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Abstract

In the present paper, a numerical method is proposed for the numerical
solution of a coupled system of Burgers’ equation by using the quintic
B-spline collocation scheme on the uniform mesh points. The method
is shown to be unconditionally stable using von Neumann technique.
To test accuracy the error norms L,, L., are computed and give some

examples to illustrate the sufficiency of the method for solving such
nonlinear partial differential equations. Computed results are depicted
graphically and are compared with those already available in the
literature.
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1. Introduction

The coupled Burgers’ equations as are given in [1]:
Ut — Uyy + kquuy + ko (uv), =0, (1)
Vi = Vyx + KWy + Kg(uv), =0, (2)

where ki, k, and ks are real constants and subscripts x and t denote

differentiation w.r.t. the distance x and time t, respectively, with the
following boundary conditions:

u(a, t) = fi(a, t), wu(b, t)= fy(b,t),

v(a,t)=gq(a, t), v(b,t)=gs(b,t), 0<t<T (3)
and initial conditions
u(x, 0) = f(x),
v(x,0)=g(x), a<x<bh 4)

Numerical solutions for above have been provided by various authors,
including Radwan [2], Khater et al. [3], Ali et al. [4], Rashid and Ismail [5],
Liu and Hou [6], Mittal and Arora [7], Mokhtari et al. [8], Sadek and Kucuk
[9], Mittal and Jiwar [10], Kutluay and Ucar [11], Srivastava et al. [12],
Kumar and Pandit [13], Srivastava et al. [14], Mittal and Tripathi [15],
Abdou and Soliman [16], Dehghan et al. [17]. We have studied coupled
nonlinear Burgers’ equations by using non-polynomial spline method [18].
Also, we take linearization of nonlinear term using finite difference
approximation and applying Crank-Nicolson scheme. Quintic B-spline
collocation method is used to find numerical solutions of some nonlinear
equations in [19-22]. The short outline of this paper is as follows: In Section
2, quintic B-spline collocation scheme is explained. In Sections 3 and 4, the
method is illustrated and applied to the coupled Burgers’ equations. In
Section 5, a stability of the method is present. In Section 6, numerical
examples are included to verify the applicability and accuracy of the
proposed method computationally. In Section 7, the conclusion gives a
summary of what has been done in this paper.
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2. Quintic B-spline Functions

To construct numerical solution, consider nodal points (xj, t,) defined

in the region [a, b] x [0, T], where
a=Xg <X <= <Xy =b, h=Xj—Xj="F—
O=t) <ty <<ty <--<T, tj—tj=At ty =nAt, n=01 ..

The quintic B-spline basis functions at knots are given by:

B;(x)

(x = xj_3)° Xj_3 < X< Xj_g
(X - Xj_3)° = 6(x - xj_2)°, Xj2 S X< Xjgq
(x—xj_3)5—6(x—xj_2)5+15(x—xj_1)5, Xj_1 < X < Xj

:h% (—=x + xj_3)5 +6(x—xj+2)5 —15(x — xj+1)5, Xj < X< Xjyq
(=x+ Xj+3)5 +6(x - Xj+2)5’ Xj1 S XS Xjp2
(=X + Xj43)°, Xj+2 < X< Xjy3
0 otherwise.

(®)

Using quintic B-spline basis function (5) the values of Bj(x) and its

derivatives at the knots points can be calculated, which are tabulated in Table
1.

3. Solution of Coupled Burgers’ Equations

To apply the proposed method, we rewrite (1) and (2) as

2
P B ke P ofut, Dl 1,
aZV(X, t)  ov(x t) + kpv(x, t) 8] aV(X t) ks[u(x, t)v(x, t)]x’

8x2_8t
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and consider the approximations u(x, t) = U] and v(x, t) = V', then from

famous Cranck-Nicolson scheme and forward finite difference approximation
for the derivative t, [23], we get

1
{ugxguung}_u?ﬂ_u? » [(uux)';+ +(uux)g}
= 1

2 k 2

V)T + (V)
Vgt +Vig | V-V (va)rj‘+1 + (W)l
2 =T Tl 2
(UV)5 =+ (UV)
+ 3[ 5 , (7)

where k = At is the time step.

Table 1. The values of quintic B-spline and its first and second derivatives at
the knots points

X Xj-3 Xj-2 Xj-1 Xj Xj+1 Xj+2 Xj+3
Bj 0 1 26 66 26 1 0

' -5 -50 50 5
B - - > >

i) 0 h h 0 h h 0
B 20 | 40 | 120 | 40 [ 20

i 0 H2 h2 h2 h2 H2 0

In the Crank-Nicolson scheme, the time stepping process is half explicit
and half implicit. So the method is better than simple finite difference

method.

The nonlinear terms in equations (6) and (7) are linearized using the form
given by Rubin and Graves [24] as: we take linearization of the nonlinear
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term as follows:
(UU )n+1 nU )r(11+1 +U n+lU )r(]J nU )r(]j ,
(W) = VIV v g —vivg, 8)

Similarly the linearized form for (UV), can be obtained. Expressing U(x, t)
and V (x, t) by using quintic B-spline functions B;(x) and the time dependent
parameters c;(t) and §;(t), for U(x, t) and V(x, t), respectively, the

approximate solution can be written as:

N+2 N+2
U, )= D cj®Bj(0),  Vy(x )= Y 8;®Bj(x). (9
j=-2 j=-2

Using approximate function (9) and quintic B-spline functions (5), the
approximate values U(x), V(x) and their derivatives up to second order are

determined in terms of the time parameters c;(t) and 3;(t), respectively, as

UJ =U(Xj)=Cj_2+260j_1+660j+260j+l+Cj+2,

U'-—U'-—5 i 10c; 10c; i

j= (Xj)_F(C]+2+ Cjs1—10cj_1 —Cj_p),

Uj =U"(x; )_ (cJ 2 +2Cj1 —6Cj +2Cj,q +Cji2),

Vj =V(Xj)=8j_2+265j_1+665j+265j+1+5j+2,

Vi =V'(X; =3 S 103 ; 108 S

j = (XJ)_F( j+2 1081 —108; 1 —8;_»),

VI =V () = 20 (50 5 425, 1 —65; + 25,1 +9; 10

i = (Xj)_h_z( j-2 T40j1—00j +20jq1 + ]+2)' (10)
On substituting the approximate solution for U, V and its derivatives from

equation (10) at the knots in equations (6) and (7) yields the following
difference equation with the variables c;(t)s and §;(t),
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n+1 A n+1 A n+1 n+l n+l 8n+ A 6n+1
ACT 2 + ACig + AgCj ™ + AgCji1 + AsCyo + Agdj 5 + A7d g
+ AgBT™ 4 GBI + AgdT 1)
= Ai1Ci_o + Aoci g + Aisc] + Al + Aucllo,
8n+1 B 8 n+1 B 8n+1 B 8n+1 B 8n+l B 8 B n+
B15 15 + B35 + Bsd +4+l+5]+2+612+7c

n+l n+l n+l
+ BgCj ™ + BoCji + BioCjii

= AdT_g + A8 g + Agd + Apdlg + Auidlo,
where
Ay = 26— Zgﬁt B 251;1& - 65l;]1At . - 25ktht - 65I;]2At ”
A = 66+ GEZAt . 165::1At - 165E2At ”
A = 26— 2ﬁ§t . 25I;1At - 65I:]1At et 25ktht - 65ktht »
p -1 10AC At SGAt S SkoAt

h2 " 2h AT Ton 2T Ton BT o

5k, At 5k, At 65k, At 25k, At
As = ﬁ Zy — 22h 5, M7= h2 3 - h2 z,

165k, At 65k, At 25k, At
Ag = 227y, A =P+ 2y,
h h h
koAt 5kpAt ., 10at

Ap = op L2t o A A = +h—2,

Ay = 26+ Zr(])At, A = 66 asm

(11)

1

(12)
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. 10At 5kAt | BkgAt  BkgAt  BkgAt
Bi=l-" s " on BT on M on 4T on 2
20At 25Kk At 65k, At 25kyAt 65kqAt
BZ =26- h2 - hl 3 + hl Zy — h3 1+ h3 Zy,
 GOAt 165kjAt . 165kgAt
B3 =66 + -2 - Wt
B, = 26 ZEZAt N 25|:]1At 23 + 65|:]1At 24+ 251:13At 7 + 65|:13At 2,
10At  5kqAt 5k, At 5kqAt 5kqAt
Bs =1- 2 21h 23 + 21h 24 + 23h 71 + 23h 2y,
| BkgAt | BkgAt | B5KkgAt . 25KkgAt
Be =—n 4~ 5, 8 Br=—(p—u-—1—1
165kyAt 65k, At 25kyAt
BS = h3 Zy, Bg = h3 Zy + h3 Z3,

| BkgAt | BkgAt
Blo =2+ %

7 =Cj_p +26Cj_ 4 +66Cj +26Cj,q +Cj,o,
Zp =Cjyp +10cj, —10cj_4 —Cj_o,

Zg =8 o +263j 1 +665) +263j,1 +3j,2,
Zy =8, +108;,1 —108; 4 - 8;_,.

The system thus obtained on simplifying equations (11) and (12) consists of
(2N + 2) linear equations in the (2N +10) unknowns (c_», C_1, Cp, ..,
CNals CN12)s (82, 8.1, 8, o SNy ONs1s ONs2) . TO Obtain a unique
solution to the resulting system four additional constraints are required.
These are obtained by imposing boundary conditions. Eliminating c_,, ¢_4,

CN+1» CN42 and 8_p, 6_1, On41, ON4o, the system gets reduced to a
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matrix system of dimension (2N + 2)x (2N + 2) which is the penta-diagonal
system that can be solved by any algorithm.

4. Initial Values

At a particular time-level, the approximate solutions U(x, t) and V(x, t)
can be determined repeatedly by solving the recurrence relation, once the
initial vectors have been computed from the initial and boundary conditions.
From the initial condition u(xj, 0) = f(x;), we get (N +1) linear equations
in the (N +5) unknowns. The four unknowns c_,, C_j, Cn41 and Cy.o
can be obtained from the relations uy (X, 0) = f'(Xg), Ux(xN, 0) = f'(xN),
Uy (Xg, 0) = T"(Xg), Uxx(Xn, 0)= f"(xy), at the knots. It leads to system
of (N +1) linear equations in the (N + 1) unknowns. Which can be solved by
any algorithm. Similarly, using initial condition v(xj, 0) = g(x;), the initial

vectors for v can be computed.
5. Stability Analysis of the Method

The stability analysis of nonlinear partial differential equations is not
easy task to undertake. Most researchers copy with the problem by
linearizing the partial differential equation. Our stability analysis will be
based on the von Neumann concept in which the growth factor of a typical
Fourier mode is defined as

¢ = AC" exp(ijo),

) = BC" exp(ijo),
n+1

g=>—, (13)
¢

where A and B are the harmonics amplitude, ¢ = kh, k is the mode number,

i =4/-1 and g is the amplification factor of the schemes. We applied the
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stability of the quintic schemes by assuming the nonlinear term as constants

M, Ap. This is equivalent to assuming that all the c? and 6? as local

constants 1, A, respectively. At x = x; system (11) can be written as

ayc"3 + apc] ' + age] ™ + ayc s + asc] iy + agd ] + a8

n+l
+agCjiy + a981+2 = alOCj 2t a11(31 1t alZCj + al3cj+1 + a14CJ+2

—agdj_p — a78]_1 —agdl.1 —agdl.o, (14)
where
. 10At  SkyAt 5k At
a]_—l— h2 — 2h 7‘1_ 2h 7u2,
20At 25k At 25k, At
ay =26 — h2 - hl 7L1— h2 7\‘2,
60At 20At | 25kt 25k, At
a3_66+h—2, ay = 26 — 2t h M+ R0y,
_q_loAt  Skiat. Skt _ BkyAt
8 =1-" 7 " on Mt on M2 B = pp M
25k, At 5k, At
ay = — h2 7u1, dg = 22h 7‘1'
25K, At 10At | 5kiAt 5k, At

3 =—p—M, ap=1- 2 T 72h M+,

20At  25kqAt 25k, At 60At
811:26— h + hl 7\,1+ h2 7\.2, 2—66—h—2
. 20At 25kAt.  25k,At
d3 = 26 — h - h 7\,1 - h 7\,2,
sy -1 106U SkiAt,  Siont,

h2  2h 2h
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A{Z[l - 10#) c0S 2¢ + 2( 6 — &2&) cos¢ + [66 + &ZM
h h
Cn+l
sin Z‘P(A(Skﬁm Ay + SkEAt M) N B(Sszt
+ i
+sino 50k, At Ay + 50k; At 2|+ B 50k2At
L h h
A[z(l ; mAJ C0s 26 + 2(26 ; &ft) cos § + (66 ; &ftﬂ
h? h h
="
sin 2 ( (5k2At 5k1At M) N B(SkﬁM MD
= sin (A(SOkZAt 50k1At 7»1) N B(SOszt MD
h h |
we get
_ X2 +iY
Xy -y
where

Xy = A[Z(l - fﬂj c0s 26 + 2( %} Cos ¢ + (66 ;

X2

and

5kyAt

{2[1 ; “;AJ c0s 2 + 2(

5ky At

20At

5kyAt

s

h }u2+

50k AL

Y =

h 7\.1) + B( h

s

h

}u2+

50I:11At M) N B(

26+—Jcos¢+(
h?

66 +

)

50k At
h

60At

il

)

)}

(15)
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From (15) we get | g | <1, hence the scheme is unconditionally stable. It

means that there is no restriction on the grid size, i.e., on h and At, but we
should choose them in such a way that the accuracy of the scheme is not
degraded.

Similar results can be obtained from the difference (12), due to
symmetric u and v.

6. Numerical Tests and Results of Coupled Burgers’ Equations

In this section, we present some numerical examples to test validity of
our scheme for solving coupled Burgers’ equations.

The norms Lp-norm and L, -norm are used to compare the numerical
solution with the analytical solution [25],

N
2
L, =|uf —uN ||=\/h2(u'j5 —ul)?,
i=0
L, = max| u'jE —ug\‘ L =01 ..,N, (16)
i

E

where uF is the exact solution u and uN is the approximate solution Uy .

Now, we consider two test problems.
Test problem (1)

Consider the coupled Burgers’ equations (1) and (2) with the following
initial and boundary conditions:

u(x, 0) =v(x, 0) =sin(x), -w<x<m,
and
u(-m, t)=u(m, t)=0, 0<t<T,

v(-m, t)=v(r, t)=0, 0<t<T.
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The exact solution is

u(x, t) =v(x, ty=etsin(x) -m<x<m 0<t<T.

We compute the numerical solutions using the selected values k; = -2,
ko =1 and k3 =1 with different values of time step length At. In our first
computation, we compute L, -norm and L -normatt = 0.1, k = 0.001 while
the number of partition N changes. The corresponding results are presented
in Table 2. In our second computation, we compute L,-norm and L, -norm
at time level t = 1 for the same parameters in first computation with different
decreasing values of At. The corresponding results are reported in Table 3. In
both computations, the results are same for u(x, t) and v(x, t) because of
symmetric initial and boundary conditions. Also, we make comparison of our
numerical results of the problem (1) with the results obtained from [15] and
[5] for N =50, k =0.01, k; =-2, ky = kg =1 with different time t. The
corresponding results are presented in Table 4.

Table 2. Ly-norm and L., -norm for t = 0.1, k = 0.001 at different N

u(x, t) v(x, t) [7]
N L,-norm L.-norm L,-norm L-norm L,-norm
50 3.36761E-6 | 4.47952E-5 | 3.36761E-6 | 4.47952E-5 -
100 | 3.23312E-6 | 5.94996E-6 | 3.23312E-6 | 5.94996E-6 -
128 | 2.85406E-6 | 5.15038E-6 | 2.85406E-6 | 5.15038E-6 | 1.8178E-5
200 | 2.03096E-6 | 3.62184E-6 | 2.03096E-6 | 3.62184E-6 -

Table 3. Ly-norm and L,-norm for t =1 k = 0.01, 0.001 at different

N = 200
u(x, t) v(x, t) [71
k L,-norm L.-norm L.,-norm L.-norm L,-norm
k=0.01 | 2.22605E-5 | 5.95755E-5 | 2.22605E-5 | 5.95755E-5 -
k=0.001 | 2.36146E-6 | 5.95761E-6 | 2.36146E-6 | 5.95761E-6 | 3.00E-5
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Table 4. Comparison of numerical results of the problem (1) with the results
obtained from [15] and [5] for the variables u and v with N = 50, k = 0.01

u(x, t) v(x, t) [15] [7]
t L,-norm L,-norm L,-norm L,-norm L,-norm L.-norm
t=0.5 | 1.1066E-4 | 1.48333E-4 | 1.1066E-4 | 1.48333E-4 | 1.10308E-4 -
t=1 1.3621E-4 | 2.38302E-4 | 1.3621E-4 | 2.38302E-4 | 1.33688E-4 | 1.84705E-3

In Table 4, we show that our results are related with the results in [5] and
[15].

The corresponding graphical illustrations are presented in Figure 1
showing computed solutions of u(x, t) and v(x, t) for k; = -2, ko =1, k3
=1, N =200 and At =k =0.001 at t =0, 0.5, 1. In Figure 2, computed
solutions of u(x, t) and v(x, t) for k; = -2, ko, =1, k3 =1, N =200 and
At =k =0.001 at t =0, 0.05, 0.1. In Figure 3, computed solutions (exact
and approximate) of u(x, t) and v(x, t) for k; = -2, kp =1, k3 =1 N =
200 and At =k =0.001 at t =0.1. In Figure 4-6, computed solutions of
u(x,t) and v(x,t) at t=0.1, At=k =0.001 and N =200 for kg, ko,
ki, k3 and k», k3 fixed, respectively.

Figure 1. Computed approximate solutions of u and v for k; = -2, ky, =1,
ks =1, N =200 and At =k =0.001att =0, 0.5, 1.
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Figure 2. Computed approximate solutions of u and v for k; = -2, ky =1,
k3 =1, N =200 and At = k = 0.001 at t = 0, 0.05, 0.1.

o5} ¥ Y, i os F k.

Figure 3. Computed solutions (exact and approximate) of u and v for
ki =-2, kp =1, kg =1, N =200 and At =k =0.00L at t = 0.1.

Figure 4. Computed approximate solutions of u and v for k; = -2, ky, =1,
ks =8, N =200 and At =k =0.001 at t =0, 0.05, 0.1.
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Figure 5. Computed approximate solutions of u and v for k; = -2, ky =8,
k3 =1, N =200 and At = k =0.001 at t = 0, 0.05, 0.1.

Figure 6. Computed approximate solutions of u and v for k; =2, k, =1,
k3 =1, N = 200 and At =k =0.001 at t =0, 0.05, 0.1.

Test problem (2)

Numerical solutions of considered coupled Burgers’ equations are
obtained for k; = 2 with different values of k, and ks at different time

levels. In this situation, the exact solution is

2k, —1

U(X, t) = aO - ZA[W

}tanh(A(x — 2At)),

o [2kg =17 [ 2kp -1 _
v(x, t) = ao[m} ZA[—4k2k3 _J tanh( A(x — 2At)).
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Thus, the initial and boundary conditions taken from the exact solution are

u(x, 0) = ag — 2;{%} tanh(A(x)),

o [2kg-17 [ 2k, -1
v(x, 0) = ao[2k2 _J ZA[4k2k3 _J tanh( A(x)).

Thus, the initial and boundary conditions are extracted from the exact

solution, where ay; =0.05 and A=l[%
5 —

2
solutions for u(x, t) and v(x, t) have been computed for the domain x e
[-10, 10], k = 0.01 and number of partitions N =10, N =100 and N =

200. Ly-norm and L, -norm have been computed in Table 5 for t =1, k;

}. The numerical

=2, ko =0.1 and k3 = 0.3. In Tables 6 and 7, we make comparison of our
numerical results of the problem (2) with the results obtained from [3] and
[5] for the variables u(x, t) and v(x, t) with ag = 0.05, N =16, k = 0.01
at different time t and different values of k,, k3. In Tables 8 and 9, we make

comparison of our numerical results of the problem (2) with the results
obtained from [10] and [7] for the variables u(x, t) and v(x, t) with ag =

0.05, N =21, k = 0.01 at different time t and different values of ko, k.

Table 5. Ly-norm and L,-norm for t =1, k = 0.01 at different values of
N, kl =2, k2 = 0.1 and k3 =0.3

u(x, t) v(x, t)
N L,-norm L..-norm L,-norm L.-norm
10 2.92177E-4 9.02098E-5 1.110479E-4 4.54119E-5
50 3.00538E-4 8.22513E-5 1.114941E-4 4.18722E-5
100 3.01301E-4 8.23741E-5 1.115306E-4 4.19293E-5
200 3.01678E-4 8.19936E-5 1.155112E-4 4.20344E-5
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Table 6. Comparison of numerical results of the problem (2) with the results
obtained from [3] and [5] for the variable u with ag = 0.05, N =16, k = 0.01

u(x, t) [3] [5]
t ko ks L,-norm L..-norm L.-norm L..-norm
0.5 0.1 | 0.30 1.50682E-4 4.43465E-5 1.44E-3 9.619E-4
0.3 | 0.30 2.06357E-4 6.41587E-5 - -
1.0 0.1 | 0.30 2.96741E-4 8.44084E-5 1.27E-3 1.153E-3
0.3 | 0.30 4.06829E-4 1.19154E-4 - -
Table 7. Comparison of numerical results of the problem (2) with the results
obtained from [3] and [5] for the variable v with ag = 0.05, N =16, k = 0.01
v(x, t) 3] [5]
t Ky ks L,-norm L..-norm L..-norm L..-norm
0.5 0.1 | 0.30 5.77357E-4 2.34474E-5 5.42E-4 3.332E-4
0.3 | 0.30 2.06357E-4 6.41587E-5 - -
1.0 0.1 | 0.30 1.12928E-4 4.42146E-5 1.29E-3 1.162E-3
0.3 | 0.30 4.06829E-4 1.19154E-4 - -

In Tables 6 and 7, we show that our results are related with the results in
[3] and [5].

Table 8. Comparison of numerical results of the problem (2) with the results
obtained from [10] and [7] for the variable u with ag = 0.05, N = 21, k; = 2,

k =0.01
u(x, t) [10] [7]
t k, ks L,-norm L,-norm L.,-norm L.,-norm
0.5 0.1 | 0.30 | 1.51522E-4 4.33232E-5 4.173E-5 4.167E-5
0.3 | 0.30 | 2.07396E-4 6.10213E-5 - -
1.0 0.1 | 0.30 | 2.98215E-4 8.16821E-5 8.275E-5 8.258E-5
0.3 | 0.30 | 4.08648E-4 1.17123E-4 - -
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Table 9. Comparison of numerical results of the problem (2) with the results
obtained from [10] and [7] for the variable v with ap = 0.05, N = 21,

k =0.01
v(x, t) [10] [7]
t k, ks L,-norm L,-norm L.,-norm L.,-norm
0.5 0.1 | 0.30 | 5.81893E-5 2.31878E-5 5.418E-5 1.480E-4
0.3 | 0.30 | 2.07396E-4 6.10213E-5 - -
1.0 0.1 | 0.30 | 1.13699E-4 4.15257E-5 1.074E-4 4.770E-4
0.3 | 0.30 | 4.08648E-4 1.17123E-4 - -

In Tables 8 and 9, we show that our results are related with the results in
[10] and [7].

Now we take the test problem (2) at the domain x € [0, 1], k = 0.01 and
ki =2, ky, =0.1, k3 =0.3. Ly-norm and L, -norm have been computed,
see Table 10 for t = 1 with different values of N.

Table 10. Ly -norm and L., -norm for t =1, k = 0.01 at different values of
N, kl = 2, k2 =0.1 and k3 =0.3

u(x, t) v(x, t)
N L,-norm L.-norm Lo-norm L.-norm
10 5.44676E-6 7.73063E-6 1.53623E-6 2.23523E-6
50 6.01254E-6 8.36307E-6 1.69601E-6 2.41866E-6
100 6.08574E-6 8.13723E-6 1.71844E-6 2.35492E-6
200 6.12261E-6 | 8.46841E-6 1.72986E-6 2.44898E-6

The corresponding graphical illustrations are presented in Figure 7:
computed approximate solutions of u(x, t) and v(x, t) for k; = 2, k, = 0.1,

k3 =03, N =200 and At =k =0.0latt=0,0.5,1 x € [0, 1].
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Figure 7. Computed approximate solutions of u and v for k; =2, k, =1,
k3 =0.3, N =200 and At =k =0.01 att =0, 0.5, 1.

7. Conclusions

In this paper, a numerical treatment for the nonlinear coupled Burgers’
equations is proposed using a collection method with the quintic B-splines.
The stability analysis of the method is shown to be unconditionally stable.
We make linearization for the nonlinear term. We tested our schemes through
two test problems. Accuracy was shown by calculating error norms L, and

L,,. The obtained approximate numerical solutions maintain good accuracy

compared with the exact solutions.
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