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Abstract 

This paper deals with the study of unsteady stagnation-point boundary 
layer flow and heat transfer on a shrinking surface induced by a 
shrinking sheet in the presence of radiation effect. The governing 
nonlinear partial differential equations are reduced to a system                      
of nonlinear ordinary differential equations using a similarity 
transformation. The transformed equations are solved numerically 
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using a “bvp4c” function in MATLAB. Dual solutions are found for a 
certain range of the unsteadiness parameters. A stability analysis has 
been performed to determine which solution is stable and physically 
realizable. The effects of the Prandtl number, unsteadiness, radiation 
and shrinking parameters on the skin friction coefficient and the local 
Nusselt number, as well as the velocity and temperature profiles are 
presented and discussed. 

1. Introduction 

Recently, the problem of boundary layer flow over a shrinking surface 
has become significantly important due to its wide applications in industries. 
As opposed to stretching sheet (where the velocity of the boundary is moving 
further from the origin), this new type of shrinking sheet flow is essentially a 
backward flow as discussed by Goldstein [1]. Miklavcic and Wang [2] were 
the first to investigate the flow induced by a shrinking sheet. On the other 
hand, Hiemenz [3] was the first to investigate the two-dimensional stagnation 
flow against a stationary semi-infinite wall, which then extended by Homann 
[4] by considering an axisymmetric case. Later, the problem of stagnation-
point flow over a shrinking sheet/surface has been performed and extended 
by many researchers (see [5-7]). 

All studies mentioned above consider the steady state problem, where the 
properties such as velocity and pressure do not depend upon time. However 
in certain aspects, flow becomes time dependent and thus, it is necessary to 
consider the unsteady flow condition. The studies of unsteady effects of 
boundary layer flow have been done by Riley [8]. Surma Devi et al. [9] 
studied the unsteady three-dimensional boundary layer flow over a stretching 
surface. Bhattacharyya [10] studied the unsteady stagnation-point flow over a 
shrinking sheet, while Fang et al. [11] investigated the unsteady viscous flow 
over a continuously shrinking surface with mass suction. 

The introduction of radiation effects on the boundary layer flow and heat 
transfer opens a new research opportunity with many industrial and 
technological applications. Bhattacharyya [12] studied the effects of radiation 
and heat source/sink on the unsteady boundary layer flow and heat transfer 
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past a shrinking sheet with suction/injection. Midya [13] investigated the 
effect of radiation on heat transfer of an electrically conducting fluid flow 
over a linearly shrinking surface subject to heat sink and magnetic field 
applied normal to the plane of the flow, while Ali et al. [14] studied the 
problem of unsteady stagnation-point flow and heat transfer induced by a 
shrinking sheet in the presence of radiation effect. Recently, Sheikholeslami 
et al. [15] investigated the effect of thermal radiation on 
magnetohydrodynamics nanofluid flow and heat transfer by means of two 
phase model. 

It is worth mentioning that the present study extends the problem done       
in [14] by analyzing the stability of the dual solutions obtained. The 
transformed ordinary differential equations are solved numerically using a 
“bvp4c” function from MATLAB. To the best of our knowledge, the stability 
analysis has never been considered for the present problem, therefore the 
reported results are new. 

2. Mathematical Formulation 

We consider the unsteady stagnation-point flow past a shrinking sheet 
which starts impulsively at time .0=t  Following [5], the unsteady potential 

stagnation-point flow at infinity is assumed to be ( ) ( ) 11, −κ−= taxxtue  

and ( ) ( ) ,1, 1−κ−= tazxtwe  where att =  is the non-dimensional time, a is 

the strength of the stagnation flow and κ is a parameter associated with the 
flow unsteadiness. For the stretching surface, the velocity is assumed                  

to be ( ) ( ) ( ) 11, −κ−+= tcxbxtuw  and ( ) ,0, =xtww  where ( )0>b  is the 
stretching rate (shrinking if )0<b  and –c is the location of the stretching 
origin. Under these assumptions, the unsteady boundary layer equations can 
be expressed as 
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subject to the initial and boundary conditions 

∞====< TTwvut ,0:0  for any x, y, z, 

( ) ( )( ) ( ) ( )xTTtyvwtcxbxtuut www ===κ++==≥ − ,,0,1,:0 1  at ,0=z  

( ) ( ) ( ) ,0,0,1, 1 ===κ−== − ytvvtaxxtuu ee  

( ) ( ) ∞
− →κ−−== TTtazztww e ,1, 1  as ,∞→z  (6) 

where u, v and w are the velocity components along the x-, y- and z-axes, 
respectively, ρ is the fluid density, p is the pressure, ν is the kinematic 
viscosity, T is the non-dimensional temperature, ( )xTw  is the constant 

surface temperature, ∞T  is the ambient temperature and pc  is the specific 

heat of the fluid at a constant pressure. Using the Rosseland approximation 
for radiation (see Raptis et al. [16]), the radiative heat flux rq  is defined as 
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 (7) 

where ∗σ  and ∗k  are the Stefan-Boltzmann constant and the mean 
absorption coefficient, respectively. Following Bataller [17], we assume that 

the temperature differences within the flow such that the term 4T  can be 

expressed as a linear function of temperature. Expanding 4T  in a Taylor 

series about ∞T  and neglecting higher order terms, we have 

.34~ 434
∞∞ −= TTTT  (8) 
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Using (7) and (8), (5) becomes 
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where pck ρ=β  is the fluid thermal diffusivity. This equation shows that 

the effect of radiation is to enhance the thermal diffusivity. Let =RN  

∗
∞

∗σ kkT 316 3  be the radiation parameter, which reduces (9) to 
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Introducing the following similarity transformations (see [5] and [9]): 

( ) ( ) ( )( ) ( ) ( ),1,0,1 211 ηκ−ν−==η+η′κ−= −− ftawvbcgfaxtu  

( ) ( ) ( ) ( ) .1, 21 ztaTTTT w
−

∞∞ κ−ν=η−−=ηθ  (11) 

Substituting (11) into (2), (3) and (10) results in the following ordinary 
differential equations: 

( ) ,01212 =−′′η+′−+′−′′+′′′ ffMffff  (12) 

( ) ,02 =′η+−′−′+′′ ggMgfgfg  (13) 

,2Pr
1 θ′η−θ′+θ′′⎟

⎠
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⎝
⎛ + MfNR  (14) 

and the boundary conditions (6) become 

( ) ( ) ( ) ( ) ,10,10,0,00 =θ=ε=′= gff  

( ) ( ) ( ) 0,0,1 =ηθ=η=η′ gf  as ,∞→η  (15) 

where aM λ=  is the unsteadiness parameter, αν=Pr  is the Prandtl 

number and ab=ε  is the shrinking ( )0<ε  parameter. Meanwhile, the 

pressure p can be written as 
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where 0p  is the stagnation pressure. It is worth mentioning that the thermal 

radiation’s effect is ignored by setting 0=RN  in equation (14). 

The physical quantities of interest are the skin friction coefficient fC  

and the local Nusselt number ,xNu  which are given by 

( ).,2
∞−=ρτ= TTkxqNuuC wwxewf  (17) 

The skin friction wτ  and the heat flux wq  are expressed as 
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where μ and k are the dynamic viscosity and thermal conductivity, 
respectively. Using (11), (17) and (18), we obtain 

( ) ( ) ( ) ( ),0Re,00Re 2121 θ′−=′+′′= −
xxefx NugubcfC  (19) 

where ν= xuwxRe  is the local Reynolds number based on the shrinking 

sheet velocity .wu  

3. Stability Analysis 

In the Introduction section earlier, we have mentioned the existence of 
dual solutions. In order to determine which of these solutions are stable and 
physically realizable in the real world applications, a stability analysis needs 
to be performed. This analysis has been done by Weidman et al. [18], Harris 
et al. [19], Weidman and Sprague [20], Roşca and Pop [21] and recently by 
Nazar et al. [22], Ishak [23] and Hafidzuddin et al. [24], among others. 

Following [18], we begin by introducing a new dimensionless time 
variable τ, which is associated with an initial value problem and consistent 
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with the question of which solution (branch) will be obtained in practice 
(physically realizable). With the introduction of τ and (11), we have 

( ) ( ) ( )( ) ( ) ( ),,1,0,,,1 211 τηκ−ν−=τη+τη′κ−= −− ftawvbcgfaxtu  

( ) ( ) ( ) ( ) ( ) .1,1,, 121 −−
∞∞ κ−=τκ−ν=η−−=τηθ ttaztaTTTT w  (20) 

Substituting (20) into (2), (3) and (10), we obtain 
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subject to the boundary conditions 

( ) ( ) ( ) ( ) ,1,0,1,0,,0,0,0 =τθ=τε=τ
η∂
∂=τ gff  

( ) ( ) ( ) 0,,0,,1, =τηθ=τη=τη
η∂
∂ gf  as .∞→η  (24) 

In order to determine the stability of the solution ( ) ( )η=η= 00 , ggff  

and ( )ηθ=θ 0  satisfying the boundary value problem (12)-(15), we write 

(see [18] and [21]) 

( ) ( ) ( ) ( ) ( ) ( ),,,,,, 00 τη+η=τητη+η=τη ξτ−ξτ− GeggFeff  

( ) ( ) ( ),,, 0 τη+ηθ=τηθ ξτ− Te  (25) 

where ξ  is an unknown eigenvalue parameter, and ( ),, τηF  ( )τη,G  and 

( )τη,T  are small relative to ( ),0 ηf  ( )η0g  and ( ),0 ηθ  respectively. 
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Solutions of the eigenvalue problem (21)-(24) give an infinite set of 
eigenvalues ;321 …ξ<ξ<ξ  if the smallest eigenvalue 1ξ  is positive, there 

is an initial decay which indicates that the flow is stable; however, if 1ξ  is 

negative, then there is an initial growth of disturbances which indicates that 
the flow is unstable (see [20]). 

Substituting (25) into (21)-(23) yields the following linearized problem: 
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subject to the following boundary conditions: 

( ) ( ) ( ) ( ) ,0,0,0,0,,0,0,0 00 =τ=τε=τ
η∂

∂=τ TGFF  

( ) ( ) ( ) 0,,0,,0, 00 →τη→τη→τη
η∂

∂ TGF  as .∞→η  (29) 

Following Weidman et al. [18], we investigate the stability of the steady 
flow ( ) ( )ηη 00 , gf  and ( )ηθ0  by setting .0=τ  Hence, ( ),0 η= FF  =G  

( )η0G  and ( )η= 0TT  in (26)-(28) identify the initial growth or decay of the 

solution (25). To test our numerical procedure, we have to solve the linear 
eigenvalue problem 

( ) ( ) ,022 000000000 =′′η+′−′ξ−′−′′−′′+′′′ FFMFfFfFfF  (30) 

( ) ( ) ,000000000000 =′η+−′−ξ−′−′−′+′′ GGMFgGfgFGfG  (31) 
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along with the boundary conditions 

( ) ( ) ( ) ( ) ,00,00,00,00 0000 ===′= TGFF  

( ) ( ) ( ) 0,0,0 000 →η→η=η′ TGF  as .∞→η  (33) 

Following [19], we determine the range of possible eigenvalues by 
relaxing a boundary condition on ( ) ( )ηη 00 , GF  or ( ).0 ηT  For the present 

problem, we relax the condition ( ) 00 →η′F  and replace it with a new 

condition ( ) .100 =′′F  

4. Results and Discussion 

The nonlinear ordinary differential equations (12)-(14) along with the 
boundary conditions (15) were solved numerically using the “bvp4c” 
function from MATLAB (see Kierzenka and Shampine [25]) for some values 
of the governing parameters, which are the unsteadiness parameter M, 
shrinking parameter ε, Prandtl number Pr and radiation parameter .RN  The 

dual (upper and lower branches) solutions are obtained by setting different 
initial guesses for the missing values of ( ),0f ′′  ( )0g′  and ( ).0θ′−  The 

guesses must satisfy the boundary conditions (15) and keep the behavior of 
the solution. To verify the accuracy of the results obtained, comparisons for 
the numerical values of ( ) ( )0,0 gf ′′′  and ( )0θ′−  when ,0=A  7.0Pr =  and 

are 0=RN  made with [14], as can be seen in Table 1. The comparisons are 

found to be in excellent agreement, hence we are confident that the present 
numerical method is accurate. 
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Table 1. Comparison of the values for ( ),0f ′′  ( )0g′  and ( )0θ′−  with [14] 

when 7.0Pr,0 ==A  and 0=RN  

 Ali et al. [14] Present results 

ε ( )0f ′′  ( )0g′  ( )0θ′−  ( )0f ′′  ( )0g′  ( )0θ′−  

–0.25 1.40224 –0.66857 0.44340 1.40224 –0.66857 0.44340 

–0.5 1.49567 –0.50145 0.38439 1.49567 –0.50145 0.38439 

–0.75 1.48930 –0.29376 0.31547 1.48930 –0.29376 0.31547 

–1 1.32882 0 0.22833 1.32882 0 0.22833 

The variations of the reduced skin friction coefficient ( )0f ′′  and the 

reduced local Nusselt number ( )0θ′−  with the unsteadiness parameter M for 

some values of shrinking parameter ε and radiation parameter RN  are 

presented in Figures 1 and 2, respectively. The dual solutions exist for a 
certain range of M, which is when .0<M  It can be seen that there is no 
solution for ,cMM <  where cM  represents the critical value of M. It is 

worth mentioning here that beyond these critical points, the solutions based 
upon the boundary layer approximations are not possible due to the 
separation of the boundary layer from the surface. 

Figure 1 displays the variations of ( )0f ′′  for some values of the 

shrinking parameter ε when 3=RN  and .7.0Pr =  It can be observed that 

the values of ( )0f ′′  increase with the decrease of .ε  We also notice that 

the critical values of cM  increase with the decrease of .ε  Hence, the 

shrinking parameter ε widen the range of unsteadiness parameter M for 
which solutions exist. Meanwhile, Figure 2 shows the variations of ( )0θ′−  

for some values of radiation parameter RN  when 5.0−=ε  and .7.0Pr =  It 

is shown that the values of ( )0θ′−  increase with the decrease of M. We 

notice that the increase of RN  reduces the heat transfer rate at the surface. 
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Figure 1. Variations of ( )0f ′′  with M for different values of ε when 3=RN  

and .7.0Pr =  
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Figure 2. Variation of ( )0θ′−  with M for different values of RN  when 

5.0−=ε  and .7.0Pr =  
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Velocity profiles ( )η′f  and ( )ηg  for some values of the shrinking 

parameter ε when 7.0Pr,7.0 =−=M  and 3=RN  are given in Figures 3 

and 4, respectively. The profiles of ( )η′f  are seen to decrease, while ( )ηg  is 

seen to increase with the increase of .ε  Here, the oscillatory behavior is 

observed on the velocity profile ( )ηg  with the large values of .ε  Figure 5 

illustrates the temperature profiles ( )ηθ  for different values of the radiation 

parameter RN  and the Prandtl number Pr when 5.0−=ε  and .7.0−=M  

The profiles, as well as the thermal boundary layer thicknesses are seen to 
decrease with the decrease of RN  and with the increase of Pr. Physically, as 

Pr increases, the thermal fluid conductivity decreases, which in turn reduces 
conduction, causing the thermal boundary layer thickness to become smaller. 
It can be observed from Figures 3-5 that the boundary layer thickness for the 
lower branch is always larger than the upper branch. All velocity and 
temperature profiles presented in this study satisfy the far field boundary 
conditions (15) asymptotically, hence supporting the numerical results 
obtained. 

A stability analysis was performed by solving an unknown eigenvalue 1ξ  

on equations (30)-(32), along with the boundary conditions (33) to determine 
which of the branch is stable. The computation is done by using the same 
method, which is “bvp4c” function. Table 2 presents the smallest eigenvalues 
for 1ξ  some values of ε and M. From the table, it is observed that the upper 

branch solutions have positive eigenvalues ,1ξ  while the lower branch 

solutions have negative eigenvalues ,1ξ  and thus we conclude that the first 

(upper branch) solution is stable while the second (lower branch) solution is 
unstable. 
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Table 2. Smallest eigenvalue 1ξ  for some values of ε and M when ,7.0Pr =  

3=RN  

ε M 1ξ  (upper) 1ξ  (lower) 

–0.5 –1.77 0.1762 –0.1751 

 –1.75 0.2449 –0.2391 

–0.8 –0.87 0.1573 –0.1542 

 –0.85 0.3027 –0.2913 

–1 –0.43 0.1379 –0.1350 

 –0.4 0.3665 –0.3465 

 

Figure 3. Velocity profiles ( )η′f  for different values of ε when and 

,7.0−=M  7.0Pr =  and .3=RN  
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Figure 4. Velocity profiles ( )ηg  for different values of ε when ,7.0−=M  

7.0Pr =  and .3=RN  

 

Figure 5. Temperature profiles ( )ηθ  for different values of RN  and Pr when 

7.0−=M  and .5.0−=ε  
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5. Conclusions 

A numerical study is performed for the problem of unsteady stagnation-
point flow and heat transfer on a shrinking surface induced by a shrinking 
sheet in the presence of radiation effect. The numerical computation was 
performed by using the “bvp4c” function in MATLAB. The numerical 
results obtained were compared with the previous literature and the 
comparison was found to be in excellent agreement. Dual solutions were 
found for a certain range of the unsteadiness parameters. It is found that the 
increase of the radiation parameter reduced the heat transfer rate at the 
surface. The shrinking parameter widened the range of the unsteadiness 
parameter for which solutions existed. The thermal boundary layer thickness 
is found to decrease with the decrease of the unsteadiness and shrinking 
parameters and with the increase of the radiation parameter and Prandtl 
number. Stability analysis is performed and concluded that the first (upper 
branch) solution was stable while the second (lower branch) solution was 
not. 
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