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Abstract 

In the present paper, a numerical method is proposed for the numerical 
solution of a coupled system of Burgers’ equation by using the quintic 
B-spline collocation scheme on the uniform mesh points. The method 
is shown to be unconditionally stable using von Neumann technique. 
To test accuracy the error norms ∞LL ,2  are computed and give some 

examples to illustrate the sufficiency of the method for solving such 
nonlinear partial differential equations. Computed results are depicted 
graphically and are compared with those already available in the 
literature. 
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1. Introduction 

The coupled Burgers’ equations as are given in [1]: 

( ) ,021 =++− xxxxt uvkuukuu  (1) 

( ) ,031 =++− xxxxt uvkvvkvv  (2) 

where ,1k  2k  and 3k  are real constants and subscripts x and t denote 

differentiation w.r.t. the distance x and time t, respectively, with the 
following boundary conditions: 

( ) ( ) ( ) ( ),,,,,, 21 tbftbutaftau ==  

( ) ( ) ( ) ( ) Tttbgtbvtagtav ≤≤== 0,,,,,, 21  (3) 

and initial conditions 

( ) ( ),0, xfxu =  

( ) ( ) .,0, bxaxgxv ≤≤=  (4) 

Numerical solutions for above have been provided by various authors, 
including Radwan [2], Khater et al. [3], Ali et al. [4], Rashid and Ismail [5], 
Liu and Hou [6], Mittal and Arora [7], Mokhtari et al. [8], Sadek and Kucuk 
[9], Mittal and Jiwar [10], Kutluay and Ucar [11], Srivastava et al. [12], 
Kumar and Pandit [13], Srivastava et al. [14], Mittal and Tripathi [15], 
Abdou and Soliman [16], Dehghan et al. [17]. We have studied coupled 
nonlinear Burgers’ equations by using non-polynomial spline method [18]. 
Also, we take linearization of nonlinear term using finite difference 
approximation and applying Crank-Nicolson scheme. Quintic B-spline 
collocation method is used to find numerical solutions of some nonlinear 
equations in [19-22]. The short outline of this paper is as follows: In Section 
2, quintic B-spline collocation scheme is explained. In Sections 3 and 4, the 
method is illustrated and applied to the coupled Burgers’ equations. In 
Section 5, a stability of the method is present. In Section 6, numerical 
examples are included to verify the applicability and accuracy of the 
proposed method computationally. In Section 7, the conclusion gives a 
summary of what has been done in this paper. 
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2. Quintic B-spline Functions 

To construct numerical solution, consider nodal points ( )nj tx ,  defined 

in the region [ ] [ ],,0, Tba ×  where 

 ,...,,1,0,, 110 NjN
abxxhbxxxa jjN =−=−==<<<= +  

 ....,1,0,,,0 110 =Δ=Δ=−<<<<<= + ntnttttTttt njjn  

The quintic B-spline basis functions at knots are given by: 

( )xB j  
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Using quintic B-spline basis function (5) the values of ( )xB j  and its 

derivatives at the knots points can be calculated, which are tabulated in Table 
1. 

3. Solution of Coupled Burgers’ Equations 

To apply the proposed method, we rewrite (1) and (2) as 
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and consider the approximations ( ) n
jUtxu =,  and ( ) ,, n

jVtxv =  then from 

famous Cranck-Nicolson scheme and forward finite difference approximation 
for the derivative t, [23], we get 
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where tk Δ=  is the time step. 

Table 1. The values of quintic B-spline and its first and second derivatives at 
the knots points 

x 3−jx  2−jx  1−jx  jx  1+jx  2+jx  3+jx  

jB  0 1 26 66 26 1 0 

jB′  0 
h
5−  h

50−  0 h
50  h

5  0 

jB ′′  0 2
20
h

 2
40
h

 
2

120
h
−  2

40
h

 2
20
h

 0 

In the Crank-Nicolson scheme, the time stepping process is half explicit 
and half implicit. So the method is better than simple finite difference 
method. 

The nonlinear terms in equations (6) and (7) are linearized using the form 
given by Rubin and Graves [24] as: we take linearization of the nonlinear 
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term as follows: 

( ) ,111 n
xj

n
j

n
xj

n
j

n
xj

n
j

n
jx UUUUUUUU −+= +++  

( ) .111 n
xj

n
j

n
xj

n
j

n
xj

n
j

n
jx VVVVVVVV −+= +++  (8) 

Similarly the linearized form for ( )xUV  can be obtained. Expressing ( )txU ,  

and ( )txV ,  by using quintic B-spline functions ( )xB j  and the time dependent 

parameters ( )tc j  and ( ),tjδ  for ( )txU ,  and ( ),, txV  respectively, the 

approximate solution can be written as: 

 ( ) ( ) ( ) ( ) ( ) ( )∑ ∑
+

−=

+

−=
δ==

2

2

2

2
.,,,

N

j

N

j
jjNjjN xBttxVxBtctxU  (9) 

Using approximate function (9) and quintic B-spline functions (5), the 
approximate values ( ),xU  ( )xV  and their derivatives up to second order are 

determined in terms of the time parameters ( )tc j  and ( ),tjδ  respectively, as 

( ) ,266626 2112 ++−− ++++== jjjjjjj cccccxUU  

( ) ( ),10105
2112 −−++ −−+=′=′ jjjjjj cccchxUU  

( ) ( ),26220
21122 ++−− ++−+=′′=′′ jjjjjjj ccccc

h
xUU  

( ) ,266626 2112 ++−− δ+δ+δ+δ+δ== jjjjjjj xVV  

( ) ( ),10105
2112 −−++ δ−δ−δ+δ=′=′ jjjjjj hxVV  

( ) ( ).26220
21122 ++−− δ+δ+δ−δ+δ=′′=′′ jjjjjjj

h
xVV  (10) 

On substituting the approximate solution for U, V and its derivatives from 
equation (10) at the knots in equations (6) and (7) yields the following 
difference equation with the variables ( )tc j s and ( ),tjδ  
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,266626 21121 ++−− ++++= jjjjj cccccz  

,1010 21122 −−++ −−+= jjjj ccccz  

,266626 21123 ++−− δ+δ+δ+δ+δ= jjjjjz  

.1010 21124 −−++ δ−δ−δ+δ= jjjjz  

The system thus obtained on simplifying equations (11) and (12) consists of 
( )22 +N  linear equations in the ( )102 +N  unknowns ( ...,,,, 012 ccc −−  

),, 21 ++ NN cc  ( ) .,,...,,,, 21012
T

NNN ++−− δδδδδδ  To obtain a unique 

solution to the resulting system four additional constraints are required. 
These are obtained by imposing boundary conditions. Eliminating ,, 12 −− cc  

21, ++ NN cc  and ,,,, 2112 ++−− δδδδ NN  the system gets reduced to a 
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matrix system of dimension ( ) ( )2222 +×+ NN  which is the penta-diagonal 

system that can be solved by any algorithm. 

4. Initial Values 

At a particular time-level, the approximate solutions ( )txU ,  and ( )txV ,  

can be determined repeatedly by solving the recurrence relation, once the 
initial vectors have been computed from the initial and boundary conditions. 
From the initial condition ( ) ( ),0, jj xfxu =  we get ( )1+N  linear equations 

in the ( )5+N  unknowns. The four unknowns ,2−c  ,1−c  1+Nc  and 2+Nc  

can be obtained from the relations ( ) ( ),0, 00 xfxux ′=  ( ) ( ),0, NNx xfxu ′=  

( ) ( ),0, 00 xfxuxx ′′=  ( ) ( ),0, NNxx xfxu ′′=  at the knots. It leads to system 

of ( )1+N  linear equations in the ( )1+N  unknowns. Which can be solved by 

any algorithm. Similarly, using initial condition ( ) ( ),0, jj xgxv =  the initial 

vectors for v can be computed. 

5. Stability Analysis of the Method 

The stability analysis of nonlinear partial differential equations is not 
easy task to undertake. Most researchers copy with the problem by 
linearizing the partial differential equation. Our stability analysis will be 
based on the von Neumann concept in which the growth factor of a typical 
Fourier mode is defined as 

( ),exp φζ= ijAc nn
j  

( ),exp φζ=δ ijB nn
j  

,
1

n

n
g

ζ

ζ=
+

 (13) 

where A and B are the harmonics amplitude, ,kh=φ  k is the mode number, 

1−=i  and g is the amplification factor of the schemes. We applied the 
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stability of the quintic schemes by assuming the nonlinear term as constants 

., 21 λλ  This is equivalent to assuming that all the n
jc  and n

jδ  as local 

constants ,, 21 λλ  respectively. At jxx =  system (11) can be written as 
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Substituting (13) into the difference (14), we get 
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From (15) we get ,1≤g  hence the scheme is unconditionally stable. It 

means that there is no restriction on the grid size, i.e., on h and Δt, but we 
should choose them in such a way that the accuracy of the scheme is not 
degraded. 

Similar results can be obtained from the difference (12), due to 
symmetric u and v. 

6. Numerical Tests and Results of Coupled Burgers’ Equations 

In this section, we present some numerical examples to test validity of 
our scheme for solving coupled Burgers’ equations. 

The norms 2L -norm and ∞L -norm are used to compare the numerical 

solution with the analytical solution [25], 

( ) ,
0

2
2 ∑

=
−=−=

N

i

N
j

E
j

NE uuhuuL  

,...,,1,0,max NjuuL N
j

E
jj

=−=∞  (16) 

where Eu  is the exact solution u and Nu  is the approximate solution .NU  

Now, we consider two test problems. 

Test problem (1) 

Consider the coupled Burgers’ equations (1) and (2) with the following 
initial and boundary conditions: 

( ) ( ) ( ) ,,sin0,0, π≤≤π−== xxxvxu  

and 

( ) ( ) ,0,0,, Tttutu ≤≤=π=π−  

( ) ( ) .0,0,, Tttvtv ≤≤=π=π−  



K. R. Raslan, Talaat S. El-Danaf and Khalid K. Ali 66 

The exact solution is 

( ) ( ) ( ) .0,,sin,, Ttxxetxvtxu t ≤≤π≤≤π−== −  

We compute the numerical solutions using the selected values ,21 −=k  

12 =k  and 13 =k  with different values of time step length Δt. In our first 

computation, we compute 2L -norm and ∞L -norm at 001.0,1.0 == kt  while 

the number of partition N changes. The corresponding results are presented 
in Table 2. In our second computation, we compute 2L -norm and ∞L -norm 

at time level 1=t  for the same parameters in first computation with different 
decreasing values of Δt. The corresponding results are reported in Table 3. In 
both computations, the results are same for ( )txu ,  and ( )txv ,  because of 

symmetric initial and boundary conditions. Also, we make comparison of our 
numerical results of the problem (1) with the results obtained from [15] and 
[5] for ,50=N  ,01.0=k  ,21 −=k  132 == kk  with different time t. The 

corresponding results are presented in Table 4. 

Table 2. 2L -norm and ∞L -norm for 001.0,1.0 == kt  at different N 

 u(x, t) v(x, t) [7] 
N L2-norm L∞-norm L2-norm L∞-norm L∞-norm 
50 3.36761E-6 4.47952E-5 3.36761E-6 4.47952E-5 - 

100 3.23312E-6 5.94996E-6 3.23312E-6 5.94996E-6 - 
128 2.85406E-6 5.15038E-6 2.85406E-6 5.15038E-6 1.8178E-5 
200 2.03096E-6 3.62184E-6 2.03096E-6 3.62184E-6 - 

Table 3. 2L -norm and ∞L -norm for ,1=t  001.0,01.0=k  at different 

200=N  
 u(x, t) v(x, t) [7] 
k L2-norm L∞-norm L∞-norm L∞-norm L∞-norm 

k = 0.01 2.22605E-5 5.95755E-5 2.22605E-5 5.95755E-5 - 
k = 0.001 2.36146E-6 5.95761E-6 2.36146E-6 5.95761E-6 3.00E-5 
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Table 4. Comparison of numerical results of the problem (1) with the results 
obtained from [15] and [5] for the variables u and v with 01.0,50 == kN  

 u(x, t) v(x, t) [15] [7] 
t L2-norm L∞-norm L2-norm L∞-norm L∞-norm L∞-norm 

t = 0.5 1.1066E-4 1.48333E-4 1.1066E-4 1.48333E-4 1.10308E-4 - 
t = 1 1.3621E-4 2.38302E-4 1.3621E-4 2.38302E-4 1.33688E-4 1.84705E-3 

In Table 4, we show that our results are related with the results in [5] and 
[15]. 

The corresponding graphical illustrations are presented in Figure 1 
showing computed solutions of ( )txu ,  and ( )txv ,  for ,21 −=k  ,12 =k  3k  

,1=  200=N  and 001.0==Δ kt  at .1,5.0,0=t  In Figure 2, computed 

solutions of ( )txu ,  and ( )txv ,  for ,21 −=k  ,12 =k  ,13 =k  200=N  and 

0.001==Δ kt  at .1.0,05.0,0=t  In Figure 3, computed solutions (exact 

and approximate) of ( )txu ,  and ( )txv ,  for ,21 −=k  ,12 =k  ,13 =k  =N  

200 and 001.0==Δ kt  at .1.0=t  In Figure 4-6, computed solutions of 
( )txu ,  and ( )txv ,  at ,1.0=t  001.0==Δ kt  and 200=N  for ,, 21 kk  

31, kk  and 32 , kk  fixed, respectively. 

 

Figure 1. Computed approximate solutions of u and v for ,21 −=k  ,12 =k  

,13 =k  200=N  and 001.0==Δ kt  at .1,5.0,0=t  
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Figure 2. Computed approximate solutions of u and v for ,21 −=k  ,12 =k  

,13 =k  200=N  and 001.0==Δ kt  at .1.0,05.0,0=t  

 

Figure 3. Computed solutions (exact and approximate) of u and v for 
,21 −=k  ,12 =k  ,13 =k  200=N  and 001.0==Δ kt  at .1.0=t  

 

Figure 4. Computed approximate solutions of u and v for ,21 −=k  ,12 =k  

,83 =k  200=N  and 001.0==Δ kt  at .1.0,05.0,0=t  
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Figure 5. Computed approximate solutions of u and v for ,21 −=k  ,82 =k  

,13 =k  200=N  and 001.0==Δ kt  at .1.0,05.0,0=t  

 

Figure 6. Computed approximate solutions of u and v for ,1,2 21 == kk  

200,13 == Nk  and 001.0==Δ kt  at .1.0,05.0,0=t  

Test problem (2) 

Numerical solutions of considered coupled Burgers’ equations are 
obtained for 21 =k  with different values of 2k  and 3k  at different time 

levels. In this situation, the exact solution is 

( ) ( )( ),2tanh14
122,

32
2

0 AtxAkk
kAatxu −⎥⎦

⎤
⎢⎣
⎡

−
−

−=  

( ) ( )( ).2tanh14
12212

12,
32

2
1
3

0 AtxAkk
kAk

katxv −⎥⎦
⎤

⎢⎣
⎡

−
−

−⎥⎦
⎤

⎢⎣
⎡

−
−

=  
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Thus, the initial and boundary conditions taken from the exact solution are 

( ) ( )( ),tanh14
1220,

32
2

0 xAkk
kAaxu ⎥⎦

⎤
⎢⎣
⎡

−
−

−=  

( ) ( )( ).tanh14
12212

120,
32

2
2
3

0 xAkk
kAk

kaxv ⎥⎦
⎤

⎢⎣
⎡

−
−

−⎥⎦
⎤

⎢⎣
⎡

−
−

=  

Thus, the initial and boundary conditions are extracted from the exact 

solution, where 05.00 =a  and ( ) .12
14

2
1

2
320

⎥⎦
⎤

⎢⎣
⎡

−
−

= k
kkaA  The numerical 

solutions for ( )txu ,  and ( )txv ,  have been computed for the domain ∈x  

[ ],10,10−  01.0=k  and number of partitions ,10=N  100=N  and =N  

200. 2L -norm and ∞L -norm have been computed in Table 5 for ,1=t  1k  

,2=  1.02 =k  and .3.03 =k  In Tables 6 and 7, we make comparison of our 

numerical results of the problem (2) with the results obtained from [3] and 
[5] for the variables ( )txu ,  and ( )txv ,  with 01.0,16,05.00 === kNa  

at different time t and different values of ., 32 kk  In Tables 8 and 9, we make 

comparison of our numerical results of the problem (2) with the results 
obtained from [10] and [7] for the variables ( )txu ,  and ( )txv ,  with =0a  

0.05, ,21=N  01.0=k  at different time t and different values of ., 32 kk  

Table 5. 2L -norm and ∞L -norm for ,1=t  01.0=k  at different values of 

N, ,21 =k  1.02 =k  and 3.03 =k  

 u(x, t) v(x, t) 
N L2-norm L∞-norm L2-norm L∞-norm 
10 2.92177E-4 9.02098E-5 1.110479E-4 4.54119E-5 
50 3.00538E-4 8.22513E-5 1.114941E-4 4.18722E-5 

100 3.01301E-4 8.23741E-5 1.115306E-4 4.19293E-5 
200 3.01678E-4 8.19936E-5 1.155112E-4 4.20344E-5 
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Table 6. Comparison of numerical results of the problem (2) with the results 
obtained from [3] and [5] for the variable u with 01.0,16,05.00 === kNa  

   u(x, t) [3] [5] 
t k2 k3 L2-norm L∞-norm L∞-norm L∞-norm 

0.5 0.1 0.30 1.50682E-4 4.43465E-5 1.44E-3 9.619E-4 
 0.3 0.30 2.06357E-4 6.41587E-5 - - 

1.0 0.1 0.30 2.96741E-4 8.44084E-5 1.27E-3 1.153E-3 
 0.3 0.30 4.06829E-4 1.19154E-4 - - 

Table 7. Comparison of numerical results of the problem (2) with the results 
obtained from [3] and [5] for the variable v with 01.0,16,05.00 === kNa  

   v(x, t) [3] [5] 
t k2 k3 L2-norm L∞-norm L∞-norm L∞-norm 

0.5 0.1 0.30 5.77357E-4 2.34474E-5 5.42E-4 3.332E-4 
 0.3 0.30 2.06357E-4 6.41587E-5 - - 

1.0 0.1 0.30 1.12928E-4 4.42146E-5 1.29E-3 1.162E-3 
 0.3 0.30 4.06829E-4 1.19154E-4 - - 

In Tables 6 and 7, we show that our results are related with the results in 
[3] and [5]. 

Table 8. Comparison of numerical results of the problem (2) with the results 
obtained from [10] and [7] for the variable u with ,2,21,05.0 10 === kNa  

01.0=k  
   u(x, t) [10] [7] 
t k2 k3 L2-norm L∞-norm L∞-norm L∞-norm 

0.5 0.1 0.30 1.51522E-4 4.33232E-5 4.173E-5 4.167E-5 
 0.3 0.30 2.07396E-4 6.10213E-5 - - 

1.0 0.1 0.30 2.98215E-4 8.16821E-5 8.275E-5 8.258E-5 
 0.3 0.30 4.08648E-4 1.17123E-4 - - 
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Table 9. Comparison of numerical results of the problem (2) with the results 
obtained from [10] and [7] for the variable v with ,05.00 =a  ,21=N  

01.0=k  
   v(x, t) [10] [7] 
t k2 k3 L2-norm L∞-norm L∞-norm L∞-norm 

0.5 0.1 0.30 5.81893E-5 2.31878E-5 5.418E-5 1.480E-4 
 0.3 0.30 2.07396E-4 6.10213E-5 - - 

1.0 0.1 0.30 1.13699E-4 4.15257E-5 1.074E-4 4.770E-4 
 0.3 0.30 4.08648E-4 1.17123E-4 - - 

In Tables 8 and 9, we show that our results are related with the results in 
[10] and [7]. 

Now we take the test problem (2) at the domain [ ],1,0∈x  01.0=k  and 

.3.0,1.0,2 321 === kkk  2L -norm and ∞L -norm have been computed, 

see Table 10 for 1=t  with different values of N. 

Table 10. 2L -norm and ∞L -norm for ,1=t  01.0=k  at different values of 

N, 1.0,2 21 == kk  and 3.03 =k  

 u(x, t) v(x, t) 
N L2-norm L∞-norm L2-norm L∞-norm 
10 5.44676E-6 7.73063E-6 1.53623E-6 2.23523E-6 
50 6.01254E-6 8.36307E-6 1.69601E-6 2.41866E-6 

100 6.08574E-6 8.13723E-6 1.71844E-6 2.35492E-6 
200 6.12261E-6 8.46841E-6 1.72986E-6 2.44898E-6 

The corresponding graphical illustrations are presented in Figure 7: 
computed approximate solutions of ( )txu ,  and ( )txv ,  for ,1.0,2 21 == kk  

200,3.03 == Nk  and 01.0==Δ kt  at [ ].1,0,1,5.0,0 ∈= xt  
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Figure 7. Computed approximate solutions of u and v for ,1,2 21 == kk  

200,3.03 == Nk  and 01.0==Δ kt  at .1,5.0,0=t  

7. Conclusions 

In this paper, a numerical treatment for the nonlinear coupled Burgers’ 
equations is proposed using a collection method with the quintic B-splines. 
The stability analysis of the method is shown to be unconditionally stable. 
We make linearization for the nonlinear term. We tested our schemes through 
two test problems. Accuracy was shown by calculating error norms 2L  and 

.∞L  The obtained approximate numerical solutions maintain good accuracy 

compared with the exact solutions. 

References 

 [1] S. E. Esipov, Coupled Burgers Equations - A Model of Poly Dispersive 
Sedimentation, James Franck Institute and Department of Physics, University of 
Chicago, 1995. 

 [2] S. F. Radwan, On the fourth-order accurate compact ADI scheme for solving the 
unsteady nonlinear coupled Burgers’ equations, J. Nonlinear Math. Phys. 6(1) 
(1999), 13-34. 

 [3] A. H. Khater, R. S. Temsah and M. M. Hassan, A Chebyshev spectral collocation 
method for solving Burgers’-type equations, J. Comput. Appl. Math. 222 (2008), 
333-350. 

 [4] A. Ali, A. Islam and S. Haq, A computational meshfree technique for the 
numerical solution of the two-dimensional coupled Burgers’ equations, Inter. J. 
Comput. Meth. Engin. Sci. Mech. 10 (2009), 406-422. 



K. R. Raslan, Talaat S. El-Danaf and Khalid K. Ali 74 

 [5] A. Rashid and A. I. B. MD. Ismail, A Fourier pseudospectral method for solving 
coupled viscous Burgers equations, Comput. Meth. Appl. Math. 9(4) (2009),           
412-420. 

 [6] J. Liu and G. Hou, Numerical solutions of the space and time fractional coupled 
Burgers equations by generalized differential transform method, Appl. Math. 
Comput. 217 (2011), 7001-7008. 

 [7] R. C. Mittal and G. Arora, Numerical solution of the coupled viscous Burgers’ 
equation, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1304-1313. 

 [8] R. Mokhtari, A. S. Toodar and N. G. Chengini, Application of the generalized 
differential quadrature method in solving Burgers’ equations, Commun. Theo. 
Phys. 56 (2011), 1009-1015. 

 [9] I. Sadek and I. Kucuk, A robust technique for solving optimal control of coupled 
Burgers’ equations, IMA J. Math. Cont. Infor. 28 (2011), 239-250. 

 [10] R. C. Mittal and Ram Jiwar, A differential quadrature method for numerical 
solutions of Burgers’-type equations, Inter. J. Numer. Meth. Heat Fluid 22(7) 
(2012), 880-895. 

 [11] S. Kutluay and Y. Ucar, Numerical solutions of the coupled Burgers’ equation by 
the Galerkin quadratic B-spline finite element method, Math. Meth. Appl. Sci. 36 
(2013), 2403-2415. 

 [12] V. K. Srivastava, M. K. Awasthi and M. Tamsir, A fully implicit finite difference 
solution to one dimensional coupled nonlinear Burgers’ equations, Inter. J. Math. 
Comput. Phys. Quant. Engin. 7(4) (2013), 417-422. 

 [13] M. Kumar and S. Pandit, A composite numerical scheme for the numerical 
simulation of coupled Burgers’ equation, Computer Phy. Commun. 185 (2014), 
809-817. 

 [14] V. K. Srivastava, M. Tamsir, M. K. Awasthi and S. Sing, One dimensional 
coupled Burgers’ equation and its numerical solution by an implicit logarithmic 
finite difference method, Aip Advances 4 (2014), 037119. 

 [15] R. C. Mittal and A. Tripathi, A collocation method for numerical solutions of 
coupled Burgers’ equations, Inter. J. Comput. Meth. Engin. Sci. Mech. 15 (2014), 
457-471. 

 [16] M. A. Abdou and A. A. Soliman, Variational iteration method for solving 
Burger’s and coupled Burger’s equations, J. Comput. Appl. Math. 181(2) (2005), 
245-251. 



Collocation Method with Quintic B-spline Method … 75 

 [17] M. Dehghan, A. Hamidi and M. Shakourifar, The solution of coupled Burgers’ 
equations using Adomian-Pade technique, Appl. Math. Comput. 189 (2007), 
1034-1047. 

 [18] Khalid K. Ali, K. R. Raslan and T. S. El-Danaf, Non-polynomial spline method 
for solving coupled Burgers’ equations (in press). 

 [19] R. C. Mittal and Geeta Arora, Quintic B-spline collocation method for numerical 
solution of the Kuramoto-Sivashinsky equation, Commun. Nonlinear Sci. Numer. 
Simul. 15(10) (2010), 2798-2808. 

 [20] B. Sepehrian and M. Lashani, A numerical solution of the Burgers equation using 
quintic B-splines, Proceedings of the World Congress on Engineering 2008, Vol. 
III, WCE 2008, July 2-4, 2008, London, U.K. 

 [21] K. R. Raslan, Talaat S. El-Danaf and Khalid K. Ali, Collocation method with 
quintic b-spline method for solving Hirota-Satsuma coupled KDV equation, Inter. 
J. Appl. Math. Res. 5(2) (2016), 123-131. 

 [22] K. R. Raslan, Talaat S. El-Danaf and Khalid K. Ali, Collocation method with 
quintic b-spline method for solving the Hirota equation, J. Abstract Comput. 
Math. 1 (2016), 1-12. 

 [23] T. S. El-Danaf, K. R. Raslan and Khalid K. Ali, Collocation method with cubic        
B-splines for solving the GRLW equation, Int. J. Num. Meth. Appl. 15(1) (2016), 
39-59. 

 [24] S. G. Rubin and R. A. Graves, Cubic spline approximation for problems in fluid 
mechanics, Nasa TR R-436, Washington DC, 1975. 

 [25] T. S. El-Danaf, K. R. Raslan and Khalid K. Ali, New numerical treatment for the 
generalized regularized long wave equation based on finite difference scheme, Int. 
J. S. Comp. Eng. (IJSCE) 4 (2014), 16-24. 


