmm +  

Proof. From recurrence relations it follows that 

( ) ( ) .22,24 2121 −−−− ′−′−=′−−= mmmnnn UUsUUUsU  

We induce on n and m, respectively. The lemma is trivial. ~ 

Lemma 2.3. If mn UU ′=  with ,0, ≠nm  then 11547.1 −> sm  and 

.91493.095825.0 −> sn  

Proof. From Lemma 2.2, ( )24mod sUU mn ′=  and thus 

( ) ( )( ) ( ) ( )( ) ( ).4mod1111211 2ssmmsnn mn +−−≡+−−  

We assume that 11547.1 −≤ sm  and define ( ) ( )( )snnn 1211 +−−=A  

( ) ( )( ).111 smmm +−−−  Then, we have 

( ) ( ) .132130 2 smsmm +<++<< A  

From assumption of m it follows that ,40 2s<< A  which contradicts 

( ).4mod0 2s≡A  Thus 11547.1 −> sm  holds. 

Since ,log
log

12
121

β
α<

+
+< n

m  by Lemma 2.1 and then ,205.112
121 <

+
+< n

m  

we obtain .91493.095825.0 −> sn  ~ 

Lemma 2.4. Let ( )ZVU ,,  be a positive solution to equation (2.1) with 

.18>s  Then 



Shexi Chen and Zhigang Li 1100 

( ) ( )
.

2
22,

1
11

22 −
<−−

−
<−−

ssUU
V

s
s

ssUU
Z

s
s  

Proof. 

( )
.

1
1

1

11
1

−
<

−+

−+−−
=−−

ssUUs
sZ

Us
sZUs

sZ
Us

sZ  

Dividing U on both sides of the equation, we obtain the first inequality. We 
can prove the second inequality by the same technique. ~ 

Lemma 2.5 [1, Theorem 3.2]. If qpa ii ,,  and N are integers for i≤0  

,2≤  with ,210 aaa <<  0=ja  for some ,20 ≤≤ j  q nonzero and ,9MN >  

where { },max 20 ii aM ≤≤=  then we have 

( ) ,1301max 1
20

λ−−
≤≤

γ>
⎭
⎬
⎫

⎩
⎨
⎧

−+ qNq
p

N
a ii

i
 

where 

( )

( )
,

7.1log

33log1

20
22 ⎟
⎠
⎞⎜

⎝
⎛ −

γ+=λ

∏ ≤<≤
−

ji ji aaN

N  

and 

( ) ( )

( ) ( )
⎪
⎪
⎩

⎪
⎪
⎨

⎧

−<−
−+
−−

−≥−
−−
−−

=γ

.2

,2

0112
021

2
01

2
12

0112
102

2
12

2
02

aaaaaaa
aaaa

aaaaaaa
aaaa

 

Applying Lemma 2.3, we have 

Lemma 2.6. If mn UU ′=  with m, n nonnegative and ,512>s  then =m  

.0=n  
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Proof. We assume 0, >nm  and take ,,0,1,2 0210 Vpaaa ==−=−=  

,1 Zp =  ,2 Up =  ,Uq =  and ,sN =  { } .2max 20 == ≤≤ ii aM  9MN >  

implies .512>s  

We have 3
4=γ  since .0112 aaaa −≥−  From ( )∏ ≤<≤ −20

2
ji ji aa  

,4=  we have ( )
( )

.
425.0log
44log1 2s

s+=λ  If ,02 >λ−  .104≥s  Combining 

Lemmas 2.4 and 2.5, we obtain 

( )
( )

.
2

21max130 220
1

−
<

⎭
⎬
⎫

⎩
⎨
⎧

−+<γ
≤≤

λ−−

ssUq
p

N
aUN ii

i
 

Taking logarithms and solving for log U yields 

 
( ) ( )( )

.2

2log2
131040log

log
λ−

−−
<

sss
U  (2.5) 

Note that ( ) ( ) .32,34 m
m

n
n sUsU −>′−>  By Lemma 2.3 it follows that 

 ( ) ( ).34log13
434loglog −⎟

⎠

⎞
⎜
⎝

⎛ −>−> sssnU  (2.6) 

Thus, we combine (2.5) and (2.6) to deduce 141≤s  which contradicts >s  
512. Therefore, the lemma is proved. ~ 

Next our aim is to discuss .51218 ≤< s  We will employ Baker’s 
method (cf. an improvement of Matveev [4]) to determine the upper bounds 
of m and n, and use Baker-Davenport reduction method to decide existence 
of solutions for many cases. 

Lemma 2.7 [4, Corollary 2.3]. Let lααα ...,,, 21  be algebraic numbers, 

not 0, 1, and let lααα log...,,log,log 21  represent determinations of their 

logarithms. Let D be the degree over Q  of the number field =K  

( ),...,,, 21 lαααQ  let lbbb ...,,, 21  be rational integers. Define =B  
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{ },...,,,max 21 lbbb  and ( ) ( ){ },16.0,log,max iii DhA αα=  ( ),1 li ≤≤  

where ( )αh  denotes the absolute logarithmic Weil height of α. Assume that 

the number llbbb α++α+α=Λ logloglog 2211  does not vanish, then 

{ ( ) ( ) ( )},loglog,exp 21
2 eBeDAAADlC lχ−≥Λ  

where 1=χ  if RK ⊂  and 2=χ  otherwise, and 

( ) .2,302
11min, 2065.33

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞⎜

⎝
⎛

χ
=χ ++

χ
ll lellC  

Recall 

( ) ( ) ( ) .
2
12loglog12log12 ⎟
⎠

⎞
⎜
⎝

⎛
−
−+α+−β+=Λ

s
snm  

We apply Lemma 2.7 to Λ. It is obvious that mbDl 2,4,1,3 1 ===χ=  

( ) ( ) .
2
12,,,1,12,1 32132 −

−=αβ=αα=α=+−=+
s
sbnb  Accordingly 

we obtain that ,12 += mB  ( ) ,log2
1

1 α=αh  ( ) ,log2
1

2 β=αh  ( ) =α3h  

( ) ( )( ),212log4
1 −− ss  and therefore ,log21 α=A  ,log22 β=A  =3A  

( ) ( )( ).212log −− ss  

A direct computation by Lemma 2.7 shows that 

( ) ,1039007.12,33032
1min1,3 11385.36 ⋅=

⎭⎬
⎫

⎩⎨
⎧ ⋅= eC  

and 

( ) ( )( ) ( )( ).12log212logloglog1012295.2log 13 emss +−−βα⋅⋅−≥Λ  

 (2.7) 

By Lemma 2.1, we have 

 ( ) ( ) .log12203.0log122
1

loglog 2

2
β+−<β+−

−β

β<Λ mm  (2.8) 
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Combining (2.7) and (2.8), we have 

( )
( )( ) ( ) ( )( ).212logloglog1012295.212log

03.0log122 13 −−βα⋅<
+

−β+ ssem
m  

For ,51218 ≤< s  we solve the above inequality to get .1084544.1 15⋅<m  

Lemma 2.8 [3]. Assume that M ′  is a positive integer. Let q
p  be the 

convergent of the continued fraction expansion of κ such that Mq ′> 10  and 

let ,qMq κ⋅′−μ′=ε  where ϑ  denotes the distance from ϑ and its 

nearest integer. If ,0>ε  then there is no solution of the inequality 

mABnm ′−<μ′+′−κ′<0  

in integers m′  and n′  with ( ) .log
log MmB

Aq
≤′≤

ε  

We put 

( )

( )
,,

log1
,log

2
12log

,log
log 2

2

2
β=

α−β

β=
α
−
−

=μ
α
β=κ BAs

s
 

with ,12,12 +=′+=′ nnmm  and .1084544.1 15⋅=′M  By running PARI/GP 

program, we can reduce the size of the bound of m to 15. Thus the left work 
is to check some special cases for m. 

3. Proof of Theorem 1.1 

In Section 2, we actually prove that mn UU ′=  holds if and only if =m  

0=n  whether 512>s  or .512≤s  So equation (2.1) admits the only trivial 
positive solution ( ) ( ).1,1,1,, =ZVU  By assumptions on 0,, >ZVU  we 

know ( ) ( )1,1,1,, ±±±=ZVU  are all integral solutions to (2.1). 

We look back ,12 22 ±=− yx  ,124 22 ±=++ yxyx  22 22 yxyx +−  
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.1±=  Note that ( ) .122 2222 ±=+−=+− yyxyxyx  Hence 1±=y  and 

,0=− yx  or 1±=− yx  and ,0=y  which can verify ( ) ( ),1,1, =yx  

( ) ( ) ( ).0,1,0,1,1,1 −−−  

So, the theorem is proved. 
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