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Abstract

One of the Euclidean domains is the ring of polynomials over reals.
The notion of a greatest common divisor of two matrices with
polynomial entries is well-defined. In this paper, the same notion is
generalized to two matrices with entries from a Euclidean domain. In
this generalization, the common divisors for matrices are defined as
either a common left or right divisor depending on whether the two
matrices have the same number of rows or have the same number of
columns. In determining a greatest common divisor of two matrices
with entries from a Euclidean domain, the left (or right) structure
matrix is analyzed using the Smith form.

1. Introduction

Divisibility is an important concept in algebra and number theory. In the
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ring of integers, the concept is well known. The Euclidean domains have the
divisibility property.

The divisibility of integers states: given two integers (or two
polynomials) a and b, a # 0, b is said to be divisible by a if there is an
integer (or a polynomial) ¢ such that b =ac=ca (because the
commutativity on integer and polynomial multiplication), written a|b. The

greatest common divisor (or known as gcd) of a and b is the greatest integer
d such that d |a and d |b. If there is a common divisor ¢ of a and b, then

c/d. We write gcd(a, b) = d.

Unlike the ring of integers or polynomials, the ring of matrices does not
have commutative property for multiplication, i.e., AB = BA (in general).
Let three matrices A, B, C be form the equation A = BC. In general,
A = CB. In the equation, B and C are called left and right divisors of A,
respectively.

The concept of the greatest common right divisor of polynomial matrices
has been presented by Bitmead [12]. The methods involve recently studied
generalized Sylvester and generalized Bezoutian resultant matrices, which
require no polynomial operations. In [15], Prugsapitak construct a complete
residue system in the ring of 2 x 2 matrices over a Euclidean domain and use
it to provide a division algorithm for matrices in order to obtain a greatest
common divisor of two matrices over a certain Euclidean domain. An
Euclidean algorithm for integer matrices provided by Thomsen in [10]. The
inspiration was from Knuth’s paper that considers the greatest common right
divisor of integer matrices. From his remark, they inspired to look for a
bridge between the “mathematician’s answers” and the “computer scientist’s
answer”.

Some examples of Euclidean domains are the ring of integers,
polynomials, proper rational functions (Vardulakis [3]), proper and stable
rational functions (Vidyasagar [8]). When the entries of a matrix are from a



The Greatest Common Divisors of Euclidean Domain Matrices 857
Euclidean domain, the matrix is called an Euclidean domain (ED-) matrix.
There is a problem in determining a greatest common divisor of two such
matrices. An ED-matrix T with rank r is equivalent to a diagonal matrix St
of Smith form. In the Smith’s form, matrix T can be factorized as a product

of ED-matrices. The main purpose of this paper is to determine the greatest
common left (or right) divisor of these factor matrices.

Canonical Smith form for a polynomial matrix can be found in
Gantmacher [4], the concept of structure matrices of T that properly divides T
is contained in the work of Pernebo [6]. For the concepts of left (or right)
divisor, greatest left divisor, see Solak [7], Barnett [14] and references
therein.

The resulting greatest common divisors of ED-matrices allow us to
determine the solutions of matrix Diophantine equations. This is an
application of the greatest common divisors of ED-matrices.

2. Prerequisites

In order to obtain the greatest common divisor of an ED-matrix, the left
matrix structure that divides the ED-matrix, is needed. This left matrix
structure is obtained from the Smith form.

2.1. Euclidean domain matrices

Definition 1. A Euclidean domain E is an integral domain which satisfies
the following condition: there is a map ¢: E — N (N non-negative

integers) such that forevery a € E, a # 0, d(a) e N and
(i) For a, b € E, such that ab = 0, d(ab) > d(a).

(ii) For every a, b € E, b = 0, there exist two elements g, r € E such
that a = bq + r and either r = 0 or o(r) < d(b) (Fraleigh [5]).

The notations and symbols from the previous statements are borrowed in
the following theorem.
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Definition 2. Given two elements a, b = 0 in E, we say a is divisible by
b and d(a) > d(b). Note that, if a is divisible by b, then the ‘quotient’ q is in
E and the division is ‘exact’ if r = 0.

Definition 3. An ED-matrix is a matrix with entries in Euclidean domain.

E™" symbolized as the set of ED-matrices of size m x n.

Definition 4. Let T € EP*™. Then the zeros of T are defined as the
zeros of entries in E (Vardulakis [3]).

Definition 5. An ED-matrix T € EP*P is called unimodular, if there
exists a matrix T e EP*P such that TT =TT = Ip, equivalently, if

|T|=c, c=0,cisaunitinE (Vardulakis [3]).

Definition 6. The degree of an ED-matrix T e EP*™ is denoted by deg

T and is defined as the maximum degree of all its maximum order (non-zero)
minors (Vardulakis [3]).

2.2. Smith form

Every matrix in Euclidean domain is equivalent to a diagonal matrix
called the Smith form. Use elementary row/column operations on ED-
matrices that are defined by interchange of any two rows/columns,
multiplication of row or column by a unit in E, or addition to row/column a
multiple of any non-zero element of E of any other row/column (Cameron
[13] and Howard [17]).

We describe a sequence of elementary row and column operations over
reals, which when applied to a matrix A with a;; # O either yields a matrix

C of the form
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where f; is a monic and divides every element of C*, or else yields a matrix

B in which by; # 0 and

degby; < degay;.

Assuming this, we start with our non-zero matrix A. By performing
suitable row and column interchanges, we can assume that a;; # 0. Now

repeatedly perform the algorithm mentioned above. Eventually, we must
reach a matrix of type C, otherwise, we would produce an infinite strictly
decreasing sequence of non-negative integers by virtue of inequalities of

deghby; < dega;. On reaching a matrix of type C, we stop if C* = 0.

Otherwise, we perform the above argument on C* and so on, leaving a trail
of diagonal elements as we go.

Two points must be made:

(1) Any elementary row or column operation on C* corresponds to an
elementary operation on C, which does not affect the first row or column
of C.

(2) Any elementary operation on C* gives a new C* whose new entries
are linear combinations over reals of the old ones; consequently, these new
entries will still be divisible by f;.

Hence, in due course, we will reach a matrix D which is in Smith
canonical form.

We now present the details of the sequence of elementary operations
mentioned above.

Case 1. There exist aj in row 1 with a;; not dividing a;j. Then, by

Euclid’s division theorem,

alj =10 + b,

where b # 0 and degb < dega;;. Subtract g times column 1 from column j
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and then interchange columns 1 and j. This yields a matrix of type B
mentioned above.

Case 2. There exists aj; in column 1 with a;; not dividing a;;. Proceed
as in Case 1, operating on rows rather than on columns, again reaching a
matrix of type C.

Case 3. Here a4 divides every element in the first row and first column.

Then, by subtracting suitable multiples of column 1 from the other columns,

we can replace all the entries in the first row other than a;; by 0. Similarly,
for the first column. We then have a matrix of the form
€11 o --- 0
0
E=]| . £
0
If e divides every element of E*, then we obtain a matrix of type C.

Otherwise, there exists ej; not divisible by e;;. We then add row i to row 1,
thereby reaching Case 1 (Howard [17]).

Theorem 7. Each ED-matrix T € EP*™ of rank T =r, is equivalent to

a diagonal matrix canonical form Smith Sy :

fi O 0 O 0
0 f 0 O 0
Str=/0 O fr 0 0l
0 0 0 O 0
0 0 -~ 0 0 - 0]
where each f; are monic and f; divides fj,; for i=12, ..,r-1

(Erawaty [9]).
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Definition 8. Let T € EP*™ with rank T =r. If the Smith canonical
form for r = p takes the form

1 0 0o 0 O
0 1 0 0 O

St = —[Ip Op,m—p]a
0 0 1 0 O

0
1 0
Im
St = = :
Tolo o o1 {Op—m,m}
0 O
0 0 - 0]

then T is called left unimodular (Vardulakis [3]).
Theorem 9. If T is multiplication of a finite number of elementary
matrices, then T is unimodular (Howard [17]).

3. Results and Discussion

3.1. Structure matrices

Greatest common divisor of two matrices with polynomial entries is
well-defined (Vardulakis [2]). In this paper, the same notion is generalized to
two matrices with entries from any Euclidean domain. We have now an
important factorization of ED-matrix.

Theorem 10. Each ED-matrix T € EP*™ of rank T =r can be
factorized (in a non-unique way) as

T=TT

or as
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T =TiTg,
where T, € E™™ is right unimodular and T, € EP*" left unimodular.

Proof. Let T € EP*™ and Sy Smith form of T, so there are unimodular

matrices T, € EP*P, Tg € E™™ such that
St =T TTR,

T =T T/L

T
Wl
T

where T; € E™™ T, e EM=D*M are right unimodular. Then

We partition Tg Las

T =T TRt
T D T
L _Op—r,r_ r r,m-r T2
- 5 A
-1
- T
L _Op—r,r_ 1
=TTy

with

Similarly, for Tg.

Definition 11. T| is called the left structure matrix of T and Tg is called
the right structure matrix of T.
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3.2. Common divisors of Euclidean domain matrices

Given three matrices A, B, C that satisfy A = BC, we say B to be a left

divisor of A.

Definition 12. Let E be a Euclidean domain and suppose given

T, € EP T, € EPY. Then T is greatest common left divisor of T, and T,

if T,=TB and T, =TC for any Be EP*!, C e EP*! and any other

greatest common left divisor is a multiple of T.

Theorem 13. Suppose given T, € EP* T, e EP*! with I +t=m>
p = rank[T;, T,], and T € EP*P is structure matrix of T = [Ty, T,] €

EP*™ Then T/ is a greatest common left divisor of T; and T,.

Let formed matrix T = [Ty, To] € EP*™, where T, e EP,| T, ¢ EPXL,

Perform elementary row (column) operations to obtain the Smith form

St =T TTg, )
where T, e EP*P Tp e E™™.

Suppose Tg € E™™ s a right unimodular matrix. Then by definition,

structure St =[l, Op m_p], and we obtain
St =T TTg,
_ -1
TTr =TSt
ZTL_l[lp op,m—p]
=TGL[|p Op,m—p]

= [TGL Op,m—p]’ (2)
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where Tg, € EP*P. We define Tg* =T € E™™ with T as:

. [A B
T =
C D
with Ac EP B EPXt ¢ e gM-PX p ¢ plm-p)xt,

T=[T T,]

-1
= [TGL Op, m-— p]TR

A B
ZTGL[lp 0p,m—p] C D

=T [A BJ,

where [A B]e EP*™ is the right unimodular and Tg_ = T| is the left
structure matrix of T:

1 To]=TeL[A B]
T, =TgLAand T, = Tg B.
That is, T is the left common divisor of T; and T,. Define Tg as
Tq = [TRl TR2}.
Trs Tra
Then from equation (2), we obtain

TR = [TGL Op,m—p]’

TRt Tr2
T, T =|T, 0 _nl
M Tl T2 =MoL Opmp)

[TiTre + ToTrs TiTr2 + ToTral = [TeL 0p,m—pl,
and thus

TiTry + ToTrz = TgL- (3)
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Let T, e EP*P be any other left common divisor of Ty and T,. Then
T, =T Fand T, =T G, 4)
where F e EP*!, G ¢ EP*'. Then from (3) and (4), we obtain
TiTry + T2Trg = TLFTry + T GTrs
= TL[FTgy + GTgs]
=TgL.

We see that Tg is multiple of any other common left divisor (T ). This

means T, is a greatest common left divisor of T; and T».

And in the same way, we can find the right greatest common divisor.
From the above description, the following theorem is obtained.

Theorem 14. If Tg_ is a greatest common left divisor of T; and T,

then any other greatest common left divisor (T ) is a multiple of Tg, i.e.,
ToL = TeLU,
where U e EP*P is unimodular.

Definition 15. Ty € EP*! and T, e EP*! with 1+t > p = rank[T; T,]
are called left coprime if their greatest common left divisor is unimodular.

T
Likewise Ty ¢ E™ and T, € EX™ with | +t>m = rank[_l_l} is called
2

right coprime if their greatest common right divisor is unimodular.

Theorem 16. Let T, e EP* and T, e EP** with I+t=m=>p=

rank [Ty T,]. Then the following statements are equivalent:

(1) T, and T, are left coprime.

(2) The ED-matrix T = [T; T,] € EP*™ has no zeros in C.
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(3) There exists a unimodular matrix Tz € E™™ such that
[Ty TZ]-ITR = [lp Op,m—p] = 51,
where St € EP*™ is the Smith form of T.

(4) There exists Y e E'*P, Z ¢ E™P such that

T]_Y + Tzz = |p.
(5) There exists T3 € E(MPX! 1, ¢ EM=P)*t gych that

F—l Ty

e E™™ unimodular.
T3 Ty

Example 17. This example shows how to use left structure matrix and
the greatest common left divisor of two matrices polynomials (the set of all
polynomials is a Euclidean domain) that have the same number of rows,

namely T;(x) € R[x]>2 and T,(x) e R[x]*. Suppose

wofy o fy e,

Then

T(x) = [Ta(x), T2(x)]

X 0 x+1 0
o (x+1?  x x+2]
By performing elementary row (column) operation, we obtain Smith
form of T(x), as follows:

ST(X):F 00 0}

0100
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10
With elementary row operation matrix, T|_(x)‘l =[ } and with
X

elementary column operation matrix,

X 0 X+1 0
2 2 2
TR(x)_l _ —: (x Bl) —I xgz
—X+2 X -X+2 1

such that T(x) = T,_(x)_IST (x)TR(x)_l. Based on Theorem 10, structure
matrix of T;(x) and To(x) is,

T/ (x) = TL(X)_{OD(X) }

L
1Y

Té(X) = [D(X) Or,m—r]TR (X)_l

X 0 X+1 0
100 0] -x2 (x+1)2 x> x+2

z[o 10 o} 1 0 1 0
—-X+2 X —X+2 1

X 0 x+1 0
T lx? (x+1P2 —x%2 x+2]

So a greatest common divisor of T;(x) and T,(x) is

T () = B ﬂ

which is the greatest common left divisor.
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Example 18. Consider a Euclidean domain of proper rational functions
R pr(x) with a discrete valuation

85 () : R(X) = Z U {oo},

given by 8,(t(x)) :=degd(x)—degn(x) and &,(0) =+, if t(x)=

nx) R(x), d(x) = 0 (Vardulakis [3]).

d(x)
1 1 1 1
— 0 2 X 0 2
Let A=| X ,B=| X and T(x) = X
X+1 1 X+1 Xx+1 1 Xt 1
X xS +1 X X3 +1
Find the Smith form of T(x).
Bring the element of least 5., (-) to position (1, 1),
1 1 X+1 X+1
0 1\ = 0 — — 1
X 2| e 3 +1
1 0 X ;1 1 x3+ 1 1 0 iz
X X +1 X X
Change the first column to second column
X J;l 1 x3+ 1Yo 1 o 1 X J;l x3+ 1
X x>+1il1 o ol= X X°+1
1 0 1 0 1 1
X X_2 0 0 1 M X_2
Write X% 1_1 x+1 Add —X** 1 times the second row to the first row
X3 X %2 x2

41 _ x4 (3 +1)

5 3
[1 _X+1J1 X+1 X+1 1 0 X" —x"—-x-1

x|~

X2
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x5—x3—x—1

Add times the first column to the third column

x4 +1)
5 3
X —x"-x-1
5 3 . \1 o0
1 0 %"1 x*(x® +1) 1 0 0
X*(xX*+1) |0 1 0 _ 11|
1 1 0 % =
0o = = 0 0 1 o
X X
Add —% times the second column to the third column
Lo oyt Y %) a0 o
0o = — 0 1 x|~ |0 L 0
* x*lo 0o 1 X
So after multiplying all of elementary matrices, we have
1
o 1 1, 1 01 X
X — 5 3
X+l X X2 10 x—x—x—lzlcl)o.
1 v x+1 , x+1 (% +1) 0 - 0
3
X x°+1//0 0 1
And
Xx+1 1 x+ 1\t
2
L 0 iz X+1 1 0 0 X X
X +1 x+1 | | X 0 =0 X
1 = 1 0 X X
X x°+1 0 0
X+1
1
l 0 2
So the greatest common left divisor of A=| X and B=| X
X+1 1 X+1
X 3 +1

x+1 1
is| x2 x|
1 0
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4. Conclusion
Based on the results and discussion, the following is concluded:
(1) If T e EP*™ with rank T =r, then the left structure matrix of T
is defined as T/ = T[l[op_Dr r}, where Tt e EP*P s the inverse of a
number of elementary row operations on T.

(2) If T € EP*™ with rank T =r, then the right structure matrix of T
is defined as Tg = [D O _]JTR>, where Tg € E™™ s the inverse of a
number of elementary column operations on T.

@) Let T, eEP! T, eEP! form T =[T; T,]e EP™ with
| +t=m2> p =rankT. Then the greatest common left divisor of T; and

T, is the left structure matrix of T in the form T/ e EP*P.

@) Let ;e EX™ T, e EX™ form T =[He EPM with |+t
2

= p > m =rankT. Then the greatest common right divisor of T; and T, is

the right structure matrix of T in the form T € E™™,

(5) Steps to obtain the greatest common (left/right) divisor of two
matrices:

(a) If both matrices A and B have the same number of rows, then form
[A B]. And if both matrices A and B have the same number of columns,

A
then form { }
B

A
(b) Use elementary operations on [A B] or on {B} to obtain the Smith

form.
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A
(c) By using the Smith form, find structure matrix for [A B] or [B} as

parts (1) and (2).

The greatest common divisor of matrix [A B] is the left of structure

A
matrix. And the greatest common divisor of matrix {B} is the right of the

structure matrix.
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