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Abstract 

Earlier, we have noted application of matrix elements in the image        
of a circle rotation with respect to the hyperbolic basis in the 
representation space of the group ( ).1,2SO  In this sequel, we aim        

to use the matrix elements of the image of a hyperbolic rotation       
with respect to the circle basis to derive certain integral and series 

representations for the Legendre functions .νμP  

1. Introduction 

This investigation is a sequel of our work [8], in which we have  
obtained several integral and series representations involving Whittaker        
or Bessel functions, or their products, which have been derived from certain 
connections between so-called circle and parabolic bases in relation to a 
representation of the group ( )1,2SO  and values of matrix elements of the 

representation in some particular cases with respect to the above bases. We 
have used the above-mentioned approach for ( )1,2SO  in [5], for ( )2,2SO  

in [7], and for ( )1,3SO  in [6]. In particular, in [6], the classical (basic and 

modified) Bessel functions have disappeared but the general hypergeometric 
functions ,30 F  which are Delerue’s multi-index generalizations of the 

modified Bessel functions of the first and second kinds (see [1]), have 
emerged. 

Here, by using the circle and hyperbolic bases in connection with the 
group ( ),1,2SO  we aim to derive certain integral and series representations 

for Legendre functions ν
μP  and .μP  It is noted that a different technique, 

with a connection between analogical bases for the group ( )1,3SO  and the 

index general Mehler-Fock integral transform [11], has been used in [4]. 

2. Notations and Definitions 

We choose to recall some necessary notations and definitions which have 
been introduced in the authors’ earlier works (see [4-8]). In this sequel, we 
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deal with the group ( )1,2SO  consisting of 33 × -matrices g satisfying 

( ) ( ).1,1,1diag1,1,1diag −−=−− Tgg  We use the representations 

( ) ( )DGLSO →1,2    and   ( ) ( ),1,2 •→ DGLSO  

where D  and •D  are the spaces of infinitely differentiable functions defined 
on the cone 

{( ) }0,,: 2
3

2
2

2
1

3
321 =−−|∈=Λ xxxxxx R  

and satisfy the condition of σ- and ( )1−σ− -homogeneity ( ),\ZC∈σ  

respectively, and ( )DGL  defines the corresponding group of linear operators 

whose determinants are not equal to zero. Here and in the following, let ,C  

R  and Z  be the sets of complex, real numbers and integers, respectively. 

The image of T consists of linear operators ( ) ( ) ( ).: 1xgfxfgT −6  

Likewise the representation •T  is defined. More precisely, we deal with the 
subgroups 1H  and 2H  acting transitively on the circle section 1: 11 =γ x  

and the hyperbolic section 1: 22 ±=γ x  of the cone Λ, respectively. The 

following parameterizations are used: 

( ) ( ) [ ){ }ππ−∈ϕ|ϕϕ=ϕ=γ ,sin,cos,11 x  

and 

( ) ( ){ }.sinh,1,cosh2 R∈|±==γ ssssx  

The functionals 

( ) ( ) ( ) ( )∫γ
• →×

i
ii dxxgxfgf ,,,: 6CDDF  

where ( )idx  are iH -invariant measures and which coincide and are invariant 

with respect to the pair ( )., •TT  
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In Sections 3 and 4, we obtain matrix elements of some representation 
operators with respect to the circle and hyperbolic bases, for example, whose 

definitions for the space •D  look as follows (see [10]): 

{ ( ) ( ) }Z∈|+== −σ−−•• kxxxxfB kk
k 32

1
11 : i  

and 

{ ( ) ( ) ( ) }.: 31
1

2,2 R∈ρ|+== ρρ−σ−−
±

∗•
±ρ

• ii xxxxfB  

3. Matrix Elements of the Linear Operators •• → 12 BB  and 

2HT |•  and the Corresponding Integral Representation 

of the Legendre Function ( )θσ coshkP  

Express an arbitrary function belonging to the basis •
1B  as a linear 

combination of the functions belonging to :2
•B  

 ( ) [ ( ) ( )]∫ ρ+= ∗•
−ρ−ρ

∗•
+ρ+ρ

•
R

.,,,,,, dxfmxfmxf kkk  (3.1) 

Since 

( ( ) ( )) ( [ ] ) ( )ρ+ρπδ=ρ+ρ=|
±γ

∗
±ρ

∗•
±ρ ˆ2ˆexp,ˆ, ssxfxf i  

and 

( ( ) ( )) ( ( ) ( )) ,0,ˆ,,ˆ, =|=| γ
∗
ρ

∗•
±ργ

∗
±ρ

∗•
±ρ ∓∓ ∓ xfxfxfxf  

we have 

( ).,2
1

,,,
∗

±ρ−
•

±ρ π
= ffm kik F  

Lemma 1. The following identity holds true: For ( ) ,1−>σℜ  

( ),2 11
,, kFm k

k ±π= −−σ−
±ρ i  
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where 

( ) ( ) ( )[ ] ( )ρ−σ+σ−−⎟
⎠
⎞⎜

⎝
⎛ +σ+ρπ−−= ii 1,12exp1 kBkF k  

( ) ( )[ ]⎟
⎠
⎞⎜

⎝
⎛ +σ+ρ−π+−+ρ−−σ−−ρ−σ−× 12exp1;1;,12 iii kkF  

( ) ( ),1;1;,1, 12 −−+ρσ−−ρ+σ−ρ+σ+σ−−× kkFkB iii  

where B and 12 F  denote the Beta function and hypergeometric function, 

respectively (see, e.g., [9, Sections 1.1 and 1.5]). 

Proof. By using the substitution ,22 t−π=ϕ  we express the integral 

( ) ( ) ( )∫
π±π

π±

ρ−ρ+σ
±ρ ϕϕ+ϕ±ϕ

π
= 2

2
,, sin1cosexp2

1 dkmk
iii  

in the form 

( ) ( ) ( )∫
π

ρ−σρ+σ−σ
±ρ π= 2

0
1

,, ,2expcossin2 dtktttm k
k ∓iii  

for which a known integral formula (see [2, Entry 2.5.32.6]) is used.  

In particular, using a known formula (see, e.g., [3, Entry 7.3.6.2])) 

( ) ,
12,2

1
1

21;1;,12
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−++
−+

Γπ=−−+ −

baa
ba

babaF a  

we have 

±ρρ ≡ ,,0mm  

( )[ ]
⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ρ−σ+ρ−σ−

ρ−σ+σ−
Γ⎟
⎠
⎞⎜

⎝
⎛ +σ+ρπ−π= ρ+−−

21,2
1

1,
12exp2 12

1

ii
i

ii  

( )[ ] .
21,2

1
1,

12exp2 1

⎪⎭

⎪
⎬
⎫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ρ+σ+ρ+σ−

ρ+σ+σ−
Γ⎟
⎠
⎞⎜

⎝
⎛ +σ+ρ−π+ ρ−−

ii
i

ii  
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Theorem 1. The following representation holds true: For ( ) ,1−>σℜ  

( ) ( ) { ( ) } ( )∫
∞+

∞−
σ

−
−ρ−−+ρ−−ρ θ+σ=ρ+θρ− ,cosh1exp

ˆ1ˆ
ˆ

,,ˆ,,ˆ
k

k
k

kk Pdmmm ii  

 (3.2) 

where kP
ˆ
σ  are the Legendre functions of the first kind (see, e.g., [9, p. 68]). 

Proof. Consider the following expression: 

( )[ ] ( )∑
∈

••• =
Zk

kkkk fgtfgT
ˆ

ˆˆ .  

It is clear that 

 ( ) ( ( )[ ] ).,
2
1

ˆ1ˆ kkkk ffgTgt −
••

π
= F  (3.3) 

In case where g is a hyperbolic rotation in ( )31xx -plane through angle θ, we 

have 

( )gt kk ˆ  

( ( )[ ] )
( ){ }

∑ ∫∫
−+∈

∈ρρ
∗
ρ

∗•
ρ

•
ρ−ρ ρρ

π
=

,,
ˆ, ,ˆ,2,ˆ,ˆ,,

21
2 2121

ˆ,2
1

ss
sssksk ddffgTmm

R
F  

( ) ( )∫
∞+

∞− −ρ−−−ρ+ρ−−+ρ ρ+θρ−= .exp ,,ˆ,,,,ˆ,, dmmmm kkkki  (3.4) 

On the other hand, let us represent g as a product ,321 gggg =  where 1g  

and 3g  are the trigonometric rotations in the ( )32xx -plane through angles 

1θ  and ,3θ  respectively, and 2g  is a hyperbolic rotation in the ( )21xx -plane 

through angle 2θ  (Cartan decomposition). Then 

( ) ( ) ( ) ( )∫
π σ ϕϕϕθ−θ

π
θ−

=
0 22

3
ˆ0

ˆcoscossinhcosh
ˆexp dkkgt k

i  

{( ) } ( ) ( ),coshˆexp1 2
ˆ

1
1ˆ θθ−+σ= σ
− k

k Pki  (3.5) 
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where we have used a known formula (see [2, Entry 2.5.16.28]). By solving 

the matrix equation ,32
1

1 gggg =−  we obtain ,21
π=θ  ,2 θ=θ  .23

π3=θ  Now 

the desired representation (3.2) is seen to follow from (3.4) and (3.5).  

4. Matrix Elements of the Linear Operators •• → 21 BB  and 1HT |•  

and the Associated Series Representation of the 
Legendre Function ( )ϑσ cosP  

Throughout this section, let h be a trigonometric rotation in the ( )32xx -

plane through angle ϑ  which is not an integral multiple of π. We denote by 

( ) { }( )−+∈βαβραρ ,,,ˆ,, gt  the matrix elements of the linear operator ( )hT •  

with respect to the basis ,2
•B  that is, 

( )[ ] ( ( ) ( ) )∫ ρ+= ∗•
−ρ−ρ±ρ

∗•
+ρ+ρ±ρ

•∗
±ρ

•
R

.,ˆ,ˆ,,,ˆ,ˆ,,
,
, dfhtfhtfhT  

Lemma 2. The following identity holds true: For ( ) ,1−>σℜ  

( ) ( ) .sin;1;2,2
1csc 2

12,0,,0,0,,0 ⎟
⎠
⎞⎜

⎝
⎛ ϑσ−+σ⋅σ−== −±+± Fhtht  

Proof. We have 

( ) ( ) ( ( ) )
( )∑∫

=

∞+

ϑ−
σ

σ

+± ϑ−−
π
ϑ=

1

0
cot1,0,,0 cot1sinh2

sin

l

l
l dssht  

and 

( ) ( ) ( ( ) )
( )

∑ ∫
=

ϑ−

∞−
σ

σ

−± ϑ−+−
π
ϑ=

1

0

cot1
,0,,0 .cot1sinh2

sin

l

l
l

dssht  

In order to evaluate the first ( )0=l  and the second ( )1=l  integrals in 

( ),,0,,0 ht ±±  we introduce new variable su sinhcot ±ϑ=  and ϑ−= cotu  

,sinh s±  respectively. Thus, we have 
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( ) ( ) ( ( ) )∑∫
=

∞+ −σ
σ

±± ϑ++ϑ⋅−+
π
ϑ=

1

0
0

2
122

,0,,0 .cot1cot212
sin

l

l duuuuht  

Finally, using a known formula (see [2, Entry 2.2.9.7]) 

( )
( )∫

∞+

α−μμ

−α

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+μα−μαα−ρα=

++0

2
12

22
2

1
1;2

1;2,2
2,

2 ac
bF

ca

B
cbxax

dxx
a  

  ( ( ) ( )),20,,0 2 μℜ<αℜ<<> acba  

we obtain the desired formula.  

A modification of Lemma 2 with the help of a known formula                 
[3, Entry 7.3.1.41] gives another identity asserted by the following lemma: 

Lemma 3. The following identity holds true: For ( ) ,1−>σℜ  kπ≠ϑ  

( ),Z∈k  

( ) ( ) ( ),coscsc,0,,0,0,,0 ϑ⋅σ−== σ−±+± Phtht  

where σP  are Legendre functions (see, e.g., [3, Entry 7.3.1.41]). 

Theorem 2. Let 

( )
( )( )

( )( )⎪
⎩

⎪
⎨

⎧

≡σπ

≡σπ

=
.2mod12cos

,2mod02sin

2

2

k

k
kM  

Then 

( )∑
∈

−

⎭⎬
⎫

⎩⎨
⎧ ⎟

⎠
⎞⎜

⎝
⎛ ++σΓ⎟

⎠
⎞⎜

⎝
⎛ +−σ−Γ⎟

⎠
⎞⎜

⎝
⎛ −σ−Γσπ

Zk

kkk 1
1212

1
2

1csc  

( ) ( )kkMk ϑ−
⎭⎬
⎫

⎩⎨
⎧ ⎟

⎠
⎞⎜

⎝
⎛ +−σΓ×

−
iexp12

1
 

( ),cos4
csc2

ϑ
π
σ= σP  

where ( ) 1−>σℜ  and ( ).Z∈π≠ϑ tt  
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Proof. Consider the matrix element ,,, ±ρkm  which is defined in Section 

3, as a function of σ, that is, ( ).,,,, σ≡ ±ρ±ρ kk mm  It is easy to establish that 

the coefficients of the expression 

( ) ( ) ( )∑
∈

•
±ρ

∗•
±ρ σ=

Zk
kk xfmxf ,,,

~  

can be expressed in the form 

 ( ) ( ) ( ).1,2
1~

,,,,, −σ−=
π

=σ ±ρ−−−
∗•
±ρ±ρ kkik mffm F  (4.1) 

By using the well-known formula connecting the matrices of the linear 

operator ( )hT •  with respect to bases •
1B  and ,2

•B  and taking that •
1B  

consists of the eigenfunctions of the operator ( ),hT •  that is, the first of the 

above matrices being diagonal, we have 

( ) ( ) { }∑
∈

ρ±ρρ±ρ −+∈ϑ−=
Zk

ksks skmmht .,,exp~
,,ˆ,,,ˆ,, i  

Putting here 0ˆ =ρ=ρ  and using Lemmas 1 and 2, and (4.1), the proof is 

complete.  
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