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Abstract 

This investigates the problem of assigning pieces in shelves aiming at 

to minimize the routing distances. The idea of proposed global index  

is composed by other specific indices to identify which unallocated 

product is preferred to be allocated in corresponding section of a  

shelf. It is considered to be the most common allocation practice of 

storage item assignment and for the improvement of algorithms for 

comparison. The computational results show that it is rarely desired to 

minimize the total traveling distance since it implies in an increment  

of the total picking time due to delays in congestions. In addition to        

this, surprisingly, when the performance parameter is the total order 

consolidation time, it is preferable to work under large size and large 

variety of products circumstances. 
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List of Parameters 

ABC  Classical allocation of products based on the degree of 
importance 

B  Number of blocks 

jsiB ,′  One of B that pursues the section jiS ,  

ch  Number of horizontal corridors, that is, cross aisles plus 
side aisles 

kC  Number of components classified as belonging to the 

level k 

CRA  Components randomly allocated 

cv  Number of vertical corridors, that is, subaisles plus side 
aisles 

cartd  Size of the picking cart, assuming square format 

pkcD  The demand of the piece located in level k of product p 

jSiDr ,  Number of drawers in the section ji,  

f  A family of products 

F  Total number of families, that is, all families f 

F ′  All unallocated pieces of different families 

f ′  The selected f of F ′  

h  Number of sections horizontally positioned per shelf 

ji,  Alternatively x and y, but are used to distinguish x and y of 

hamming distance calculation 

idx  Number of used indexes 

fK  Number of levels of family f, including the level 

corresponding to the module 
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maxK  Highest value of fK  

minK  Lowest value of fK  

L  Capacity of the picking cart 

LBS  Local Beam Search 

subaisleL  Length of subaisle 

MRA  Modules randomly allocated 

n  Number of picking cart used in picking process 

P  All demanded products 

p  Demanded product 
∗P  New P after batching quantities of similar products of the 

demand 

Sa  Number of sections per subaisle 

Sc  Number of sections per shelf 

jiS ,  Section of the warehouse, located in ix =  and jy =  

fkctjiSt ,,,  The level of stock of piece fkc  located in position ji,  in 

tth drawer 

Sw  Number of shelves in the warehouse 

TOCT  Total order consolidation time 

TPT  Total picking time per each picker 

u.d.  Unit of distance 

v  Number of sections vertically positioned per shelf 

fV  Variety or number of products of the family f 

speedv  Speed of picking cart 

x  Abscissa coordinate of any allocated position of piece in 
the warehouse 
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X  Number of rows of warehouse 
∗x  Abscissa coordinate of the centroid of warehouse 

y  Ordinate coordinate of any allocated position of piece in 

the warehouse 

Y  Number of columns of the warehouse 
∗y  Ordinate coordinate of the centroid of warehouse 

hcy ′  Ordinate coordinate of one of the selected ch 

hcy ′′  Ordinate coordinate of other selected ch 

W  Width of aisles (cross aisles or subaisles) 

pkcw  Weight of a certain piece pkc  (one of )pkC  

1. Introduction 

One of the most challenging problems faced by the companies is the 
ability for the quick tooling setups to make possible the production of a      
large variety of products in short period of time. However, in many cases,        
a constant tool setup may not be possible because of machine features, of 
tooling setups costs, of technical issues, of products shapes and so forth. 
Therefore, developing products is an important opportunity discovered by 
companies in which similar components (called modules) are of the common 
use among of them, yielding the desired variety. 

The rapid response to the variety of products demanded by customers 
induces the necessity of overall constant operations improvement, which      
are regarding to the storage and order picking activities of components in 
warehouses specially. Extra routes and time might be observed once these 
operations are conducted inefficiently. Thus, the direct consequence is 
incrementing the cost of final product and likewise the long wait of 
customers to receive the requested product. 

Traditionally, different pieces to be collected are dependent on each 
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other. That is, the allocation and the order picking are conducted based on 
the customer level of demand information among other criterions. However, 
a lack of investigation is observed in the literature concerning the relation of 
multiple pieces (in some regions of Brazil is named module and components 
of the same product). This paper aims to investigate the relation among the 
multiple pieces of the same product and how it affects the cited activities. 

The method consists in an index based on dynamic weights and it             
is proposed which basically consists in defining the order priority among 
unallocated products (module and its respective components) for allocation 
to result in the lowest total traveling distance during the order picking. 

Eight methods are used for comparison where each method has three 
layout sizes as small, medium and large resulting three indicators. The 
proposed method is implemented in an available software where it is also 
modeled the most common allocation practices of storage item assignment 
(classical ABC, MRA and CRA) and allocation improved algorithms (local 
beam search, GA, 2-opt and 3-opt) totalizing 8 comparisons of performances 
for three sizes warehouse (large, medium and small). For each warehouses 
size, there are three performance indicators in 8 items storage assignment 
such as total traveling distance, total order picking time and CPU time. 

This paper consists of five sections. The second section presents a brief 
definition of terms which are used in order picking activities and also             
a literature review. The proposed mathematical model and its respective 
constraints such as the description for the implementation are presented           
in the third section. Likewise, the description of other methods is used in 
comparison. Next, the definition of input data, simulation results, discussion 
and comparison of methods are presented in the fourth section. Finally, in the 
last section, the conclusions and suggestions for future works. 

2. Literature Review 

The operation improvement in a warehouse generally involves the 
decision related to the following classical issues: zoning, layout, routing 
strategy, orders batching and storage item assignment. This section aims        
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to present the review of some articles regarding these activities, showing 
techniques, discussing results and limitations. 

According to De Koster et al. [4], this picker-to-item system (while          
the picker moves to section) and low level-picking systems (there are no 
difficulties during the collecting process due to the altitude of stored item) 
are the most common practices in Western Europe and the reason those 
picking systems are considered in this present research. Azadnia et al. [1] 
claimed in most practical situations, customers actually define a due date, 
when the warehouse operator must satisfy the customers request until this 
moment. So, the authors proposed a model in order to minimize the tardiness 
of the order (difference between the time completion of order and the 
established due date). 

There are already many researches with emphasis on heuristics for          
the batching orders, storage item assignment, routing problems, etc. But        
in practice, there are congestions of pickers in aisles generally omitted in 
researches, see Kłodawski and Żak [6]. To solve concomitantly the problem 
of storage assignment, and batching and picking tour, Ene and Öztürk [9] 
proposed an integer programming based on mathematical model. Henn et al. 
[5] focused on the development of metaheuristics (iterated local search and 
ant colony optimization) to determine how orders should have been batched 
to result in minimization of total length of all tours. An important analysis 
was observed in Mowrey and Parikh [7], where the influence of width of 
aisles on the performance during the order picking process was evaluated. 

Based on the reviewed articles, there is a clear evidence that the structure 
of the product during the piece storage assignment has been omitted. We may 
raise some issues about it: should the allocation begin from the modules or 
from the components? What is the best position for each module? If the 
remained drawers of best position are not capable in allocating a determined 
module, which section with empty drawers should be chosen and which 
module now is preferable for the allocation? Are all of them equally 
important? 

The contribution of this research is to propose an index method based on 
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dynamic weights by converting the raised issues into indexes varying from 0 
to 1 to define order of unallocated components for the allocation in the shelf 
considering three performance comparisons: the total traveling distance, total 
order consolidation time and CPU time. 

3. The Method 

3.1. Formulation of the mathematical model 

This subsection presents the adopted mathematical model (z) for the 
waving picking problem, when all pickers start the picking at the same time 
in a narrow aisle warehouse. In this type of setting, we assume manual picker 
may reach both shelves of the same subaisle, omitting any zigzag travelings. 

We may formulate the following mathematical model z, see expression 
(1), which aims to calculate the total traveling distance of collected pieces 
(module and components) of each family, repeating it for all families. The 1z  

expression aims to maximize the distance of modules of the same family f, 
finding the ideal position ( )11 , vv yx  to the module, and the 2z  expression 

aims to minimize the distance of components to the ideal position, that is, 
allocating components of the product closer to the ideal position. Subjects to: 
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( ) ,2;0; ≥>−+⋅= chvvchvchY  (5) 

;1 maxKK f <≤  (6) 
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k kf CV  (7) 

,;1 maxmaxmax KCCC fk <≤≤  (8) 
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ffjSi VKDr  (9) 

,0, >jSiDr  (10) 

{ } .0,;1,1, >∈ jiYXji ……  (11) 

The constraint (2) refers to the horizontal x and to the vertical y 
coordinates of the section where family, product or component is allocated. 
The number of families must be higher than 0 (see expression (3)). Next, 
both constraints (4) and (5) aim to deduce the number of rows and columns 
for the warehouse. The incognita h is established to be higher than 0 because 
the shelf must pursue at least one section horizontally positioned. Also, 

2≥cv  assures that two side vertical aisles will exist. For v, it must be higher 
than 0 because there must exist at least one section vertically positioned in 
the shelf. As the same manner, 2≥ch  assures there are at least two side 
horizontal aisles. The definition of number of levels for each f is defined in 
constraint (6). The inequality is because maxK  must not be equal to 1, 

because there are at least one level for module and one level for component. 
Next constraint defines the total number of products per family f; see 
expression (7). The constraint (8) assures that there is at least one component 
in each level, and also, there is at least one level for module. Although fK  

and kC  are defined, both must be equal to the number of drawers in the 

sections i and j, ,, jSiDr  exactly what the constraint (9) does. So, based on 

these last two constraints, we may affirm that each drawer will store exactly 
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one type of piece. In each section ,, jiS  there must be at least one drawer, 

,0, >jSiDr  in constraint (10). And finally, in (11), i and j represent the 

position of section jiS ,  in the warehouse, in Cartesian coordinates. 

3.2. Computational implementation 

This subsection describes steps for the computational implementation of 
the proposed mathematical model for the total traveling distance calculation, 
which consists in: 

Step 0. Define the number of families F, the number of levels fK  and 

the number of components belonging to each level. Due to the dependency 
between maxK  and ,maxC  only one of them needs to be defined, see 

Appendix 3. In this research, we defined a value for .maxC  Moreover, it 

defines the weight of each component ,fkw  and attributes to 0←it  and 

←∗D  {large enough}. 

Step 1. It defines the stochastic demand for f. We assume η [0.1 to 1] 
(that is, if the demand for a certain f is deterministic, then .)1=η  

Step 2. It generates the layout of the warehouse. The incognitos X and Y 
are obtained by using the next expressions (12) and (13) instead of previous 
(4) and (5), see Appendices 2, 3 and 1: 

,12 −⎟
⎠
⎞⎜

⎝
⎛++⎟

⎠
⎞⎜

⎝
⎛⋅= ∗

B
SwcvB

SwX  if Sw mod B is equal to zero, (12) 

,12 −++⋅⎟
⎠
⎞⎜

⎝
⎛= ∗ BchBScY  if Sc mod 2 is equal to zero. (13) 

Step 3. It calculates the ideal position (section) for modules of each 
product, by (14): 

 .1
f

Ff V
ScSwCycle ⋅== …  (14) 

Step 4. Allocate pieces of the product of f. Repeat it for all other 
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products of family f in other positions defined in Step 3. Repeat it up to F. 

All f allocated in the section are denoted by .∗F  A set of ∗F  is .∗′F  Note 
that many different products from different families may be allocated in         
the same ., jiS  Due to over-allocation, we need to define the degree of the 

importance of f families allocated. 

Step 5. The definition of degree of the importance is based on an 
objective function, see (15). The pieces (module and components of one 
product) of f family, which are not preferred in comparison to other f for 
allocation the referred section (ideal position) are temporally removed. 
Repeat it for all sections that are over-allocated: 

 .1maxmin
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Step 6. Due to the impossibility of F ′  being allocated in the ideal 
position, the idea is to find sections closest to the ideal position that pieces 

should be allocated. To do that, calculate 21 Xx +=∗  and =∗y  

.21 Y+  Find the closest ∗′x  and ∗′y  to ∗x  and .∗y  Update ∗′∗ ← xx  

and .∗′∗ ← yy  

Step 7. Define a new value for disturbance factor for each used index; 
Attribute .1+← itit  

Step 8. From ∗x  and ,∗y  find the closest new candidate to be ,, jiS  see 

(16) and (17): 

• If ,
,, ∗∗=

yxji SS  then { } .0min ,, =−+−=′ ∗∗
jSijSi yyxxd  (16) 

• If ,
,, ∗∗≠

yxji SS  then: 

- If ( )∗∗′≠′
ySxjSi BB

,,  or ( ),and
,,,, ∗∗∗∗ =′=′

ySxjSiySxjSi yyBB  then 

 { }.min
,,,, ∗∗∗∗ −+−=′
ySxjSiySxjSi yyxxd  (17) 
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- If ( ),and
,,,, ∗∗∗∗ ≠′=′

ySxjSiySxjSi yyBB  then 

[ ∗∗∗∗ −+−=′
ySxjSiySxjSi yyxxd

,,,,min  

{ }].;min2
,, hcySxhcjSi yyyy ′′′

∗ −−+ ∗∗  

Step 9. Calculate the global index (Appendix 1). So, the f ′  of all ,F ′  

which pursues highest value of global index, is then firstly selected to be 
allocated in the empty section (18): 

{ ...,,_,_Max 2,,1,, =′=′ fjSifjSi IndexGlobalIndexGlobal  

}._ ,, FfjSiIndexGlobal ′=′  (18) 

During the allocation process if the number of pieces of family f ′  is 

higher than the number of remained drawers, then go to Step 10, otherwise 
go to Step 11. 

Step 10. The position of the last section is now ∗x  and ∗y  (19): 

,, jSixx ←∗  

., jSiyy ←∗  (19) 

Repeat this step if necessary up to allocate all remained pieces of .f ′  

Step 11. Update .F ′  Repeat Steps 8-10 for all .F ′  

Step 12. Define the level of stock. For a given piece ,pkc  the demand 

may be represented as 
pkcD  (20): 
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The calculation is for all different ,pkc  resulting in different .
pkcD′  We 

select the highest obtained value to be the stock for all other pieces (21), 
through: 

{ }
pkctji DSt ′= max,,  for all different pieces .,,; tjic pk ∀  (21) 

Step 13. Calculate the traveling distance. For all p, the total number of 
used picking carts n can be represented as (22) and (23), where 0>L  and 

:Lw
pkc <  

 .1
1 1

1

1 1
∑ ∑ ∑ ∑
= = = =

⋅≤⋅
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p pk
pkpk LDw  (22) 

If ,21 LLLL n ==== "  then we may write the expression (22) as: 

 .
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Step 13.1. Attribute to the incognitos ,totalD  ,ttotalweighW  ,pk  ,n′  which 

represent the values of the current total traveling distance, total current load 
of the picking cart, the piece of level pk  and the number of used picking 

carts, values equal to zero, zero, zero and one, respectively; attribute also 
.1+← pp kk  

Step 13.2. Check up the weight of the total current load of the picking 
cart: 

• Step 13.2.1. For piece .1=pk  If ( ),LwW
pkcttotalweigh ≤+  then 

the total current weight is updated to +← ttotalweighttotalweigh WW  

.
pkcw  Go to 13.3. 

• Step 13.2.2. For .1>pk  If ( ),LwW
pkcttotalweigh ≤+  then the total 



An Efficient Algorithm for Problem Product Family Allocation … 943 

current weight is updated to .
pkcttotalweighttotalweigh wWW +←  Go 

to Step 13.4. 

• Step 13.2.3. For 1=pk  or .1>pk  If ( ),LwW
pkcttotalweigh >+  then 

;,, jsioutjSiouttotaltotal yyxxDD −+−+←  ;0←ttotalweighW  

go to Step 13.2. 

Step 13.3. Case ,1=pk  identify a random jiS ,  where the piece            

pk  is stored. If ,0,, ≠tjiSt  then +−+← jSiintotaltotal xxDD ,  

., jSiin yy −  If ,0,, =tjiSt  then choose randomly the other jiS ′′,  up to 

.0,, ≠′′ tjiSt  Make .,, jiji SS ′′←  Go to Step 13.5. 

Step 13.4. Case ,1>pk  identify the closest jiS ′′,  (non empty stock) in 

relation to ., jiS  The incognito jiS ,  represents the current section, and the 

incognito jiS ′′,  represents the next section. 

• Step 13.4.1. 

If ,,, jiji SS ′′=  then .totaltotal DD ←  

• Step 13.4.2. 

If ,,, jiji SS ′′≠  then 

If ( )jiSjSi BB ′′′≠′ ,,  or ( ),and ,,,, jiSjSijiSjSi yyBB ′′′′ =′=′  then: 

.,,,, totaljiSjSijiSjSitotal DyyxxD +−+−= ′′′′  

If ( ),and ,,,, jiSjSijiSjSi yyBB ′′′′ ≠′=′  then 

jiSjSijiSjSitotal yyxxD ′′′′ −+−← ,,,,  

{ } .;min2 ,, totalhcjiShcjSi Dyyyy +−−+ ′′′′′
∗  

Step 13.5. Update the level of the stock in the section. 
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.,,,, pktjitji DStSt −←  

If ,1>pk  then 

jiji SS ′′← ,,  and .,,,, pktjitji DStSt −←  

Step 13.6. If ,pp Kk <  then make .1+← pp kk  Else, for the next p, 

attribute .1←pk  For both cases, repeat Steps 13.2, 13.3, 13.4, 13.5 and 

13.6 up to .nn =′  

Step 14. If ,∗> DDtotal  then 

totalDD ←∗  and keep the best used disturbance factors by calling, for 

instance, ,,, ∗∗∗ γβα  etc. 

Step 15. Reset the warehouse. Repeat Step 6 up to Step 15 by varying 
values for disturbance factors up to it = iterations. 

3.3. An analytical model for the congestion problem in subaisle 

To evaluate the wasted time in congestion, let us construct the idea of  
the suggested analytical model. If all cart pickers (or cart picking) are in the 
same section, such as shown in Figure 1, then (24): 

 ,
1

∑
=

≤
n

cart
cart Wd  (24) 

 
Figure 1. Position of cart pickers in the same section of subaisle. 

The probability to have n vehicles in the section may be expressed as: 
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∑
=

≤ψ
n

cart
cartcart Wd

1
..  Based on the reviewed articles, we did not find the 

exact proportion of the width W and length of subaisle ,subaisleL  but we 

found typical narrow aisle warehouse, wherein subaisleL  must be longer 

enough in relation to the other. In other words, .0→
subaisleL

W  By assuming 

this constraint, the zigzag traveling time in subaisle may be omitted. 

The sensation of congestion is noticed when the obtained number of carts 

in the section is higher than the maximum acceptable number of carts, ∗n  
(25): 

 ...
1 1
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= =
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ψ≤ψ
n
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cart
cartcartcartcart dd  (25) 

It is important to note that the congestion of one section will block the 
subaisle. Assuming any cart as same size, ,021 ≠==== dddd n"  the 

blocking time in congestion is (26) and (27): 

 .0
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This means no congestion, and consequently no blocking time in 
congestion. 
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trunc ji,.11  (27) 

which means that the last picker of ∑
=
ψ

n

cart
cart

1
 will wait 
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 pickers leaving the section ,, jiS  where jSisectionL ,  

is the length of each section, given in unit of distance. 

Nevertheless, the probability of cart to be in a specific section depends 
on the demand (28): 

,1.
1 1 1 ,,

,,∑ ∑ ∑
=

′

=′ = ′
′

′

′ ′
′Θ=ψ

n

cart

P

p

K

k kpcart
kpcartcart

cart

cart

cartp

cartp cartpcart
cartpcart V  (28) 

where cartpcart kpcart ′′Θ ,,  is 0 if the requested piece of cartpk ′  of cartth is not 

located in drawers of the section ,, jiS  and 1 else. P′  refers to the number of 

products which belongs to cart, cartpK ′  refers to the number of levels of 

product p′  of cited cart, cartpcart kpcartV ′′ ,,  refers to the total possible 

products of the family (to which p′  belonged to) and n refers to the number 

of used picking carts. The expression (28) is for only one section jiS ,  of a 

subaisle. Since the number of picking carts in the subaisle depends on all 
sections aS  of the same subaisle (29), 

.1

1 1 1 1 ,,
,,∑ ∑ ∑ ∑

= =

′

=′ = ′
′

′

′ ′
′ ⋅Θ=ψ

a
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cart
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cartp
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cart
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kpcartcart V  (29) 

Assuming the worst case, that is, the pickers are running in the opposite 

flow and the pickers ∗n  are located in the opposite side of the subaisle, the 
blocking time in the subaisle is (30): 

∑
=

∗ →>ψ
n

cart
congestioninblockingcart tn

1
__  
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It is worth noting that when the adopted value of ∗n  is higher, the time 
in congestion tends to be lower, or vice versa. 

The blocking time (30) is the time that nth picker wastes in the subaisle 
up to his turn to collect only one piece. Due to each picker is designed             
to collect several pieces of p′  up to reach the picking cart capacity, the 

estimative of total picking time per each picker (including the traveling time, 
time in congestion and picking time) is (31): 
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Since the order picking is considered consolidated if all pickers finish the 
picking process, we concerned about the one who demanded highest time 
(32): 

 { }....;;;max 21 ncartcartcart TPTTPTTPTTOCT ====  (32) 

4. Computational Experiments 

4.1. Definition of input parameters 

This subsection describes the input parameters used to simulate the 
constructed models. First, the simulation is conducted to the most common 
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practices (classical ABC, MRA and CRA). Then local search algorithms       
are executed LBS, GA, 2-opt and 3-opt, and finally, the proposed method.       
In order to achieve this, some input parameter must be firstly defined, and 
others then derived from it: 

;300=F  ;2=B  ;20=Sc  ;1=In  ;5=Out  ;kg100=L  ;90=P  =K  

[ ];1 maxK…  [ ];51…=C  ;1=ε  [ ];51, …=jSiDr  [ ];kg1g100 …=flqw  

;.1, duWL jiSsection ==  ;.20 duLsubaisle =  %;601 =Φ=Φ III  =Φ2  

%30=Φ II  and %;103 =Φ=Φ I  ;8.0=crossoverp  ;02.0=mutationp  

iterations = 4200; pop = 14; generations = 299 (that is, 299 times of 
multiple of 14, plus 14 of ger = 0, totalizing 4200 iterations) (each 
individual represents one iteration). 

Note there are still unknown incognitos, X, Y, hjiSt ,,  and .fV  Having X 

and Y, the size of the warehouse is determined. We intend to conduct 
experiment for three sizes of warehouse. By replacing the input value of       
Sc and B to the expression (A2.2), Y is obtained. Now, Sw is necessary             
to deduce X, which according to the expression (A3.4) depends on .Q′  

Therefore, to simulate three sizes of warehouse, three values of Q′  must be 

defined. The suggested height of shelf for manual picking is when the 
dimension is lower than 1.8m. Considering ,1=′Q  2=′Q  and 3=′Q  equal 

to 7, 13 and 19, respectively (which means the dimension of each drawer 
varies from 9cm up to 25cm), then from (A3.3), (A3.4) and replacing :7=R  

( ) ( ) .3024365.2
5.35.3300420 1

5.2
1 ≈→≈⎟

⎠
⎞⎜

⎝
⎛≈ SwSw  

Using the same calculation procedure, we obtain also 202 ≈Sw  and 

.103 ≈Sw  

From (21), the level of stock may be estimated from the demand. 
Statistically, according to the percentage of products (see Appendix 4), it is 
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also possible to estimate the level of stock. To make this becomes possible, it 
is necessary fV  (33): 

 .
1

1∏ −

=
= f

f f
K
k kf CV  (33) 

As %601 =p  and %,10=Ip  then from (A4.4): 

.max 1
,,

⎭
⎬
⎫

⎩
⎨
⎧

⋅
⋅⋅

= Fp
PpV

St
I

f
hji  

For .8.1,1 1
,, == hjif StV  

For .9,5 2
,, == hjif StV  

Therefore, { } 99;8.1max,, ==hjiSt  units. 

The models are developed in platform Pascal, and simulated in a 
microcomputer with the following settings: 2-GHz Pentium(R) Dual-Core 
CPU, 4GB DDR2 RAM. 

4.2. Results of total traveling distance 

The average of the results (in units of distance) and the respective 
standard deviation of a total of 30 samples are shown in Table 1. The 
consumed CPU time for 30 samples is, in average, 12 minutes. 

Comparing results presented in Table 1, for small size warehouse, MRA 
and CRA present quite similar results, but both with better performance in 
comparison to the allocation based on ABC (reduction in 18.62% of the total 
traveling distance). For medium size, the reduction is about 16.27% and 
finally, for large size, the reduction is about 20.54%. It is observed the 
proportionality of traveling distance in relation to the size of the warehouse, 
that is, as the size of the analyzed warehouse increases, the traveling distance 
also increases. 
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Table 1. Performances of three layout size 
Allocation (30 samples) 10 shelves 20 shelves 30 shelves 

MRA 
Average=2114.63 

S.D.=95.26 

Average=3017.60 

S.D.=126.15 

Average=4027.03 

S.D.=171.60 

CRA 
Average=2147.13 

S.D.=99.75 

Average=3101.50 

S.D.=141.47 

Average=4083.77 

S.D.=147.71 

ABC 
Average=2618.37 

S.D.=117.12 

Average=3654.03 

S.D.=155.36 

Average=5103.70 

S.D.=236.95 

Figures 2-4 exhibit results for the improved algorithms and the proposed 
method. Based on the preliminary results, in general, increasing the 
warehouse size, the performance of GA for allocation of pieces increases. 
The lowest total traveling distance is obtained in about 35~45 generations 
(that is, around 504~644 iterations). No improvement evidence is observed 
from it up to the last adopted generation 299. The consumed CPU time is 
about 36h. 

On the other hand, the use of LBS seems to be the most appropriate for 
small warehouse size. Reduced total traveling distance may be obtained by 
incrementing the number of iterations. The consumed CPU time up to 4200 
iterations (or 299 generations) is 33h50min. 

In comparison to others methods (2-opt and 3-opt), the performance is 
between LBS and GA, with CPU time between 27h30min and 31h24min. 

About the proposed method, comparing results of the proposed method 
we note, in general, reduced traveling distance (which means best allocations 
of pieces to drawers) may be obtained in a short period of CPU time (in 
average, about 1h10min is necessary to reach 100 iterations). 

For some more details, we present Table 2, showing the evolution             
of total traveling distance, in units of distance, as the number of iterations 
increases. 

For 10 shelves, the 1718u.d. of traveling distance is reached in about 5 
generations (or 5 iterations of multiple of 14 plus 14), which is equivalent to 

about 80th iteration (with ;8.0=α∗  ;7.0=β∗  ;1.0=γ∗  .)4.0=δ∗  The 
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consumed CPU time is about 50min. While in LBS, this value is reached in 
about 160 generations (or 160 × 14 iterations plus 14) with 18.27h of CPU 
time. 

For 20 shelves, the best traveling distance is 2359u.d., reached in          

95th iteration, weighing of ;0.1=α∗  ;2.0=β∗  ;1.0=γ∗  3.0=δ∗  (CPU ≈ 

66.5min). The best result may be reached only in about ( )1414270 +×  

iterations with a CPU time of 29h. 

Lastly, for 30 shelves, the best value of traveling distance is 2860u.d. 

obtained in 72th iteration weighing ;1.0=α∗  ;2.0=β∗  ;9.0=γ∗  4.0=δ∗  

(CPU ≈ 50.4min), while in GA, the only best total traveling distance is 
3057u.d. (reached in about 35 generations with CPU ≈ 4.21h). After this, no 
improve evidence is observed. 

Based on the analysis, while the warehouse size increases, the 
performance of the proposed method also increases. We notice also larger 
warehouses tend to retain also long trips. 
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Figure 2. Total traveling distance, in units of distance. 
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Figure 3. Total traveling distance, in units of distance. 
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Figure 4. Total traveling distance, in units of distance. 

There is a notable evidence of the proposed method outperforms in 
comparison to other methods. Observe although the total traveling distance 
increases for larger warehouse size, the performance of the proposed method 
is higher since lowest result is obtained in few iterations. 

It is interesting to note that the CPU time is not affected by the 
warehouse size. 

Table 2. Evolution of the total traveling distance 
Number of shelves 

Number of iterations 
10 20 30 

1 1866 2470 3665 

10 1810 2470 3194 

20 1742 2391 3182 

30 1742 2391 3182 

40 1730 2391 3046 

50 1730 2391 3032 

60 1730 2371 3032 

70 1730 2371 3032 

80 1718 2371 2860 

90 1718 2371 2860 

100 1718 2359 2860 

Best weights 

α∗ = 0.80; 
β∗ = 0.70; 
γ∗ = 0.10; 
δ∗ = 0.40 

α∗ = 1.00; 
β∗ = 0.20; 
γ∗ = 0.10; 
δ∗ = 0.30 

α∗ = 0.10; 
β∗ = 0.20; 
γ∗ = 0.90; 
δ∗ = 0.40 
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4.3. Total time for order picking 

This subsection consists in evaluating the relation between the perception 

of congestion ∗n  and total order picking for each storage item assignment. 

The simulation of the order picking time requires: picking time = 0.1min 
or 6s, see Lin and Lu [3]; sm6.0=speedv  (Roodbergen and De Koster [8]), 

omitting the influence of weight on the velocity and the congestion in cross 
aisles; distance between two neighboring aisles = 2.5m (Roodbergen and De 
Koster [8]), that is, each unit of distance adopted in this research will be 
0.8m. Other incognitos are obtained as simulation progresses. 

Figures 5 to 10 show that it is highly suggested to work with MRA and 
CRA in cases of large picklist because, in general, the total traveling distance 
and the picking time are lower than ABC. Actually, it was expected (and now 
confirmed) higher picking time in strategy ABC of allocation, since higher 
concentration of pickers in some areas will also promote more waiting during 
the pickings. On the other side, the performances of ABC, MRA and CRA 
are quite similar for a small picklist. 

Comparing iterative improvement methods and the proposed method, 
there is a clear evidence that increasing the warehouse size, there is no effect 
of congestion (this result actually was expected) explaining the reason that 
picking time is quite similar among themselves, especially for small picking 
list. It is because the probability of pickers in the same subaisle is lower. On 
the other hand, smaller warehouse provides lower total traveling distance, but 
increment in the picking time due to congestion. 

It is noticed a trade-off behavior. That is, rarely is suggested to reach 
lowest total traveling distance because it promotes higher total picking time. 
However, in general, when the number of picklists is kept constant (P = 90), 
the lowest total traveling distance also will result in the lowest total picking 
time. 

In general, keeping the size of warehouse, if the variety of demanded 
products increases, then the picking time increases too. However, when the 
warehouse size is increased, the performance in picking time improves. It is 
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preferable to work with larger warehouses and larger variety of demanded 
products than smaller warehouses and lower variety of demanded parts. 

Especially, Figures 8-10 demonstrate that if the goal is to minimize          
the total traveling distance, then it is suggested to employ only one cross 
aisle (that is, only two blocks). It is useful to explain why Roodbergen and          
De Koster [8] considered only one cross aisle in the analysis, that under 
circumstances, it was simply defined. 
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For smaller warehouses, the analyzed heuristics (LBS, GA, 2-opt and        
3-opt) demonstrate to be efficient (short CPU time, reduced total traveling 
distance and reduced total picking time). 

On the other hand, the proposed procedure permits to obtain the total 
traveling distance reduced for large warehouses, and especially, in short CPU 
time. The total picking time is lower in a smaller warehouse. Rarely, the total 
traveling distance is desired to be lowest because we notice the efficiency in 
total picking time worse in comparison with other iterative improvement 

methods. Due to this situation, we need to evaluate in which ∗n  (perception 
of congestion) permits to reduce the total picking time through minimizing 
the congestion, as shown in Figures 11 and 12 with 1 cross aisle and P = 90. 
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Figure 11. Influence of congestion on the picking time. 
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Figure 12. Influence of congestion on the picking time. 

Observing Figures 11 and 12, those results were expected, since higher 
∗n  (which means higher number of pickers is permitted to pass through the 

subaisle at the same time) will yield lower total picking time because of short 
waiting. 
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The reason we simulated up to 7, the perception of congestion was the 
simplicity of simulation. However, it is necessary to remind effectively that 

increasing the perception of congestion ∗n  will also demand larger subaisle, 
which will increment the zigzag travelings (as reported in Caron et al. [2]). 
Based on the results for the medium and large warehouses, the adopted value 
for the perception of congestion larger than 3 will already provide, relatively 
speaking, benefits in terms of reduced picking time. 

Therefore, by using the proposed method for larger warehouse size, it is 
possible to reduce the total picking time, the total traveling distance and CPU 

time by adopting higher .∗n  

5. Conclusions and Future Works 

Although the use of iterative improvement methods (LBS, GA, 2-opt and 
3-opt) may provide reduced total traveling distance as simulation advances, 
the results are worse in comparison to the proposed method, except for 
smaller warehouse. The proposed method shows to be efficient in allocating 
pieces in drawers in short period of time (1h10min) in comparison to others, 
which demanded from around 27h30min up to 36h. It is important to note 
that the consumed CPU time is not affected by the warehouse size. 

On the other hand, for large size warehouse, the proposed method 
permitted to reach lower total traveling distance in shorter CPU time. Due to 
trade-off behavior, rarely it is desired to minimize the total traveling distance 
since it implies in increasing of total picking time. Fortunately, the effects of 
the congestion may be minimized by selecting larger value for the perception 

of the congestion .∗n  

Surprisingly, if the performance parameter is the total picking time, then 
it is preferable to work with larger warehouse and variety of products than 
smaller warehouse and variety of products. 

The best result in total traveling distance for any size of the warehouse is 
reached by employing one cross aisle. Although the results indicated great 
results, it is still not conclusive because other simulation circumstances need 
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to be evaluated. For instance, test other number of sections per shelf, instead 
of 20; test other picking cart capacity and so forth. 

For future works, consider other layouts shape of shelves. For instance, 
analyze shelves horizontally positioned, instead of vertically positioned        
as adopted here. Extend the number of products in the picklist and also, 
evaluate the congestion of picking carts in the cross aisles. 
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Appendix 1 

For each drawer of ,, jiS  we propose the global index (A1.1): 
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 (A1.1) 

where idxIndex  corresponds to the standardization value. 

The number of indexes depends on how variables that possibly affect   
the total traveling distance interact to each other. Once the variables are 
analyzed, it is converted to an index. By using (A1.1), we will notice that the 
process of allocation of pieces occurs, the value of each used index will 
change, which means the impact on the total traveling distance may or not  
be significant. Although still unknown since it depends on the status of 
allocation, each index will have different degree of importance ϕ. Therefore 
we adapted it to (A1.2). Note the calculation occurs F ′  times, since the 
expression is calculated one time per :f ′  

 ,_
1

,, ∑
∞=

=
′ ⋅η⋅ϕ=

IDX

idx
idxidxidxfjSi IndexIndexGlobal  (A1.2) 

where  

idxϕ  corresponds to the disturbance factor (weight) for each index, 

varying from 0 up to 1; per iteration, we assume idxϕ  equal for all ,F ′  

independent of the status of allocation, but may be different among “idx”; 

idxη  corresponds to the probability of occurrence of demand for product 

p. Note it is only for index 2, because it is the only one which handle with the 
demand. To simulate it, we consider a probability η%. 

fp ′∈  {particularly important for index 2}. 

For illustrating, we raise some variables and how the interactions are 
converted to indexes. 
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A1.1. Index 1 - Relation of products of same f ′  

This first index refers to the relation of proportionality between products 
(allocated and unallocated) of the same .f ′  

Assume two families, 1f ′  and .2f ′  The first is composed of ,51 =′fV  

that is, 5 products, 2 of them are already allocated in their best position. And 
the second is composed of 72 =′fV  products, 3 of them are already 

allocated. Choosing an empty drawer of jiS ,  closest to the ∗x  and ,∗y  a 

simple calculation permits to decide which one to select. For ,1f ′  if the total 

number of products is 5, and 3 of them are unallocated (so unallocated away 
of best position), we have .6.053 =  And for the second, .57.074 =  We 

conclude one of 3 remained unallocated products of a total of 5 of 1f ′  is 

preferable to be allocated first in comparison to .2f ′  

The general expression for the conversion to an index is (A1.3): 

f

ff
jSi V

VV
Index

′

∗
′′ −

=,1_  varying from 0 to 1, where ,ff VV ′
∗
′ ≤  (A1.3) 

where fV ′  represents the total number of products f ′  and ∗
′fV  set of already 

allocated products which belongs to .f ′  

A1.2. Index 2 - Relation between the demand and the number of levels 

The second index is about the structure of each product that belongs        
to the same family. Since each piece type is allocated in different drawer, 
increasing the number of levels of each family will also require higher 
number of drawers. So, if there are insufficient drawers in the section, then 
extra traveling distance will be necessary. However, the traveling distance is 
also affected by the demand. The conclusion is a product with several levels 
and high demand which tends to require long trips. We may construct an 
index (A1.4), in which in one side, a family with reduced number of levels 
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and low demand tends to obtain a value closer to 1, and else 0: 
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A1.3. Index 3 - Relation between the chosen section and the ideal 
position 

This index aims to evaluate the distance between the selected section 
,, jiS  where a piece of f ′  will be supposed allocated, in relation to the 

closest ideal position established in Step 3. If the position of section is the 
closest position, then the rank tends to be closer to 1, and 0 else. Note that 
highest distance is just the distance between two subsequent modules of the 
same family. We propose (A1.5): 
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where 

∗
′fx  and ∗

′fy  represent the closest ideal position of a product belonging 

to ;f ′  

jSix ,  and jSiy ,  represent the Cartesian coordinates of the chosen ., jiS  

The denominator measures the distance between two subsequent 
modules of .f ′  

A1.4. Index 4 - Relation between the number of pieces and the number 
of drawers 

This index compares the difference between the number of pieces of a 
product belonging to f ′  and the number of remained drawers in the chosen 

section. When the number of pieces is higher than the number of drawers, it 
means that extra traveling will be required, so the correspondent family f ′  

will receive a lower score, and vice versa: 
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 (A1.6) 

The numerator represents the remained drawers in jiS ,  after the 

supposed allocation of a product of ;f ′  the upper denominator means that 

the average number of drawers in each section and the lower denominator 
represents the maximum trip in horizontal and vertical directions. 

Finally, the global index for each f ′  becomes (A1.7): 

jSijSijSijSi IndexIndexIndexIndexGlobal ,,,, 3_2_1__ ∗∗∗∗ γ+ηβ+α=  

.4_ , jSiIndex∗δ+  (A1.7) 

Appendix 2 

Proof 1. The constraint (4) also may be written when it is informed the 
number of blocks B, number sections Sc, number of shelves Sw as input:  

We know ,1+= B
Swcv  then from the expression (4), 

.11 hB
SwhB

SwX −++⋅⎟
⎠
⎞⎜

⎝
⎛ +=  

As ,2=h  which means both sides of shelf, then 
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.12 ++= B
Sw

B
SwX  

Since there are two side vertical aisles, ,2=∗cv  expression becomes 
(A2.1): 

 .12 −++= ∗
B

SwcvB
SwX  (A2.1) 

Proof 2. From the expression (5), v may be expressed in terms of Sc 

since we know that .2
Scv =  So, rewriting (5), Y becomes: 

( ) ,2121 ScBScBY −++⋅+=  

1212 +++⋅⎟
⎠
⎞⎜

⎝
⎛=++⋅⎟

⎠
⎞⎜

⎝
⎛= ∗ BchBScBBScY  

or (A2.2): 

 2,12 =+++⋅⎟
⎠
⎞⎜

⎝
⎛= ∗∗ chBchBScY  (A2.2) 

because there are two side horizontal aisles. 

Appendix 3 

In the constraints, we have already shown expressions (4) and (5)          
to define the size of the warehouse. However, note that the definition is 
extremely subjective. We need to use consistent information to develop it. 
From (9), that is, each drawer must pursue exactly one type of piece: 

..
1

,∑∑ ∑
=

=
i j

F

f
ffjSi VKDr  

Once all f, that is, F, are determined, the right side of the sentence will be 
defined. From (33), the right side becomes (A3.1): 
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VKFCKVK
F

f

K
k kf

F

f
ff

f

f f ⋅⋅≈⎟
⎠
⎞

⎜
⎝
⎛⋅≈⋅ ∑ ∏∑

=

−

=
= 1

1
1

1
 

.2.2.
12maxminmaxmin

maxmin −⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎠
⎞

⎜
⎝
⎛ +

≈

KK
CCKKF  (A3.1) 

Note that in general, maxK  and minK  may vary independently in 

relation to maxC  and .minC  

When the number of components per product of each f is limited in ,fC  

where 0>fC  and ,maxCC f ≤  the independency now is undone. We may 

write: 

.
12

2

12

maxmin

12maxmin

maxmin
maxmin

−⎟
⎠
⎞

⎜
⎝
⎛ +

−⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
+

→⎟
⎠
⎞

⎜
⎝
⎛ +

KK

f
KK

KK
CCC  

Note that minK  and maxK  are now varying according to .fC  For 

illustrating, it is possible to assume the value of minK  as constant. In this 

case, only maxK  will depend on fC  or vice versa. Note also that, if fC  

receives a higher value, then maxK  will receive a lower or vice versa to keep 

the above expression as constant. Because of several f, we have (A3.2): 

 .
12

12

maxmin

maxmin −⎟
⎠
⎞

⎜
⎝
⎛ +

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
+

KK

KK
C  (A3.2) 

Due to the paradoxical issue, the intervals for these two averages C         

and K  may be defined as opposite interval { }maxmin CCC ……  and 

{ },minmax KKK ……  respectively. Note that C  is between maxC  and 

.minC  It is because if minC  and maxC  are used to estimate ,C  when 
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,minmax CC ≥  then the lowest value that C  will assume will be minC  and 

the highest, .maxC  The same idea may be applied to .K  

The relation R between these two intervals may be expressed as: 

maxmin KCR +=    or   .maxmin CKR +=  

Merging both expressions, 

.2 minmaxminmax KKCCR +++=  

Therefore, in general, .RCK =+  

However, from (6) and (8), where the values of minK  and minC  are 

equal to one, we conclude ,maxmax KC =  which fails to the constraint (8). 

We need to assure maxmax CK >  by adding ε (where )0>ε  to make the 

inequality a true sentence. 

Rewriting: 

maxmin KCR +=    or   .maxmin ε++= CKR  

Note only maxC  needs to be added. We then have: 

,2 minmaxminmax ε++++= KKCCR  

.RCK =+ ∗  

The expression (A3.2) becomes: 

.
12

12

maxmin

maxmin −⎟
⎠
⎞

⎜
⎝
⎛ +

∗

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
+

KK

KK
C  

However, maxK  is unknown being dependent on .maxC  Therefore, we 

need to write above sentence in function of R: 

.
1

1−−

∗

∗
∗

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−−

CR

CR

C  
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Finally, from the initial expression (A3.1), we obtain (A3.3): 

( )
( )

.
1

.
1

1

∑
=

−−

∗

∗
∗

∗

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−−
⋅−≈⋅⋅≈⋅

F

f

CR

ff
CR

CCRFVKFVK  (A3.3) 

From the left side of the expression (9): 

.
1 1

,,∑∑ ∑ ∑
= =

=
i j

Sw

sw

Sc

sc
swscjSi DrDr  

In average, ,constant, qDr swsc ==  sc∀  and .sw∀  Therefore, 

...,∑∑ ≈
i j

jSi qScSwDr  

This expression pursues 3 degrees of freedom, since by keeping these 3 
incognitos, the remaining one will be automatically determined. So, keeping 
following incognito as constant (F, the average number of drawers per 
section ( )q  and the size of the shelf (Sc) as input information), Sw is 

automatically determined or vice versa. 

Although, usually used as input, the question is which Sw we need to 
keep constant. The answer depends on ,q  if we intend to keep other 

incognitos as constants F and Sc. It is important to note that Sw and q         

are inversely proportional. Assuming a priori pickers may reach a limited 
number of drawers, we say up to ,Q′  we may write ,, swscDr  ∀sc and ∀sw 

as: 

[ ]., QQDr oswsc ′= …  

The mean drawers for the warehouse may be obtained by: 

.2, ⎟
⎠
⎞

⎜
⎝
⎛ ′+

==
QQqDr o

swsc  
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Since ,0, >jSiDr  see constraint (10), and assuming that jiS ,  must 

pursue at least one drawer, we have .1=oQ  Therefore, the previous 

equation becomes (A3.4): 

 ( ).2
1

,∑∑ ′+⋅⋅≈
i j

jSi
QScSwDr  (A3.4) 

Appendix 4 

Proposition. If the level of stock satisfies the deterministic demand, then 
it satisfies also the stochastic demand. 

To prove the cited proposition, let us start the premise that if the demand 
is known (that is, deterministic), we know also the percentage. We denote 

21, ΦΦ  and 3Φ  as percentages of demanded f of batched orders, where 1Φ  

is a highly demanded set of f and in the opposite side set, III ΦΦΦ ,;3  and 

IIIΦ  represent the percentages of f in stock which belong, respectively, to 

,1Φ  2Φ  and ,3Φ  where the value of Φ is limited in .10 ≤Φ∀≤  Since 

there are fV  products in each f, we may represent the required level of stock 

for each component of fV  as (A4.1): 

⎪
⎪
⎩

⎪⎪
⎨

⎧
⋅Φ

++
⋅Φ⋅Φ

++
⋅Φ ""

"
""

"
" ;1

11

;1

11

max

f

IIII

f

II

V

FF

V

FF  

⎪
⎪
⎭

⎪⎪
⎬

⎫
⋅Φ

++
⋅Φ "

"

f

IIIIII

V

FF
1

11

 

..;.;.max
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ΦΦΦ
⋅ ∑ ∑∑

∞ ∞∞

F
V

F
V

F
V

III

f

II

f

I

f  (A4.1) 
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Considering limited batched orders, we have 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ΦΦΦ∑ ∑∑
Λ ΛΛ1 32

.;.;.max F
V

F
V

F
V

III

f

II

f

I

f  

.;;max 321

⎭
⎬
⎫

⎩
⎨
⎧

⋅Φ
Λ⋅

⋅Φ
Λ⋅

⋅Φ
Λ⋅

⋅ F
V

F
V

F
V

III

f

II

f

I

f  

But :PF ⋅=Λ  

.;;max 321

⎭
⎬
⎫

⎩
⎨
⎧

⋅Φ
⋅Φ⋅

⋅Φ
⋅Φ⋅

⋅Φ
⋅Φ⋅

F
PV

F
PV

F
PV

III

f

II

f

I

f  

Since ∑ =Φ ,1  1321 =Φ+Φ+Φ  and .1=Φ+Φ+Φ IIIIII  

Assuming 

,,,, 321321 IIIIII Φ=ΦΦ=ΦΦ=ΦΦ>Φ>Φ  

we may conclude 

F
PV

F
PV

F
PV

III

f

II

f

I

f
⋅Φ
⋅Φ⋅

>
⋅Φ
⋅Φ⋅

>
⋅Φ
⋅Φ⋅ 321  or simply .321

IIIIII Φ
Φ

>
Φ
Φ>

Φ
Φ  

Finally, 

.;;max 1321
F

PV
F

PV
F

PV
F

PV

I

f

III

f

II

f

I

f
⋅Φ
⋅Φ⋅

=
⎭
⎬
⎫

⎩
⎨
⎧

⋅Φ
⋅Φ⋅

⋅Φ
⋅Φ⋅

⋅Φ
⋅Φ⋅

 (A4.2) 

In stochastic demand, from the expression (A4.1), we obtain: 

,max
⎭
⎬
⎫

⎩
⎨
⎧

++ """ F
V

F
V ff  which is simplified to .∑

∞

F
V f  

Limiting ,1 PP =⋅=Λ  so: 

 .∑ ∑
Λ ⋅

== F
PV

F
V

F
V f

P
ff  (A4.3) 
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Comparing (A4.2) and (A4.3), when ,1 IΦ>Φ  we conclude: 

.1
F

PV
F

PV f

I

f ⋅
>

⋅Φ
⋅Φ⋅

 

That is, if the level of stock for highly demanded component is satisfied, 
then the stochastic demanded component will be satisfied too. 

So the level of stock for each component, ,,, hjiSt  is defined as: 

.,,
1

hji
I

f StF
PV
=

⋅Φ
⋅Φ⋅

 

Note that reducing P, the required stock is lower, since both are directly 
proportional. It means that if the level of stock is satisfied for P, this same 
level will satisfy also a reduced value of P. This is particularly important        
for other simulation conditions when different values of P (30 and 60, both 
lower than 90) were tested. Actually, we adopt (A4.4): 

 .max ,,
1

hji
I

f StF
PV

=
⎭
⎬
⎫

⎩
⎨
⎧

⋅Φ
⋅Φ⋅

 (A4.4) 


