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Abstract

We propose an improved ODE-type filter method. In this method, only
one linear system is required, and the penalty parameter is not needed.
Compared to the traditional filter methods, the new approach is more
flexible and less computational scale. Under some reasonable
conditions, the global convergent result of our algorithm is presented.

1. Introduction

The nonlinear complementarity problem (NCP) is equivalent to
constraint optimization problem

x>0, F(x)>20, x"F(x)=0, (1.1)

x e R", F(x):R" = R", is second-order continuously differentiable. We

introduce an NCP function, and transform the complementarity problem to a
optimization problem.
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The function ¢ : R> — R is called NCP function, if ¢(a, b) = 0, if and

only if a >0, b >0, ab = 0. We use Fischer-Burmeister function ¢(a, b) =

Va® +b? —a — b as NCP function. The nonlinear complementarity problem
(1) is equivalent to nonlinear system of equations

Vi + FE(x) = x = Fy(x)
d(x) = : . (1.2

\Jxrzl + Fnz(x) —Xn — Fn(x)

Thus, problem (1) is equivalent to the optimization problem to solve
. 1 T
min f(x) = Eq)(x) d(x). (1.3)

This paper is concerned with finding a solution to the constrained
nonlinear optimization problem as following:

min f(x)

st.cj(x)20, j=12 .., 2n, (1.4)
where f(x) = | x" F(x) ||§ and

c(X) = (X4, X2, -+ Xns F1(X), Fo(X), oy Fon(x)" : R" — R?",
let
C1(X) = Xq, C2(X) = Xa, ..., Cn(X) = X, Cnya(X) = Fy(x),
Cna2(X) = F2(X), ...y Con(X) = Fp(X).
F(x) is second-order continuously differentiable.

There are many methods for inequality constrained nonlinear
programming (NLP). But up to now, most algorithms proposed are descent
methods, in that they only accept the trial point as next iterate if its merit
function value is strictly less than that at the current iterate. It has two
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drawbacks, one is that the choice of penalty parameter is very difficult if we
use penalty function as a merit function, the other is that the descent methods
can result on reduction of convergence rate when the iterate is trapped near a
narrow curved valley. While, filter method, proposed by Fletcher and Leyffer
[1], overcome the drawbacks above. In filter method, the use of a penalty
function is replaced by the introduction of so-called filter. So, they have
several advantages. Recently, this technique is applied to the many kinds of
nonlinear problems combined with trust region method which is to be proved
robust [2-4, 6].

ODE methods for minimizing a function f(x) proceed by following the

solution curve of a system of ordinary differentiable equations and is more
reliable, accurate and efficient than conventional Newton and quasi-Newton
algorithms.

Motivated by the referees [2, 5, 6], we transform the nonlinear inequality
problems to a nonlinear equation, so that an improved ODE-type filter trust
region method is proposed. The filter technique is employed to determine
whether to accept the trial point or not. This paper is organized as follows.
The next section introduces the concepts we needed. In Section 3, an
improved method is put forward. The convergent properties are analyzed in
Section 4. Some numerical results are reported in the last section.

2. Preliminaries

2
Lagrangian function L : R" 21 5 R of the problem NLP is defined by

2n
L(x, 1) = F()+ > Ajej(x), {j =1 2, ..., 2n}. (2.1)
j=1
It is easy to obtain the KKT conditions of problem (NLP) as following:
V4L(x, 1) =0,
Aj=0,¢j(x)=0,Ajcj(x)=0, j=1{L 2, .., 2n}, (2.2)

where & = (A, Ay, ..., Aop)! € R?" is multiplier vector.
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Definition 2.1. Let ¢ : R™ — R" be locally Lipschitz continuous. Then

the B-differential of c at x € R" is defined by
dg(c(x)) =V e R™" |V = XII(iEXVC(Xk), X € D¢}
The generalized Jacobian of c at x in the sense of Clarke is defined by
d(c(x)) = convog(c(x)), (2.3)

where D, ={x € R" : ¢ at x is differential}. Symbol conv(x) denotes the
convex hull of set S.

Definition 2.2. Let G : R" — R" be locally Lipschitz continuous, we

call G at X semi-smooth if for all h € R", there exists

(Vh).

lim
V edG(x+th')-h'—h-t4 0

Definition 2.3. The function ¢ : R?2 > R is called NCP function, if
¢(a,b)=0 ifandonlyif a>0,b >0, ab = 0.

One of the most popular functions is Fischer-Burmeister NCP function

[7]:
o(a b)=va® +b% —a—h. (2.4)

2
Lemma 2.1. Let the function Vf be semi-smooth at X on R" | then Vf

is direction differentiable, and for ¥V e o(Vf(x + h)), we have
(i) Vh = (V) (x; h) = of| h[);
(ii) VE(x+h) = Vi(x)+ (VE)(x; h)+o( h])

as h decreases infinitely, where
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(VEY(x: h) = t“fg)(Vf(X + tht) - Vf(x)j

is called directional derivative Vf along the direction of h at x.

Lemma 2.2. Let V be a neighborhood of x, and ¢ : R" — R" isa LC!

function, then for x + d eV, there exists § > 0, such that

2
[ o(x-+ d)— o) - Vot d | < LI

By making use of the F-B NCP function ¢, KKT conditions (2.2) can be
reformulated to the following form:

L) 29

H(z) = [ o(x, 2)

where

7 = (XT, 7\4T) c R{n2+2n},

d(x, 1) = (@(c1(X), M)y @€ (X), 22), -ons @(Ciany (), Apony)) -
By the idea of split [8], non-differentiable function H(z) can be split into

H(2) = p(z) + a(2), (2.6)

where p(z) is a smooth function, q(z) is a non-smooth function, but

compared to p(z), q(z) is a relatively small in the sense of the norm.

Remark 1. In fact, for Ve >0, defined function ¢° : RZ 5 R as

follows:

o(a, b), if va? +b? > ¢,
(I)S(a' b) = ) (‘,3.2 n b2 _ 8)2
* 2¢ '

o(a, b

otherwise.
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Let

°(% 1) = (9°(cr(X), M), @ (C2(X), A2 woer ©°(Ciany (%), 2egomy))

Vi (L(x, 1))
- , 2.7
p(z) ( o (x, }L)j (2.7)

qaﬁﬂﬂn—mn=( ~0 28)

)
d(x, 1) = ¢°(x, 1)

it is easy to prove that p(z) is continuously differentiable, and q(z) is
continuous but not differentiable, we have

2
la(z)] < %«/ms, vz e RM 2N, (2.9)

The above equation (2.9) indicates that split equation (2.6) is meaningful.
In filter method, which is proposed by Fletcher and Leyffer [1], the
acceptability of steps is determined by comparing the value of constraint
violation and the objective function with previous iterates collected in a
filter. Different from the traditional filter method, we define the objective
function by 1(z) by 1(z) = || Vi(x, A)|, and the violation function 6(z) by
8(z) = || ¢(x, 1) |. So a trial point should either reduce the value of constraint
violation 6(z) or that of the function I(z).

Definition 2.4. A pair (I(zy), 6(z;)) is said to dominate another pair
(I(zj), 6(z;)) if both 1(z) < 1(zj) and 6(z) < 6(z). We also call this a

point z, dominates another point z;.

Definition 2.5. A filter £ is a list of pairs (I(zj), 6(zj)) such that no

pair dominates any other.

For convenience, we denote Zj = (Ij, ej). A new trial point zﬁ is

accepted if it is not dominated by any points in £ U z,. Consider the
convergence property of the algorithm, we call a new trial point is accepted,
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if and only if for z; € F it holds

e <1 =v8(| H [ [ Hj ) or 6 <85 —3(| Hy |l [ Hj ), (2.10)
where (| Hy” [ | Hy [) = min{(| H(z) . | H(z) )}, and v is a smal
positive number. Let py = p(zg), 05 = 6(z¢ ), and so on.

If the trial point z, is accepted in the sense of (2.10), then we add the

pair (I, 6F) into the filter, thatis f = U (I, 6f). And removed those

points which are dominated from the filter. For convenience, we call this the
update of the filter.

3. An Improved ODE-type Filter Algorithm

For non-smooth linear equation (2.5), at the kth iteration, we use ODE
trust region method [9] to obtain the search direction dy. That is to solve the

following system of linear equation
|
N(VP(@)VP(E )T + B+ 1|4 = VPEOH@E). ()

or the equivalent form

[(Vp(z)Vp(zc)" + B) + 1]d = = V(z ) H(z), (3.2)
where h, > 0 is the integral step, Vp(zy) is the gradient of the smooth

function p at the point z;.

The matrix By is the n? + 2n order symmetric matrix, which can be
updated by SR1 correction [3], i.e.,

(Y — Bdi) (Vi — Bidy )’
(yk — Bydy) di

Bik+1y = Bk +

where

Yk = VP(Zgean)) H (Zaay) — VP2 ) H(Zk) = VP(Zgksay) P(Zgksy) dic-
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Remark 2. The computational scale of this method to obtain dy is much
less than that of solving quadratic subproblem, meanwhile, the adjustment of
the step hy is much easier in the parameter space.

Algorithm

Step 0. Initialization, choose 7,y >0, €>0, O<n<I, O0<y<1

Initial split control value &; > 0, let k = 1.

Step 1. Compute H(z) = p(z) + q(z) and Vp(zy).

Step 2. If | Vp(zx)H(z¢ )| < &, stop.

If hk(Vp(zk)Vp(zk)T +By)+ 1 is positive definite, go to Step 3.
Otherwise, let my is the smallest integer with which the symmetric matrix
27™ b, (Vp(z )Vp(z¢ )T + By ) + | is positive definite, let by, = 2™ h, .

Step 3. Solve (3.2) to get dy. Let zg =z +d,, compute n =

M(z) - M(z¢)
M (z ) — i (z¢)
1
2

where M(2) = Z[H(@)IP, a(d) = 5| H(2) + Vp(z)Td

+=d'Bd.

Step 4. Denote I = 1(zg), O = 6(z¢)- If (I, O)) is not accepted by

the filter, go to Step 5. Otherwise zy .1y = zy, go to Step 6.
Step 5. If 1y 2 m, 24 = Zx, hie 411 = 2h, go to Step 7. Otherwise,

he = %hk’ ex = | dg ||2 go to Step 3 (inner loop).

Step 6. If rg = m, hyyn = 2h, go to Step 7. Otherwise, add the pair

1

5 h,, goto Step 7.

(I, 6F) to the filter £ and update, h, =

Step 7. Let g1y = | di |°, update By to By,q, k = k +1, go to Step
1 (outside loop).
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4. Convergence Properties

In this section, in order to present a proof of global convergence of
algorithm, we always assume that following conditions hold.

Assumptions

ALl. The iterate x* remains in a closed, bounded convex subset S € R".

A2. There exist two constants 0 < a < b such that al|d | < d"B,d <

b d ||?, for all k and for all d  R".

Suppose that Ared, = M(z)— M(zg), Pred, = M(z,)— gy (dy), then

Iy = ﬁ%glk' By Lemma 2.2, we obtain some results as following.
k

Lemma4.1. | Ared, — Predy | = O(|| dy ||2)-
Lemma 4.2. Pred, > i||d ||2

Proof. By (3.2), we have

Predy = M(z) - ax(dk)
= 2IH@) P - 5d"Bydy — 5] hize) + Vp(z)" dy |
= ~(Vp(z¢)" H(z)dy —%dE[VD(Zk)VP(Zk)T + By Jdy)
- of [ V(2 Vp(zT + By + 1 b

1
~ 5 [VP(z ) Vi(zi)" + By Jdg

N =

d;[Vp(zk)Vp(zk)T + Bk +i|:|dk +id|-(rdk
A 2hy

1 2
L (4.0)
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Theorem 4.3. The inner loop of the Algorithm terminates in finite
number of times.

Proof. Assume the conclusion is not true, we have r, <m by the
algorithm as k increases infinitely, and h, — 0. By (3.2), it holds d, — 0,
SO

(4.2)

Ared, — Pred, ‘s o( i [?) 0.

n—-1|=
[ =1 ‘ Pred R
2h 7K

It shows that r, > n as k increases infinitely and the desired conclusion holds.

In order to analyse the convergence properties of the algorithm, we
define some sets as following:

Let A = {k|(lg, 6y )} is accepted by {F |} represent the index set which
is accepted by the filter.

N = {k| Zik 41} = z } represent the index set which successful iteration.

S ={k|(I¢, 6f) add to the filter}, represent the index set which filter
update.

Based on Algorithm, we have A < N, and there are several cases as
following:

(1) | A| < oo, | N | < oo (it must hold | S| < ),
(2) | A| <o, | N | = oo (it must hold | S | < o),
() | A| =0, [N | < oo (it must hold |S | = ),
(4) | S| < oo (it must hold | A| = o0, | N | = o).

Then we discuss the convergence properties of the algorithm according
to these four cases, respectively.
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Lemma 4.4. Suppose there are finitely many points added to the filter
(| A] < ), and there are finitely times successful iteration (| N | < o), then

the algorithm can terminate in finite times. It holds Vp(z )H(zy) = 0.

Proof. Suppose by contradiction that there exists a constant € > 0, such
that || Vp(zx)H(zg) || = . Suppose kg be the last successful iteration, then
for vj, we have zy .3 = 7y, and zy,,j <n. Based on the algorithm, it
holds hy, — 0(k — o). Similar to Theorem 4.3, we obtain the contradiction
and the result follows.

Lemma 4.5. Suppose there are finitely many points added into the filter
( Al < ), and there are infinitely times successful iteration (| N | = ),

then
liminf| Vp(z¢ )H(z¢)| = 0.
k—o0
Proof. By algorithm, if | A| < o, | N | = oo, that means (I, 0 ) is not

accepted by filter as k increases infinitely. By Theorem 4.3, it holds r, > n,

and 3h > 0 such that h, > h as k increases infinitely.

Suppose by contradiction that there exists a constant & > 0, and a positive
index set kg such that | Vp(z)H(z¢)| = € as k > kq. By the algorithm and

Lemma 4.4, we have

Ared, > nPredy > %dI[Vp(zk)Vp(zk)T + By + % I}dk

= —%(Vp(zk)H(zk))T dk > 0. (43)

Thus, the sequence {hy} is monotonically decreasing, and by Ay, it is lower

bounded. So h, — h,; — 0(k — ), hence

(Vp(z )H(z )T dy = 0(k — o). (4.4)
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On the other hand
| (Vp(zi ) H (z¢ )" d |

; N
=(VIO(Zk)H(Zk))(VD(Zk)VD(Zk) + By +W|) (Vp(z ) H(z( )

| Vp(zi) H(zi) [?

- 1
Vp(z)Vp(z )" + By + EI
2
> 8—1
2 <
C°+M + h
>0 (4.5)

which contradicts to the (4.4). Hence the desired result follows.

Lemma 4.6. If there exists an infinite sequence of points is accepted by
the filter (| A| = o), and finitely many points added to the filter (| S | < «),
it holds

liminf| Vp(z¢ )H(z¢)| = 0.
kK—o0

By algorithm, it is similar to Lemma 4.5.

Lemma 4.7. Suppose there exist infinitely many points added to the filter
(S|=o0). Then

liminf|| Vp(z)H(z¢) || = 0.
k—o0

Proof. Suppose by contradiction that there exists a constant € > 0 such
that | Vp(zx)H(z¢)| = &. Consider the iteration in S. Suppose there exists a

subsequence {k;} such that S = {k;}, then z,, = Z;- _- It follows that there
I

exists a subsequence {k;} < {k;} such that
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lim inf(Vp(z )H (2 ) = VP(2:)H(2) and | V(20 )H(z2) || = & (4.6)

By the definition of {k;}, zj, is accepted by the filter for vI. Then as I

|
increases infinitely, it holds

hg < hg g —ymin{| Hy, [, Hg 1} or 8y <6 g —ymin{| Hy, [, Hy, 1}

4.7
By the assumptions, there exists a number 5 > 0 such that min ] Hy, [ H -1}
> 8. Then

h, =i _1 < —¥8 <0 or 6 — 6,4 < -8 <0. (4.8)

By (4.6), the left of inequality tends to 0, it is a contradiction. So we have

liminf| Vp(zq )H(z) | = 0. 49)

Now consider | £ {ki}, let {ki(j)} be the last iteration before | make Ziiqy

add to the filter. By algorithm, r, > n for I ¢ {k;}. Then it holds
” Vp(zk| )H(Zk| ) ” < ” vp(zki“))H (Zki(|)) ”
Together with (4.9) and k() € {k;}, the desired conclusion follows.

By Lemma 4.4 and Lemma 4.7, we obtain the convergence conclusion.

Theorem 4.8. Suppose that Assumptions hold, and Vp(z) is nonsingular
for all z € S. Then the sequence {z,} generated by the algorithm satisfies

two cases as following:
(1) Iteration terminated at the KKT point of the original problem (NLP).

(2) Every accumulation point is a KKT point of the original problem
(NLP).
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Theorem 4.9. Suppose z, — z*, h, — o, and Vp(z )H(zy) is semi-

smooth in Vz*, there exist constants p;, p, for Vvk and Vj e
o(Vp(zx)H(zy)) it holds

dT(ek +ijd > ld P and [V -0 [<X2,  (4.10)
hk hk
where Q, = Vp(zk)Vp(zk)T +By. If Vze S and Vp(z) is nonsingular,
then
(1) z* is the KKT point of the original problem.

(2) {z} converges to z* superlinearly.

Proof. The former part of the theorem follows the Theorem 4.8. Now we
turn to prove the second part of the theorem. Vp(z, )H(zy) is semi-smooth

in z*, by Lemma 2.1, as h decreases infinitely, it holds
Vp(zi +h)H (2 +h) = Vp(z)H (z) + Vi +o( 2" =z ). (4.11)

Based on that z, — z* as k increase infinitely, it holds
Vp(Z")H(z") = Vp(zi ) H () + Vi(z = 27) +o(| 2" = 7 ). (4.12)
And z* is KKT point of the original problem, that is H(z") = 0, then we have

Vp(z )H(z) = Vi (e = 2°) + o] ¢« — 2° ). (4.13)

By (4.11)-(4.13) and h, — oo, we obtain

| 22— 27|

=lz+dg —2" | =

1
7 -7 _(Qk +%|j Vp(zi )H (z¢ )
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1\t 1 ;
Qx + 1 Qk +WI (zx = 27) = Vp(z ) H(zy)

|z -7" |

-1
Qx +ilj (" Qu(zk = 2") = Vp(z¢ ) H (7 ) ||+TJ

% * —Z _Z*
X(nvkuk—z )= V(zOH (20 |+ Vi - Qi 2 - 27 [+ e "}

=o(lzc - 27 ) (4.14)

which yields the desired conclusion.
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