
v

Far East Journal of Mathematical Sciences (FJMS)
© 2017 Pushpa Publishing House, Allahabad, India
http://www.pphmj.com
http://dx.doi.org/10.17654/MS101050931
Volume 101, Number 5, 2017, Pages 931-971 ISSN: 0972-0871

Received: September 7, 2016; Accepted: November 20, 2016

2010 Mathematics Subject Classification: 90-XX.

Keywords and phrases: order picking, storage item assignment, global index.

AN EFFICIENT ALGORITHM FOR PROBLEM
PRODUCT FAMILY ALLOCATION IN WAREHOUSES

Yung Chin Shih

Department of Mechanical Engineering

School of Engineering of São Carlos

University of São Paulo

São Carlos, Av. Trabalhador São Carlense, 400

CEP 13566-590, Brazil

Abstract

This investigates the problem of assigning pieces in shelves aiming at

to minimize the routing distances. The idea of proposed global index

is composed by other specific indices to identify which unallocated

product is preferred to be allocated in corresponding section of a

shelf. It is considered to be the most common allocation practice of

storage item assignment and for the improvement of algorithms for

comparison. The computational results show that it is rarely desired to

minimize the total traveling distance since it implies in an increment

of the total picking time due to delays in congestions. In addition to

this, surprisingly, when the performance parameter is the total order

consolidation time, it is preferable to work under large size and large

variety of products circumstances.

Yung Chin Shih 932

List of Parameters

ABC Classical allocation of products based on the degree of
importance

B Number of blocks

jsiB ,′ One of B that pursues the section jiS ,

ch Number of horizontal corridors, that is, cross aisles plus
side aisles

kC Number of components classified as belonging to the

level k

CRA Components randomly allocated

cv Number of vertical corridors, that is, subaisles plus side
aisles

cartd Size of the picking cart, assuming square format

pkcD The demand of the piece located in level k of product p

jSiDr , Number of drawers in the section ji,

f A family of products

F Total number of families, that is, all families f

F ′ All unallocated pieces of different families

f ′ The selected f of F ′

h Number of sections horizontally positioned per shelf

ji, Alternatively x and y, but are used to distinguish x and y of

hamming distance calculation

idx Number of used indexes

fK Number of levels of family f, including the level

corresponding to the module

An Efficient Algorithm for Problem Product Family Allocation … 933

maxK Highest value of fK

minK Lowest value of fK

L Capacity of the picking cart

LBS Local Beam Search

subaisleL Length of subaisle

MRA Modules randomly allocated

n Number of picking cart used in picking process

P All demanded products

p Demanded product
∗P New P after batching quantities of similar products of the

demand

Sa Number of sections per subaisle

Sc Number of sections per shelf

jiS , Section of the warehouse, located in ix = and jy =

fkctjiSt ,,, The level of stock of piece fkc located in position ji, in

tth drawer

Sw Number of shelves in the warehouse

TOCT Total order consolidation time

TPT Total picking time per each picker

u.d. Unit of distance

v Number of sections vertically positioned per shelf

fV Variety or number of products of the family f

speedv Speed of picking cart

x Abscissa coordinate of any allocated position of piece in
the warehouse

Yung Chin Shih 934

X Number of rows of warehouse
∗x Abscissa coordinate of the centroid of warehouse

y Ordinate coordinate of any allocated position of piece in

the warehouse

Y Number of columns of the warehouse
∗y Ordinate coordinate of the centroid of warehouse

hcy ′ Ordinate coordinate of one of the selected ch

hcy ′′ Ordinate coordinate of other selected ch

W Width of aisles (cross aisles or subaisles)

pkcw Weight of a certain piece pkc (one of)pkC

1. Introduction

One of the most challenging problems faced by the companies is the
ability for the quick tooling setups to make possible the production of a
large variety of products in short period of time. However, in many cases,
a constant tool setup may not be possible because of machine features, of
tooling setups costs, of technical issues, of products shapes and so forth.
Therefore, developing products is an important opportunity discovered by
companies in which similar components (called modules) are of the common
use among of them, yielding the desired variety.

The rapid response to the variety of products demanded by customers
induces the necessity of overall constant operations improvement, which
are regarding to the storage and order picking activities of components in
warehouses specially. Extra routes and time might be observed once these
operations are conducted inefficiently. Thus, the direct consequence is
incrementing the cost of final product and likewise the long wait of
customers to receive the requested product.

Traditionally, different pieces to be collected are dependent on each

An Efficient Algorithm for Problem Product Family Allocation … 935

other. That is, the allocation and the order picking are conducted based on
the customer level of demand information among other criterions. However,
a lack of investigation is observed in the literature concerning the relation of
multiple pieces (in some regions of Brazil is named module and components
of the same product). This paper aims to investigate the relation among the
multiple pieces of the same product and how it affects the cited activities.

The method consists in an index based on dynamic weights and it
is proposed which basically consists in defining the order priority among
unallocated products (module and its respective components) for allocation
to result in the lowest total traveling distance during the order picking.

Eight methods are used for comparison where each method has three
layout sizes as small, medium and large resulting three indicators. The
proposed method is implemented in an available software where it is also
modeled the most common allocation practices of storage item assignment
(classical ABC, MRA and CRA) and allocation improved algorithms (local
beam search, GA, 2-opt and 3-opt) totalizing 8 comparisons of performances
for three sizes warehouse (large, medium and small). For each warehouses
size, there are three performance indicators in 8 items storage assignment
such as total traveling distance, total order picking time and CPU time.

This paper consists of five sections. The second section presents a brief
definition of terms which are used in order picking activities and also
a literature review. The proposed mathematical model and its respective
constraints such as the description for the implementation are presented
in the third section. Likewise, the description of other methods is used in
comparison. Next, the definition of input data, simulation results, discussion
and comparison of methods are presented in the fourth section. Finally, in the
last section, the conclusions and suggestions for future works.

2. Literature Review

The operation improvement in a warehouse generally involves the
decision related to the following classical issues: zoning, layout, routing
strategy, orders batching and storage item assignment. This section aims

Yung Chin Shih 936

to present the review of some articles regarding these activities, showing
techniques, discussing results and limitations.

According to De Koster et al. [4], this picker-to-item system (while
the picker moves to section) and low level-picking systems (there are no
difficulties during the collecting process due to the altitude of stored item)
are the most common practices in Western Europe and the reason those
picking systems are considered in this present research. Azadnia et al. [1]
claimed in most practical situations, customers actually define a due date,
when the warehouse operator must satisfy the customers request until this
moment. So, the authors proposed a model in order to minimize the tardiness
of the order (difference between the time completion of order and the
established due date).

There are already many researches with emphasis on heuristics for
the batching orders, storage item assignment, routing problems, etc. But
in practice, there are congestions of pickers in aisles generally omitted in
researches, see Kłodawski and Żak [6]. To solve concomitantly the problem
of storage assignment, and batching and picking tour, Ene and Öztürk [9]
proposed an integer programming based on mathematical model. Henn et al.
[5] focused on the development of metaheuristics (iterated local search and
ant colony optimization) to determine how orders should have been batched
to result in minimization of total length of all tours. An important analysis
was observed in Mowrey and Parikh [7], where the influence of width of
aisles on the performance during the order picking process was evaluated.

Based on the reviewed articles, there is a clear evidence that the structure
of the product during the piece storage assignment has been omitted. We may
raise some issues about it: should the allocation begin from the modules or
from the components? What is the best position for each module? If the
remained drawers of best position are not capable in allocating a determined
module, which section with empty drawers should be chosen and which
module now is preferable for the allocation? Are all of them equally
important?

The contribution of this research is to propose an index method based on

An Efficient Algorithm for Problem Product Family Allocation … 937

dynamic weights by converting the raised issues into indexes varying from 0
to 1 to define order of unallocated components for the allocation in the shelf
considering three performance comparisons: the total traveling distance, total
order consolidation time and CPU time.

3. The Method

3.1. Formulation of the mathematical model

This subsection presents the adopted mathematical model (z) for the
waving picking problem, when all pickers start the picking at the same time
in a narrow aisle warehouse. In this type of setting, we assume manual picker
may reach both shelves of the same subaisle, omitting any zigzag travelings.

We may formulate the following mathematical model z, see expression
(1), which aims to calculate the total traveling distance of collected pieces
(module and components) of each family, repeating it for all families. The 1z

expression aims to maximize the distance of modules of the same family f,
finding the ideal position ()11 , vv yx to the module, and the 2z expression

aims to minimize the distance of components to the ideal position, that is,
allocating components of the product closer to the ideal position. Subjects to:

���������
��������� 	�
1

1 2
2121

1 2

1

1
max

z

F

f

V

v

V

v
vvvv

f f

yyxxz
⎢
⎢

⎣

⎡

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+−= ∑ ∑ ∑

= =

−

=

,min

2

1
11

1

1

1 �������
������� 	�
z

V

v

K

k
vkvk

f f

yyxx
⎥
⎥

⎦

⎤

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+−+ ∑ ∑

=

−

=

 (1)

{ } ,0,0,1,1, >>∈∀ YXYXyx …… (2)

,0>F (3)

() ,2;0; ≥>−+⋅= cvhhcvhcvX (4)

Yung Chin Shih 938

() ,2;0; ≥>−+⋅= chvvchvchY (5)

;1 maxKK f <≤ (6)

,
1

1∏ −

=
= f

f f
K
k kf CV (7)

,;1 maxmaxmax KCCC fk <≤≤ (8)

,.
1

,∑∑ ∑
=

=
i j

F

f
ffjSi VKDr (9)

,0, >jSiDr (10)

{ } .0,;1,1, >∈ jiYXji …… (11)

The constraint (2) refers to the horizontal x and to the vertical y
coordinates of the section where family, product or component is allocated.
The number of families must be higher than 0 (see expression (3)). Next,
both constraints (4) and (5) aim to deduce the number of rows and columns
for the warehouse. The incognita h is established to be higher than 0 because
the shelf must pursue at least one section horizontally positioned. Also,

2≥cv assures that two side vertical aisles will exist. For v, it must be higher
than 0 because there must exist at least one section vertically positioned in
the shelf. As the same manner, 2≥ch assures there are at least two side
horizontal aisles. The definition of number of levels for each f is defined in
constraint (6). The inequality is because maxK must not be equal to 1,

because there are at least one level for module and one level for component.
Next constraint defines the total number of products per family f; see
expression (7). The constraint (8) assures that there is at least one component
in each level, and also, there is at least one level for module. Although fK

and kC are defined, both must be equal to the number of drawers in the

sections i and j, ,, jSiDr exactly what the constraint (9) does. So, based on

these last two constraints, we may affirm that each drawer will store exactly

An Efficient Algorithm for Problem Product Family Allocation … 939

one type of piece. In each section ,, jiS there must be at least one drawer,

,0, >jSiDr in constraint (10). And finally, in (11), i and j represent the

position of section jiS , in the warehouse, in Cartesian coordinates.

3.2. Computational implementation

This subsection describes steps for the computational implementation of
the proposed mathematical model for the total traveling distance calculation,
which consists in:

Step 0. Define the number of families F, the number of levels fK and

the number of components belonging to each level. Due to the dependency
between maxK and ,maxC only one of them needs to be defined, see

Appendix 3. In this research, we defined a value for .maxC Moreover, it

defines the weight of each component ,fkw and attributes to 0←it and

←∗D {large enough}.

Step 1. It defines the stochastic demand for f. We assume η [0.1 to 1]
(that is, if the demand for a certain f is deterministic, then .)1=η

Step 2. It generates the layout of the warehouse. The incognitos X and Y
are obtained by using the next expressions (12) and (13) instead of previous
(4) and (5), see Appendices 2, 3 and 1:

,12 −⎟
⎠
⎞⎜

⎝
⎛++⎟

⎠
⎞⎜

⎝
⎛⋅= ∗

B
SwcvB

SwX if Sw mod B is equal to zero, (12)

,12 −++⋅⎟
⎠
⎞⎜

⎝
⎛= ∗ BchBScY if Sc mod 2 is equal to zero. (13)

Step 3. It calculates the ideal position (section) for modules of each
product, by (14):

 .1
f

Ff V
ScSwCycle ⋅== … (14)

Step 4. Allocate pieces of the product of f. Repeat it for all other

Yung Chin Shih 940

products of family f in other positions defined in Step 3. Repeat it up to F.

All f allocated in the section are denoted by .∗F A set of ∗F is .∗′F Note
that many different products from different families may be allocated in
the same ., jiS Due to over-allocation, we need to define the degree of the

importance of f families allocated.

Step 5. The definition of degree of the importance is based on an
objective function, see (15). The pieces (module and components of one
product) of f family, which are not preferred in comparison to other f for
allocation the referred section (ideal position) are temporally removed.
Repeat it for all sections that are over-allocated:

 .1maxmin
1

,
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
− ∑ ∑

∗′

∗′

∗′F

f

K

jSi

f

Dr (15)

Step 6. Due to the impossibility of F ′ being allocated in the ideal
position, the idea is to find sections closest to the ideal position that pieces

should be allocated. To do that, calculate 21 Xx +=∗ and =∗y

.21 Y+ Find the closest ∗′x and ∗′y to ∗x and .∗y Update ∗′∗ ← xx

and .∗′∗ ← yy

Step 7. Define a new value for disturbance factor for each used index;
Attribute .1+← itit

Step 8. From ∗x and ,∗y find the closest new candidate to be ,, jiS see

(16) and (17):

• If ,
,, ∗∗=

yxji SS then { } .0min ,, =−+−=′ ∗∗
jSijSi yyxxd (16)

• If ,
,, ∗∗≠

yxji SS then:

- If ()∗∗′≠′
ySxjSi BB

,, or (),and
,,,, ∗∗∗∗ =′=′

ySxjSiySxjSi yyBB then

 { }.min
,,,, ∗∗∗∗ −+−=′
ySxjSiySxjSi yyxxd (17)

An Efficient Algorithm for Problem Product Family Allocation … 941

- If (),and
,,,, ∗∗∗∗ ≠′=′

ySxjSiySxjSi yyBB then

[∗∗∗∗ −+−=′
ySxjSiySxjSi yyxxd

,,,,min

{ }].;min2
,, hcySxhcjSi yyyy ′′′

∗ −−+ ∗∗

Step 9. Calculate the global index (Appendix 1). So, the f ′ of all ,F ′

which pursues highest value of global index, is then firstly selected to be
allocated in the empty section (18):

{ ...,,_,_Max 2,,1,, =′=′ fjSifjSi IndexGlobalIndexGlobal

}._ ,, FfjSiIndexGlobal ′=′ (18)

During the allocation process if the number of pieces of family f ′ is

higher than the number of remained drawers, then go to Step 10, otherwise
go to Step 11.

Step 10. The position of the last section is now ∗x and ∗y (19):

,, jSixx ←∗

., jSiyy ←∗ (19)

Repeat this step if necessary up to allocate all remained pieces of .f ′

Step 11. Update .F ′ Repeat Steps 8-10 for all .F ′

Step 12. Define the level of stock. For a given piece ,pkc the demand

may be represented as
pkcD (20):

∑
=

′=
P

p
cc pkpk DD

1

∑∑ ∑
= = =

=
X

i

J

j

Dr

t
ctji

jSi

fkSt
1 1 1

,,,

,

 if piece of =pkc piece of .fkc (20)

Yung Chin Shih 942

The calculation is for all different ,pkc resulting in different .
pkcD′ We

select the highest obtained value to be the stock for all other pieces (21),
through:

{ }
pkctji DSt ′= max,, for all different pieces .,,; tjic pk ∀ (21)

Step 13. Calculate the traveling distance. For all p, the total number of
used picking carts n can be represented as (22) and (23), where 0>L and

:Lw
pkc <

 .1
1 1

1

1 1
∑ ∑ ∑ ∑
= = = =

⋅≤⋅
P

p

K

k c

n

cart
cartcc

p

p pk
pkpk LDw (22)

If ,21 LLLL n ==== " then we may write the expression (22) as:

 .

.
1 1

1

1

L

Dw

n

P

p

K

k c
cc

p

p pk
pkpk∑ ∑ ∑

= = =
≥ (23)

Step 13.1. Attribute to the incognitos ,totalD ,ttotalweighW ,pk ,n′ which

represent the values of the current total traveling distance, total current load
of the picking cart, the piece of level pk and the number of used picking

carts, values equal to zero, zero, zero and one, respectively; attribute also
.1+← pp kk

Step 13.2. Check up the weight of the total current load of the picking
cart:

• Step 13.2.1. For piece .1=pk If (),LwW
pkcttotalweigh ≤+ then

the total current weight is updated to +← ttotalweighttotalweigh WW

.
pkcw Go to 13.3.

• Step 13.2.2. For .1>pk If (),LwW
pkcttotalweigh ≤+ then the total

An Efficient Algorithm for Problem Product Family Allocation … 943

current weight is updated to .
pkcttotalweighttotalweigh wWW +← Go

to Step 13.4.

• Step 13.2.3. For 1=pk or .1>pk If (),LwW
pkcttotalweigh >+ then

;,, jsioutjSiouttotaltotal yyxxDD −+−+← ;0←ttotalweighW

go to Step 13.2.

Step 13.3. Case ,1=pk identify a random jiS , where the piece

pk is stored. If ,0,, ≠tjiSt then +−+← jSiintotaltotal xxDD ,

., jSiin yy − If ,0,, =tjiSt then choose randomly the other jiS ′′, up to

.0,, ≠′′ tjiSt Make .,, jiji SS ′′← Go to Step 13.5.

Step 13.4. Case ,1>pk identify the closest jiS ′′, (non empty stock) in

relation to ., jiS The incognito jiS , represents the current section, and the

incognito jiS ′′, represents the next section.

• Step 13.4.1.

If ,,, jiji SS ′′= then .totaltotal DD ←

• Step 13.4.2.

If ,,, jiji SS ′′≠ then

If ()jiSjSi BB ′′′≠′ ,, or (),and ,,,, jiSjSijiSjSi yyBB ′′′′ =′=′ then:

.,,,, totaljiSjSijiSjSitotal DyyxxD +−+−= ′′′′

If (),and ,,,, jiSjSijiSjSi yyBB ′′′′ ≠′=′ then

jiSjSijiSjSitotal yyxxD ′′′′ −+−← ,,,,

{ } .;min2 ,, totalhcjiShcjSi Dyyyy +−−+ ′′′′′
∗

Step 13.5. Update the level of the stock in the section.

Yung Chin Shih 944

.,,,, pktjitji DStSt −←

If ,1>pk then

jiji SS ′′← ,, and .,,,, pktjitji DStSt −←

Step 13.6. If ,pp Kk < then make .1+← pp kk Else, for the next p,

attribute .1←pk For both cases, repeat Steps 13.2, 13.3, 13.4, 13.5 and

13.6 up to .nn =′

Step 14. If ,∗> DDtotal then

totalDD ←∗ and keep the best used disturbance factors by calling, for

instance, ,,, ∗∗∗ γβα etc.

Step 15. Reset the warehouse. Repeat Step 6 up to Step 15 by varying
values for disturbance factors up to it = iterations.

3.3. An analytical model for the congestion problem in subaisle

To evaluate the wasted time in congestion, let us construct the idea of
the suggested analytical model. If all cart pickers (or cart picking) are in the
same section, such as shown in Figure 1, then (24):

 ,
1

∑
=

≤
n

cart
cart Wd (24)

Figure 1. Position of cart pickers in the same section of subaisle.

The probability to have n vehicles in the section may be expressed as:

An Efficient Algorithm for Problem Product Family Allocation … 945

∑
=

≤ψ
n

cart
cartcart Wd

1
.. Based on the reviewed articles, we did not find the

exact proportion of the width W and length of subaisle ,subaisleL but we

found typical narrow aisle warehouse, wherein subaisleL must be longer

enough in relation to the other. In other words, .0→
subaisleL

W By assuming

this constraint, the zigzag traveling time in subaisle may be omitted.

The sensation of congestion is noticed when the obtained number of carts

in the section is higher than the maximum acceptable number of carts, ∗n
(25):

 ...
1 1

∑ ∑
= =

∗

ψ≤ψ
n

cart

n

cart
cartcartcartcart dd (25)

It is important to note that the congestion of one section will block the
subaisle. Assuming any cart as same size, ,021 ≠==== dddd n" the

blocking time in congestion is (26) and (27):

 .0
1

__∑
=

∗ =→≤ψ
n

cart
congestioninblockingcart tn (26)

This means no congestion, and consequently no blocking time in
congestion.

∑
=

∗ →>ψ
n

cart
congestioninblockingcart tn

1
__

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛
ψ

= ∗
=
∑

speed

Ssection

n

cart
cart

v
L

n
trunc ji,.11 (27)

which means that the last picker of ∑
=
ψ

n

cart
cart

1
 will wait

Yung Chin Shih 946

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
ψ

∗
=

∑
11

n
trunc

n

cart
cart

 pickers leaving the section ,, jiS where jSisectionL ,

is the length of each section, given in unit of distance.

Nevertheless, the probability of cart to be in a specific section depends
on the demand (28):

,1.
1 1 1 ,,

,,∑ ∑ ∑
=

′

=′ = ′
′

′

′ ′
′Θ=ψ

n

cart

P

p

K

k kpcart
kpcartcart

cart

cart

cartp

cartp cartpcart
cartpcart V (28)

where cartpcart kpcart ′′Θ ,, is 0 if the requested piece of cartpk ′ of cartth is not

located in drawers of the section ,, jiS and 1 else. P′ refers to the number of

products which belongs to cart, cartpK ′ refers to the number of levels of

product p′ of cited cart, cartpcart kpcartV ′′ ,, refers to the total possible

products of the family (to which p′ belonged to) and n refers to the number

of used picking carts. The expression (28) is for only one section jiS , of a

subaisle. Since the number of picking carts in the subaisle depends on all
sections aS of the same subaisle (29),

.1

1 1 1 1 ,,
,,∑ ∑ ∑ ∑

= =

′

=′ = ′
′

′

′ ′
′ ⋅Θ=ψ

a

a

cart

cart

cartp

cartp cartpcart
cartpcart

S

s

n

cart

P

p

K

k kpcart
kpcartcart V (29)

Assuming the worst case, that is, the pickers are running in the opposite

flow and the pickers ∗n are located in the opposite side of the subaisle, the
blocking time in the subaisle is (30):

∑
=

∗ →>ψ
n

cart
congestioninblockingcart tn

1
__

An Efficient Algorithm for Problem Product Family Allocation … 947

.11

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⋅

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛
ψ

= ∗
=
∑

speed
subaisle

n

cart
cart

v
L

n
trunc (30)

It is worth noting that when the adopted value of ∗n is higher, the time
in congestion tends to be lower, or vice versa.

The blocking time (30) is the time that nth picker wastes in the subaisle
up to his turn to collect only one piece. Due to each picker is designed
to collect several pieces of p′ up to reach the picking cart capacity, the

estimative of total picking time per each picker (including the traveling time,
time in congestion and picking time) is (31):

∑ ∑
∑′

′

′′

′′

′

=′ =
∗

=

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⋅

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛
ψ

+
⋅

=
tcar

tcar

tcarp

tcarp

P

p

K

k speed
subaisle

n

cart
cart

speed
total

v
L

n
truncvn

DTPT
1 1

1 1

.1∑ ∑
′

′

′

′

⋅+
cart

cart

cartp

cartp

P

p

K

k
pickingt (31)

Since the order picking is considered consolidated if all pickers finish the
picking process, we concerned about the one who demanded highest time
(32):

 { }....;;;max 21 ncartcartcart TPTTPTTPTTOCT ==== (32)

4. Computational Experiments

4.1. Definition of input parameters

This subsection describes the input parameters used to simulate the
constructed models. First, the simulation is conducted to the most common

Yung Chin Shih 948

practices (classical ABC, MRA and CRA). Then local search algorithms
are executed LBS, GA, 2-opt and 3-opt, and finally, the proposed method.
In order to achieve this, some input parameter must be firstly defined, and
others then derived from it:

;300=F ;2=B ;20=Sc ;1=In ;5=Out ;kg100=L ;90=P =K

[];1 maxK… [];51…=C ;1=ε [];51, …=jSiDr [];kg1g100 …=flqw

;.1, duWL jiSsection == ;.20 duLsubaisle = %;601 =Φ=Φ III =Φ2

%30=Φ II and %;103 =Φ=Φ I ;8.0=crossoverp ;02.0=mutationp

iterations = 4200; pop = 14; generations = 299 (that is, 299 times of
multiple of 14, plus 14 of ger = 0, totalizing 4200 iterations) (each
individual represents one iteration).

Note there are still unknown incognitos, X, Y, hjiSt ,, and .fV Having X

and Y, the size of the warehouse is determined. We intend to conduct
experiment for three sizes of warehouse. By replacing the input value of
Sc and B to the expression (A2.2), Y is obtained. Now, Sw is necessary
to deduce X, which according to the expression (A3.4) depends on .Q′

Therefore, to simulate three sizes of warehouse, three values of Q′ must be

defined. The suggested height of shelf for manual picking is when the
dimension is lower than 1.8m. Considering ,1=′Q 2=′Q and 3=′Q equal

to 7, 13 and 19, respectively (which means the dimension of each drawer
varies from 9cm up to 25cm), then from (A3.3), (A3.4) and replacing :7=R

() () .3024365.2
5.35.3300420 1

5.2
1 ≈→≈⎟

⎠
⎞⎜

⎝
⎛≈ SwSw

Using the same calculation procedure, we obtain also 202 ≈Sw and

.103 ≈Sw

From (21), the level of stock may be estimated from the demand.
Statistically, according to the percentage of products (see Appendix 4), it is

An Efficient Algorithm for Problem Product Family Allocation … 949

also possible to estimate the level of stock. To make this becomes possible, it
is necessary fV (33):

 .
1

1∏ −

=
= f

f f
K
k kf CV (33)

As %601 =p and %,10=Ip then from (A4.4):

.max 1
,,

⎭
⎬
⎫

⎩
⎨
⎧

⋅
⋅⋅

= Fp
PpV

St
I

f
hji

For .8.1,1 1
,, == hjif StV

For .9,5 2
,, == hjif StV

Therefore, { } 99;8.1max,, ==hjiSt units.

The models are developed in platform Pascal, and simulated in a
microcomputer with the following settings: 2-GHz Pentium(R) Dual-Core
CPU, 4GB DDR2 RAM.

4.2. Results of total traveling distance

The average of the results (in units of distance) and the respective
standard deviation of a total of 30 samples are shown in Table 1. The
consumed CPU time for 30 samples is, in average, 12 minutes.

Comparing results presented in Table 1, for small size warehouse, MRA
and CRA present quite similar results, but both with better performance in
comparison to the allocation based on ABC (reduction in 18.62% of the total
traveling distance). For medium size, the reduction is about 16.27% and
finally, for large size, the reduction is about 20.54%. It is observed the
proportionality of traveling distance in relation to the size of the warehouse,
that is, as the size of the analyzed warehouse increases, the traveling distance
also increases.

Yung Chin Shih 950

Table 1. Performances of three layout size
Allocation (30 samples) 10 shelves 20 shelves 30 shelves

MRA
Average=2114.63

S.D.=95.26

Average=3017.60

S.D.=126.15

Average=4027.03

S.D.=171.60

CRA
Average=2147.13

S.D.=99.75

Average=3101.50

S.D.=141.47

Average=4083.77

S.D.=147.71

ABC
Average=2618.37

S.D.=117.12

Average=3654.03

S.D.=155.36

Average=5103.70

S.D.=236.95

Figures 2-4 exhibit results for the improved algorithms and the proposed
method. Based on the preliminary results, in general, increasing the
warehouse size, the performance of GA for allocation of pieces increases.
The lowest total traveling distance is obtained in about 35~45 generations
(that is, around 504~644 iterations). No improvement evidence is observed
from it up to the last adopted generation 299. The consumed CPU time is
about 36h.

On the other hand, the use of LBS seems to be the most appropriate for
small warehouse size. Reduced total traveling distance may be obtained by
incrementing the number of iterations. The consumed CPU time up to 4200
iterations (or 299 generations) is 33h50min.

In comparison to others methods (2-opt and 3-opt), the performance is
between LBS and GA, with CPU time between 27h30min and 31h24min.

About the proposed method, comparing results of the proposed method
we note, in general, reduced traveling distance (which means best allocations
of pieces to drawers) may be obtained in a short period of CPU time (in
average, about 1h10min is necessary to reach 100 iterations).

For some more details, we present Table 2, showing the evolution
of total traveling distance, in units of distance, as the number of iterations
increases.

For 10 shelves, the 1718u.d. of traveling distance is reached in about 5
generations (or 5 iterations of multiple of 14 plus 14), which is equivalent to

about 80th iteration (with ;8.0=α∗ ;7.0=β∗ ;1.0=γ∗ .)4.0=δ∗ The

An Efficient Algorithm for Problem Product Family Allocation … 951

consumed CPU time is about 50min. While in LBS, this value is reached in
about 160 generations (or 160 × 14 iterations plus 14) with 18.27h of CPU
time.

For 20 shelves, the best traveling distance is 2359u.d., reached in

95th iteration, weighing of ;0.1=α∗ ;2.0=β∗ ;1.0=γ∗ 3.0=δ∗ (CPU ≈

66.5min). The best result may be reached only in about ()1414270 +×

iterations with a CPU time of 29h.

Lastly, for 30 shelves, the best value of traveling distance is 2860u.d.

obtained in 72th iteration weighing ;1.0=α∗ ;2.0=β∗ ;9.0=γ∗ 4.0=δ∗

(CPU ≈ 50.4min), while in GA, the only best total traveling distance is
3057u.d. (reached in about 35 generations with CPU ≈ 4.21h). After this, no
improve evidence is observed.

Based on the analysis, while the warehouse size increases, the
performance of the proposed method also increases. We notice also larger
warehouses tend to retain also long trips.

10 shelves

1600
1650
1700
1750
1800
1850
1900
1950
2000
2050

0 50 100 150 200 250 300 350

Number of iterations

To
ta

l t
ra

ve
lin

g
di

st
an

ce

GA
LBS
2-opt
3-opt
Proposed

Figure 2. Total traveling distance, in units of distance.

20 shelves

2200

2400

2600

2800

3000

3200

3400

0 50 100 150 200 250 300 350

Number of iterations

To
ta

l t
ra

ve
lin

g
di

st
an

ce

GA
LBS
2-opt
3-opt
Proposed

Figure 3. Total traveling distance, in units of distance.

Yung Chin Shih 952

30 shelves

2800

3000

3200

3400

3600

3800

4000

4200

0 50 100 150 200 250 300 350

Number of iterations

To
ta

l t
ra

ve
lin

g
di

st
an

ce

GA
LBS
2-opt
3-opt
Proposed

Figure 4. Total traveling distance, in units of distance.

There is a notable evidence of the proposed method outperforms in
comparison to other methods. Observe although the total traveling distance
increases for larger warehouse size, the performance of the proposed method
is higher since lowest result is obtained in few iterations.

It is interesting to note that the CPU time is not affected by the
warehouse size.

Table 2. Evolution of the total traveling distance
Number of shelves

Number of iterations
10 20 30

1 1866 2470 3665

10 1810 2470 3194

20 1742 2391 3182

30 1742 2391 3182

40 1730 2391 3046

50 1730 2391 3032

60 1730 2371 3032

70 1730 2371 3032

80 1718 2371 2860

90 1718 2371 2860

100 1718 2359 2860

Best weights

α∗ = 0.80;
β∗ = 0.70;
γ∗ = 0.10;
δ∗ = 0.40

α∗ = 1.00;
β∗ = 0.20;
γ∗ = 0.10;
δ∗ = 0.30

α∗ = 0.10;
β∗ = 0.20;
γ∗ = 0.90;
δ∗ = 0.40

An Efficient Algorithm for Problem Product Family Allocation … 953

4.3. Total time for order picking

This subsection consists in evaluating the relation between the perception

of congestion ∗n and total order picking for each storage item assignment.

The simulation of the order picking time requires: picking time = 0.1min
or 6s, see Lin and Lu [3]; sm6.0=speedv (Roodbergen and De Koster [8]),

omitting the influence of weight on the velocity and the congestion in cross
aisles; distance between two neighboring aisles = 2.5m (Roodbergen and De
Koster [8]), that is, each unit of distance adopted in this research will be
0.8m. Other incognitos are obtained as simulation progresses.

Figures 5 to 10 show that it is highly suggested to work with MRA and
CRA in cases of large picklist because, in general, the total traveling distance
and the picking time are lower than ABC. Actually, it was expected (and now
confirmed) higher picking time in strategy ABC of allocation, since higher
concentration of pickers in some areas will also promote more waiting during
the pickings. On the other side, the performances of ABC, MRA and CRA
are quite similar for a small picklist.

Comparing iterative improvement methods and the proposed method,
there is a clear evidence that increasing the warehouse size, there is no effect
of congestion (this result actually was expected) explaining the reason that
picking time is quite similar among themselves, especially for small picking
list. It is because the probability of pickers in the same subaisle is lower. On
the other hand, smaller warehouse provides lower total traveling distance, but
increment in the picking time due to congestion.

It is noticed a trade-off behavior. That is, rarely is suggested to reach
lowest total traveling distance because it promotes higher total picking time.
However, in general, when the number of picklists is kept constant (P = 90),
the lowest total traveling distance also will result in the lowest total picking
time.

In general, keeping the size of warehouse, if the variety of demanded
products increases, then the picking time increases too. However, when the
warehouse size is increased, the performance in picking time improves. It is

Yung Chin Shih 954

preferable to work with larger warehouses and larger variety of demanded
products than smaller warehouses and lower variety of demanded parts.

Especially, Figures 8-10 demonstrate that if the goal is to minimize
the total traveling distance, then it is suggested to employ only one cross
aisle (that is, only two blocks). It is useful to explain why Roodbergen and
De Koster [8] considered only one cross aisle in the analysis, that under
circumstances, it was simply defined.

An Efficient Algorithm for Problem Product Family Allocation … 955

Yung Chin Shih 956

An Efficient Algorithm for Problem Product Family Allocation … 957

Yung Chin Shih 958

For smaller warehouses, the analyzed heuristics (LBS, GA, 2-opt and
3-opt) demonstrate to be efficient (short CPU time, reduced total traveling
distance and reduced total picking time).

On the other hand, the proposed procedure permits to obtain the total
traveling distance reduced for large warehouses, and especially, in short CPU
time. The total picking time is lower in a smaller warehouse. Rarely, the total
traveling distance is desired to be lowest because we notice the efficiency in
total picking time worse in comparison with other iterative improvement

methods. Due to this situation, we need to evaluate in which ∗n (perception
of congestion) permits to reduce the total picking time through minimizing
the congestion, as shown in Figures 11 and 12 with 1 cross aisle and P = 90.

20 shelves

0
200
400
600
800

1000
1200
1400
1600
1800

2 3 4 5 6 7

Perception of congestion

To
ta

l p
ic

ki
ng

 ti
m

e MRA
CRA
ABC
LBS
GA
2-opt
3-opt
Proposed

Figure 11. Influence of congestion on the picking time.

30 shelves

0

200

400

600

800

1000

1200

1400

2 3 4 5 6 7

Perception of congestion

To
ta

l p
ic

ki
ng

 ti
m

e MRA
CRA
ABC
LBS
GA
2-opt
3-opt
Proposed

Figure 12. Influence of congestion on the picking time.

Observing Figures 11 and 12, those results were expected, since higher
∗n (which means higher number of pickers is permitted to pass through the

subaisle at the same time) will yield lower total picking time because of short
waiting.

An Efficient Algorithm for Problem Product Family Allocation … 959

The reason we simulated up to 7, the perception of congestion was the
simplicity of simulation. However, it is necessary to remind effectively that

increasing the perception of congestion ∗n will also demand larger subaisle,
which will increment the zigzag travelings (as reported in Caron et al. [2]).
Based on the results for the medium and large warehouses, the adopted value
for the perception of congestion larger than 3 will already provide, relatively
speaking, benefits in terms of reduced picking time.

Therefore, by using the proposed method for larger warehouse size, it is
possible to reduce the total picking time, the total traveling distance and CPU

time by adopting higher .∗n

5. Conclusions and Future Works

Although the use of iterative improvement methods (LBS, GA, 2-opt and
3-opt) may provide reduced total traveling distance as simulation advances,
the results are worse in comparison to the proposed method, except for
smaller warehouse. The proposed method shows to be efficient in allocating
pieces in drawers in short period of time (1h10min) in comparison to others,
which demanded from around 27h30min up to 36h. It is important to note
that the consumed CPU time is not affected by the warehouse size.

On the other hand, for large size warehouse, the proposed method
permitted to reach lower total traveling distance in shorter CPU time. Due to
trade-off behavior, rarely it is desired to minimize the total traveling distance
since it implies in increasing of total picking time. Fortunately, the effects of
the congestion may be minimized by selecting larger value for the perception

of the congestion .∗n

Surprisingly, if the performance parameter is the total picking time, then
it is preferable to work with larger warehouse and variety of products than
smaller warehouse and variety of products.

The best result in total traveling distance for any size of the warehouse is
reached by employing one cross aisle. Although the results indicated great
results, it is still not conclusive because other simulation circumstances need

Yung Chin Shih 960

to be evaluated. For instance, test other number of sections per shelf, instead
of 20; test other picking cart capacity and so forth.

For future works, consider other layouts shape of shelves. For instance,
analyze shelves horizontally positioned, instead of vertically positioned
as adopted here. Extend the number of products in the picklist and also,
evaluate the congestion of picking carts in the cross aisles.

References

 [1] A. H. Azadnia, S. Taheri, P. Ghadimi, M. Z. Mat Saman and Kuan Yew Wong,
Order batching in warehouses by minimizing total tardiness: a hybrid approach
of weighted association rule mining and genetic algorithm, The Scientific World
Journal 2013 (2013), 1-13.

 [2] F. Caron, G. Marchet and A. Perego, Layout design in manual picking systems: a
simulation approach, Integrated Manufacturing Systems 11(2) (2000), 94-104.

 [3] Che-Hung Lin and Iuan-Yuan Lu, The procedure of determining the order picking
strategies in distribution center, International Journal of Production Economics
60-61(1) (1999), 301-307.

 [4] R. De Koster, T. L. Duc and K. J. Roodbergen, Design and control of warehouse
order picking: a literature review, European J. Oper. Res. 182(2) (2007), 481-501.

 [5] S. Henn, S. Koch, K. F. Doerner, C. Strauss and G. Wascher, Metaheuristics for
the order batching problem in manual order picking systems, Business Research
3(1) (2010), 82-105.

 [6] M. Kłodawski and J. Żak, Order picking area layout and its impact on the
efficiency of order picking process, Journal of Traffic and Logistics Engineering
1(1) (2013), 41-45.

 [7] C. H. Mowrey and P. J. Parikh, Mixed-width aisle configurations for order
picking in distribution centers, European J. Oper. Res. 232 (2014), 87-97.

 [8] K. J. Roodbergen and R. De Koster, Routing order pickers in a warehouse with a
middle aisle, European J. Oper. Res. 133(1) (2001), 32-43.

 [9] S. Ene and N. Öztürk, Storage location assignment and order picking optimization
in the automotive industry, International Journal of Advanced Manufacturing
Technology 60 (2012), 787-797.

An Efficient Algorithm for Problem Product Family Allocation … 961

Appendix 1

For each drawer of ,, jiS we propose the global index (A1.1):

 ,

0_

_

,,

1
,,

⎪
⎭

⎪
⎬

⎫

=

=

′

∞=

=
′ ∑

fjSi

IDX

idx
idxfjSi

IndexGlobal

IndexIndexGlobal
 (A1.1)

where idxIndex corresponds to the standardization value.

The number of indexes depends on how variables that possibly affect
the total traveling distance interact to each other. Once the variables are
analyzed, it is converted to an index. By using (A1.1), we will notice that the
process of allocation of pieces occurs, the value of each used index will
change, which means the impact on the total traveling distance may or not
be significant. Although still unknown since it depends on the status of
allocation, each index will have different degree of importance ϕ. Therefore
we adapted it to (A1.2). Note the calculation occurs F ′ times, since the
expression is calculated one time per :f ′

 ,_
1

,, ∑
∞=

=
′ ⋅η⋅ϕ=

IDX

idx
idxidxidxfjSi IndexIndexGlobal (A1.2)

where

idxϕ corresponds to the disturbance factor (weight) for each index,

varying from 0 up to 1; per iteration, we assume idxϕ equal for all ,F ′

independent of the status of allocation, but may be different among “idx”;

idxη corresponds to the probability of occurrence of demand for product

p. Note it is only for index 2, because it is the only one which handle with the
demand. To simulate it, we consider a probability η%.

fp ′∈ {particularly important for index 2}.

For illustrating, we raise some variables and how the interactions are
converted to indexes.

Yung Chin Shih 962

A1.1. Index 1 - Relation of products of same f ′

This first index refers to the relation of proportionality between products
(allocated and unallocated) of the same .f ′

Assume two families, 1f ′ and .2f ′ The first is composed of ,51 =′fV

that is, 5 products, 2 of them are already allocated in their best position. And
the second is composed of 72 =′fV products, 3 of them are already

allocated. Choosing an empty drawer of jiS , closest to the ∗x and ,∗y a

simple calculation permits to decide which one to select. For ,1f ′ if the total

number of products is 5, and 3 of them are unallocated (so unallocated away
of best position), we have .6.053 = And for the second, .57.074 = We

conclude one of 3 remained unallocated products of a total of 5 of 1f ′ is

preferable to be allocated first in comparison to .2f ′

The general expression for the conversion to an index is (A1.3):

f

ff
jSi V

VV
Index

′

∗
′′ −

=,1_ varying from 0 to 1, where ,ff VV ′
∗
′ ≤ (A1.3)

where fV ′ represents the total number of products f ′ and ∗
′fV set of already

allocated products which belongs to .f ′

A1.2. Index 2 - Relation between the demand and the number of levels

The second index is about the structure of each product that belongs
to the same family. Since each piece type is allocated in different drawer,
increasing the number of levels of each family will also require higher
number of drawers. So, if there are insufficient drawers in the section, then
extra traveling distance will be necessary. However, the traveling distance is
also affected by the demand. The conclusion is a product with several levels
and high demand which tends to require long trips. We may construct an
index (A1.4), in which in one side, a family with reduced number of levels

An Efficient Algorithm for Problem Product Family Allocation … 963

and low demand tends to obtain a value closer to 1, and else 0:

()

[{ }] [{ }] .1...,,,max...,,,max
1.

2_
2121

, −⋅
−′

=
∗∗ PP

pp
jSi KKKDDD

KD
Index (A1.4)

A1.3. Index 3 - Relation between the chosen section and the ideal
position

This index aims to evaluate the distance between the selected section
,, jiS where a piece of f ′ will be supposed allocated, in relation to the

closest ideal position established in Step 3. If the position of section is the
closest position, then the rank tends to be closer to 1, and 0 else. Note that
highest distance is just the distance between two subsequent modules of the
same family. We propose (A1.5):

 ,13_
11

,,
,

−−

∗
′

∗
′

−+−
−+−

−=
vvvv

fjSifjSi
jSi yyxx

yyxx
Index (A1.5)

where

∗
′fx and ∗

′fy represent the closest ideal position of a product belonging

to ;f ′

jSix , and jSiy , represent the Cartesian coordinates of the chosen ., jiS

The denominator measures the distance between two subsequent
modules of .f ′

A1.4. Index 4 - Relation between the number of pieces and the number
of drawers

This index compares the difference between the number of pieces of a
product belonging to f ′ and the number of remained drawers in the chosen

section. When the number of pieces is higher than the number of drawers, it
means that extra traveling will be required, so the correspondent family f ′

will receive a lower score, and vice versa:

Yung Chin Shih 964

If ,1max
1

, f
F

f

K

jSi KDr
f

′≥
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

− ∑ ∑
∗′

∗′

∗′

 then ,14_ , =jSiIndex

else, see (A1.6):

()

() ()

.

11

.

1max

14_ .

1
,,

´
1

,

,

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
−

+=

∑

∑ ∑

=

∗′

∗′

∗′

YX

SwScDr

KDr

Index SwSc

s
sjSi

f

F

f

K

jSi

jSi

f

 (A1.6)

The numerator represents the remained drawers in jiS , after the

supposed allocation of a product of ;f ′ the upper denominator means that

the average number of drawers in each section and the lower denominator
represents the maximum trip in horizontal and vertical directions.

Finally, the global index for each f ′ becomes (A1.7):

jSijSijSijSi IndexIndexIndexIndexGlobal ,,,, 3_2_1__ ∗∗∗∗ γ+ηβ+α=

.4_ , jSiIndex∗δ+ (A1.7)

Appendix 2

Proof 1. The constraint (4) also may be written when it is informed the
number of blocks B, number sections Sc, number of shelves Sw as input:

We know ,1+= B
Swcv then from the expression (4),

.11 hB
SwhB

SwX −++⋅⎟
⎠
⎞⎜

⎝
⎛ +=

As ,2=h which means both sides of shelf, then

An Efficient Algorithm for Problem Product Family Allocation … 965

.12 ++= B
Sw

B
SwX

Since there are two side vertical aisles, ,2=∗cv expression becomes
(A2.1):

 .12 −++= ∗
B

SwcvB
SwX (A2.1)

Proof 2. From the expression (5), v may be expressed in terms of Sc

since we know that .2
Scv = So, rewriting (5), Y becomes:

() ,2121 ScBScBY −++⋅+=

1212 +++⋅⎟
⎠
⎞⎜

⎝
⎛=++⋅⎟

⎠
⎞⎜

⎝
⎛= ∗ BchBScBBScY

or (A2.2):

 2,12 =+++⋅⎟
⎠
⎞⎜

⎝
⎛= ∗∗ chBchBScY (A2.2)

because there are two side horizontal aisles.

Appendix 3

In the constraints, we have already shown expressions (4) and (5)
to define the size of the warehouse. However, note that the definition is
extremely subjective. We need to use consistent information to develop it.
From (9), that is, each drawer must pursue exactly one type of piece:

..
1

,∑∑ ∑
=

=
i j

F

f
ffjSi VKDr

Once all f, that is, F, are determined, the right side of the sentence will be
defined. From (33), the right side becomes (A3.1):

Yung Chin Shih 966

VKFCKVK
F

f

K
k kf

F

f
ff

f

f f ⋅⋅≈⎟
⎠
⎞

⎜
⎝
⎛⋅≈⋅ ∑ ∏∑

=

−

=
= 1

1
1

1

.2.2.
12maxminmaxmin

maxmin −⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +

≈

KK
CCKKF (A3.1)

Note that in general, maxK and minK may vary independently in

relation to maxC and .minC

When the number of components per product of each f is limited in ,fC

where 0>fC and ,maxCC f ≤ the independency now is undone. We may

write:

.
12

2

12

maxmin

12maxmin

maxmin
maxmin

−⎟
⎠
⎞

⎜
⎝
⎛ +

−⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
+

→⎟
⎠
⎞

⎜
⎝
⎛ +

KK

f
KK

KK
CCC

Note that minK and maxK are now varying according to .fC For

illustrating, it is possible to assume the value of minK as constant. In this

case, only maxK will depend on fC or vice versa. Note also that, if fC

receives a higher value, then maxK will receive a lower or vice versa to keep

the above expression as constant. Because of several f, we have (A3.2):

 .
12

12

maxmin

maxmin −⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
+

KK

KK
C (A3.2)

Due to the paradoxical issue, the intervals for these two averages C

and K may be defined as opposite interval { }maxmin CCC …… and

{ },minmax KKK …… respectively. Note that C is between maxC and

.minC It is because if minC and maxC are used to estimate ,C when

An Efficient Algorithm for Problem Product Family Allocation … 967

,minmax CC ≥ then the lowest value that C will assume will be minC and

the highest, .maxC The same idea may be applied to .K

The relation R between these two intervals may be expressed as:

maxmin KCR += or .maxmin CKR +=

Merging both expressions,

.2 minmaxminmax KKCCR +++=

Therefore, in general, .RCK =+

However, from (6) and (8), where the values of minK and minC are

equal to one, we conclude ,maxmax KC = which fails to the constraint (8).

We need to assure maxmax CK > by adding ε (where)0>ε to make the

inequality a true sentence.

Rewriting:

maxmin KCR += or .maxmin ε++= CKR

Note only maxC needs to be added. We then have:

,2 minmaxminmax ε++++= KKCCR

.RCK =+ ∗

The expression (A3.2) becomes:

.
12

12

maxmin

maxmin −⎟
⎠
⎞

⎜
⎝
⎛ +

∗

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
+

KK

KK
C

However, maxK is unknown being dependent on .maxC Therefore, we

need to write above sentence in function of R:

.
1

1−−

∗

∗
∗

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−−

CR

CR

C

Yung Chin Shih 968

Finally, from the initial expression (A3.1), we obtain (A3.3):

()
()

.
1

.
1

1

∑
=

−−

∗

∗
∗

∗

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−−
⋅−≈⋅⋅≈⋅

F

f

CR

ff
CR

CCRFVKFVK (A3.3)

From the left side of the expression (9):

.
1 1

,,∑∑ ∑ ∑
= =

=
i j

Sw

sw

Sc

sc
swscjSi DrDr

In average, ,constant, qDr swsc == sc∀ and .sw∀ Therefore,

...,∑∑ ≈
i j

jSi qScSwDr

This expression pursues 3 degrees of freedom, since by keeping these 3
incognitos, the remaining one will be automatically determined. So, keeping
following incognito as constant (F, the average number of drawers per
section ()q and the size of the shelf (Sc) as input information), Sw is

automatically determined or vice versa.

Although, usually used as input, the question is which Sw we need to
keep constant. The answer depends on ,q if we intend to keep other

incognitos as constants F and Sc. It is important to note that Sw and q

are inversely proportional. Assuming a priori pickers may reach a limited
number of drawers, we say up to ,Q′ we may write ,, swscDr ∀sc and ∀sw

as:

[]., QQDr oswsc ′= …

The mean drawers for the warehouse may be obtained by:

.2, ⎟
⎠
⎞

⎜
⎝
⎛ ′+

==
QQqDr o

swsc

An Efficient Algorithm for Problem Product Family Allocation … 969

Since ,0, >jSiDr see constraint (10), and assuming that jiS , must

pursue at least one drawer, we have .1=oQ Therefore, the previous

equation becomes (A3.4):

 ().2
1

,∑∑ ′+⋅⋅≈
i j

jSi
QScSwDr (A3.4)

Appendix 4

Proposition. If the level of stock satisfies the deterministic demand, then
it satisfies also the stochastic demand.

To prove the cited proposition, let us start the premise that if the demand
is known (that is, deterministic), we know also the percentage. We denote

21, ΦΦ and 3Φ as percentages of demanded f of batched orders, where 1Φ

is a highly demanded set of f and in the opposite side set, III ΦΦΦ ,;3 and

IIIΦ represent the percentages of f in stock which belong, respectively, to

,1Φ 2Φ and ,3Φ where the value of Φ is limited in .10 ≤Φ∀≤ Since

there are fV products in each f, we may represent the required level of stock

for each component of fV as (A4.1):

⎪
⎪
⎩

⎪⎪
⎨

⎧
⋅Φ

++
⋅Φ⋅Φ

++
⋅Φ ""

"
""

"
" ;1

11

;1

11

max

f

IIII

f

II

V

FF

V

FF

⎪
⎪
⎭

⎪⎪
⎬

⎫
⋅Φ

++
⋅Φ "

"

f

IIIIII

V

FF
1

11

..;.;.max
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ΦΦΦ
⋅ ∑ ∑∑

∞ ∞∞

F
V

F
V

F
V

III

f

II

f

I

f (A4.1)

Yung Chin Shih 970

Considering limited batched orders, we have

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ΦΦΦ∑ ∑∑
Λ ΛΛ1 32

.;.;.max F
V

F
V

F
V

III

f

II

f

I

f

.;;max 321

⎭
⎬
⎫

⎩
⎨
⎧

⋅Φ
Λ⋅

⋅Φ
Λ⋅

⋅Φ
Λ⋅

⋅ F
V

F
V

F
V

III

f

II

f

I

f

But :PF ⋅=Λ

.;;max 321

⎭
⎬
⎫

⎩
⎨
⎧

⋅Φ
⋅Φ⋅

⋅Φ
⋅Φ⋅

⋅Φ
⋅Φ⋅

F
PV

F
PV

F
PV

III

f

II

f

I

f

Since ∑ =Φ ,1 1321 =Φ+Φ+Φ and .1=Φ+Φ+Φ IIIIII

Assuming

,,,, 321321 IIIIII Φ=ΦΦ=ΦΦ=ΦΦ>Φ>Φ

we may conclude

F
PV

F
PV

F
PV

III

f

II

f

I

f
⋅Φ
⋅Φ⋅

>
⋅Φ
⋅Φ⋅

>
⋅Φ
⋅Φ⋅ 321 or simply .321

IIIIII Φ
Φ

>
Φ
Φ>

Φ
Φ

Finally,

.;;max 1321
F

PV
F

PV
F

PV
F

PV

I

f

III

f

II

f

I

f
⋅Φ
⋅Φ⋅

=
⎭
⎬
⎫

⎩
⎨
⎧

⋅Φ
⋅Φ⋅

⋅Φ
⋅Φ⋅

⋅Φ
⋅Φ⋅

 (A4.2)

In stochastic demand, from the expression (A4.1), we obtain:

,max
⎭
⎬
⎫

⎩
⎨
⎧

++ """ F
V

F
V ff which is simplified to .∑

∞

F
V f

Limiting ,1 PP =⋅=Λ so:

 .∑ ∑
Λ ⋅

== F
PV

F
V

F
V f

P
ff (A4.3)

An Efficient Algorithm for Problem Product Family Allocation … 971

Comparing (A4.2) and (A4.3), when ,1 IΦ>Φ we conclude:

.1
F

PV
F

PV f

I

f ⋅
>

⋅Φ
⋅Φ⋅

That is, if the level of stock for highly demanded component is satisfied,
then the stochastic demanded component will be satisfied too.

So the level of stock for each component, ,,, hjiSt is defined as:

.,,
1

hji
I

f StF
PV
=

⋅Φ
⋅Φ⋅

Note that reducing P, the required stock is lower, since both are directly
proportional. It means that if the level of stock is satisfied for P, this same
level will satisfy also a reduced value of P. This is particularly important
for other simulation conditions when different values of P (30 and 60, both
lower than 90) were tested. Actually, we adopt (A4.4):

 .max ,,
1

hji
I

f StF
PV

=
⎭
⎬
⎫

⎩
⎨
⎧

⋅Φ
⋅Φ⋅

 (A4.4)

