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Abstract

Suppose that X is a complex Banach space and T, S € L(X). If there

exists an integer k € N such that C(S, T)k(l) =0, we say that T
belongs to Helton class of S with order k. In this paper, we study
SVEP, property (C), property (B), property (8) and decomposability
for Helton class of operators. We also show that if f :U — C isan
analytic function on an open neighborhood U of o(T), then T has

SVEP at p e o(T) if and only if f(T) has SVEP at A for which
f(u) =2

1. Introduction and Preliminaries

Let X and Y denote complex Banach spaces and L(X,Y) denote the
Banach algebra of all bounded linear operators of X into Y. As usual, when
X =Y, we simply write L(X) for L(X, X). Given T e L(X), we use
KerT, o(T), oy(T), o5,r(T) and p(T) to denote the kernel, the spectrum,
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the point spectrum, surjective spectrum, and the resolvent set of T,
respectively. For a T-invariant closed linear subspace Y of X, let T |Y denote

the operator given by the restriction of T to Y. The dual space X is denoted by
X* and the adjoint of T € L(X) by T".

Definition 1.1. An operator T € L(X) is said to have the single-valued
extension property at a point A € C (for brevity, SVEP at 1), if for every

open disc D < C centered at A the only analytic function f : D — X

satisfies the equation
(u =T)f(u)=0 forall pe D

is the constant function f =0 on D. Moreover, an operator T € L(X) is

said to have the SVEP if T has the SVEP at every point A € C.

It is easy to see from definition of localized SVEP that if Gp(T) does

not cluster at A, then T has the SVEP at A. Moreover, every operator T has
the SVEP at an isolated point of the spectrum. Obviously, T has the SVEP at
every A € p(T), see[l, 14, 16].

The SVEP may be characterized by means of typical tool of the local
spectral theory. Obviously, an operator T has SVEP at a point A precisely
when Al —T has SVEP at 0. It is immediate to verify that the SVEP is
inherited by the restrictions on closed invariant subspaces. It follows from
[14, Proposition 1.2.16] that

T has SVEP < Xt1(9) = {0} < X71(0) is closed.

The local resolvent set pt(x) of T at the point X € X is defined as the
set of all A € C for which there exists an analytic function f :U — X on

some open neighborhood U of A such that
(ul =T)f(u)=x forall peU.

The local spectrum o1 (x) of T at X is the set defined by o7 (X):=
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C\pt (x). Obviously, o1 (X) is a compact subset of (T ). For given F < C,
the local spectral subspace of T associated with F is the set

X1(F)={xe X :o7(x) < F}.

It is easily seen from the definition that X1 (F) is a linear subspace

T-invariant of X. A variant of the local spectral subspaces, which is more
useful for operators without SVEP, is given by the glocal spectral subspace
X1 (F). This subspace is defined, for an operator T € L(X) and a closed

subset F of C, as the set of all x € X for which there exists an analytic

function f : C\F — X which satisfies the identity
(ul =T)f(n) = x forall p e C\F.

In general, X1 (F) < X1 (F) for every closed subset F < C, but the two

concepts of glocal spectral subspace and local spectral subspace coincide if T
has SVEP, i.e., if T has SVEP, then X1 (F) = X1 (F) for every closed subset

F < C, see [14, Proposition 3.3.2]. Note that X1 (F), as well as X1 (F), in

general is not closed.

By [1, Theorem 2.22 and Corollary 2.41], the localized SVEP may be
characterized as follows.

Theorem 1.2 [1]. For every operator T € L(X) and A e C, the following

assertions are equivalent:
(a) T has SVEP at A,
(b) Ker(Al =T)N X1(9) = {0},
(©) N =T)N X7 (9) = {0},
where N'*(T) = Ule KerTX denotes the hyper-kernel of T.

2. Main Results

For an arbitrary operator T € L(X) and an analytic function f :U — C
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on an open neighborhood U of o(T), let f(T) e L(X) denote the operator

given by the Riesz functional calculus
-1 Tyl
f(T) = = IF fOO)M =T) "da,

where T is a contour in U that surrounds o(T). By the classical spectral

mapping theorem, we have f(o(T)) = o( f(T)).

Theorem 2.1. Let T € L(X), let U < C be an open neighborhood of
o(T), and let f :U — C be an analytic function that is non-constant on
each connected component of U. Then f(T) has SVEP at A for which f(u)
=) ifand only if T has SVEP at p € o(T).

Proof. Suppose that f(T) has SVEP at A € C, where f(u) = A for some
w € o(T). Then, by Theorem 1.2, Ker(Al — f(T))N Xy _¢(7)(0) = {0}. Tt
suffices to show that Ker(ul —=T) X, _7(¢) = {0}. Let x e Ker(ul -T)
N Xy -1 (9). Then (ul =T)x = 0 and o, _1(X) = ¢, and hence o7 (X) = ¢.
Since f(u) = A, there exists an analytic function g : U — C such that
A= f(T)=gT)(ul -T).
Since g(T) is invertible, x € Ker(Al — f(T)). By Theorem 3.3.8 [14],
ot(m)(x) = flor(x)) =,
and we have x e Ker(Al — f(T)) N Xy _¢(1)(9) = {0}, it follows that
Ker(ul =T)N Xy -1 (9) = {0}

By Theorem 1.2, T has SVEP at .

Conversely, let L € C, and suppose that T has SVEP at p € o(T) for
which f(p) =2A. Then, by Theorem 1.2, Ker(ul —T)N X _7(¢) = {0}.
It suffices to show that Ker(Al — f(T))N Xy _¢1)(¢) ={0}. Let x e
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Ker(M = £(T) N Xy —(7)(¢). Then (Al — f(T))x =0 and oy _¢7)(X)
= ¢. Thus, by Theorem 3.3.8 [14],

flor () = o(r)(x) = ¢

By the classical spectral mapping theorem for the Riesz functional calculus,

we may assume that A € f(o(T)). Since f is non-constant on each connected

component of U, if follows from the identity theorem for analytic functions

that the function f —A has only finitely many zeros in o(T), and that all

these zeros are of finite multiplicity. Hence there exists an analytic function
g:U — C suchthat A — f = gp, and p is a polynomial of the form

p=( = 2Z)(ny = 2Z)(up = 2)
with not necessarily distinct elements py, Wy, ..., iy € o(T), where Z denotes

the identity function. By the classical spectral mapping theorem, g(T) is
invertible. Since p(T) = g(T) " (Al — f(T)) and (Al — f(T))x = 0, we obtain
p(T)x =0, ie.,
(! =T)(ual =T)--(upl =T)x = 0.
Let y == h(T)x, where h(T) := (upl = T)(uzl =T)---(uyl =T) € L(X). By
Proposition 1.2.17 [14],
or(y) = o1 (h(T)X) < o1(X) = ¢.

Since T has SVEP at p;, Theorem 1.2 implies that y = 0. An obvious

repetition of this argument for p,, p3, ..., i, leads to the desired conclusion

that X = 0. Hence f(T) has SVEP at A = f(u). O

For given operators T € L(X) and S e L(Y), we consider the
corresponding commutator C(S, T): L(X, Y) = L(X, Y) defined by

C(S, T)(A) = SA— AT forall Ae L(X,Y).

The iterates C(S,T)" of the commutator are defined by C(S, T)(A) = A
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and
n n
C(S, T)"(A):=C(S, T)" I(SA- AT) = Z(—l)k(kJS”_kATk,
k=0

forall Ae L(X,Y) and n e N. It s clear that

C(S, T)™!(A) = C(S, T)"(SA- AT) = SC(S, T)"(A) - C(S, T)"(A)T,
and C(S, T)"(A) = (-1)"C(M =S, Al —=T)"(A) for all ne N and for all
A e C.

If X =Y and T, S and A are pairwise commuting operators on X, then
C(S, T)"(A)=(S-T)"A forall ne N.

In particular, if the operators S and T commute, then C(S, T)k(l) = 0 holds

for some k € N ifand only if S =T + N for some nilpotent operator N of

order at most K.
In [9], Helton initiated the study of operators T which satisfy an identity
of the form C(T", T)k(l) = 0 for some integer k € N.

Definition 2.2. Let S, T € L(X) be operators on complex Banach space

X. If there is an integer K > 1 such that an operator T satisfies
cs. () =0,

we say that T belongs to Helton class of S with order k, and we denote this by
T e Heltony(S).

It is clear that S and T are nilpotent equivalent if and only if T €
Helton, (S) and S e Helton, (T ) for some integer k € N. Obviously, if T

Helton, (S), then S™ e Helton, (T*) and Al —T e Helton, (Al —S) for
every A € C. Moreover, straightforward induction shows that if N € L(X)
is nilpotent and satisfies TN = NT, then T + N e Heltonp(T) and T €
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Helton, (T + N) for some integer p € N. It is well known that C(S, T)k(l)
= 0 does not imply C(T, S)k(l) = 0 in general.
Proposition 2.3. Let S, T € L(X). If T e Helton,(S), then o5(X) <

o1 (x) for all x e X. Moreover, X1(F) < Xg(F) and X1(F) < X5 (F)

for every closed subset F < C.

Proof. Let A ¢ o7(x). Then A € pt(X), so that there exist an open
neighborhood U of A and an analytic function f : U — X such that

(ul =T)f(n)=x forall peU.

We define g : U —> X by

g(n) = Z( HMc(s, T)m(l) (“) forall p e U.

It is easy to check that g(A) converges locally uniformly on U. Hence g is
analytic and it is easily seen that g satisfies the identity (ul — S)g(n) = x for
all p e U. Thus A ¢ 65(X) and hence o5(X) < o7(x) forall x e X. O

The quasi-nilpotent part Hy(T) of T is defined as the set
1
Ho(T):={xe X : lim | T"x |n = 0}.
n—oo

It is clear that H(T) is a linear subspace of X, generally not closed.
Furthermore, Ker(T") < H(T) for every n € N and T is quasi-nilpotent if
and only if Hy(T) = X, see [14, Proposition 3.3.7 and 3.3.13 or 1, Theorem
1.68]. It is clear that if T e Helton, (S) and ST =TS, then T+Se
Helton, (2S). The following result is an immediate consequence of

Proposition 1.2.16 [14] and Proposition 2.3.

Corollary 2.4. Let S, T € L(X) and let T e Helton,(S). Suppose that
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S has SVEP. Then T has SVEP and H(T) < H(S). Moreover, if ST =TS,
then T + S has SVEP.

Proposition 2.5. Suppose that T e Helton, (S). Then we have
Ker(M —T) < Ker(Al —S)¥ = N®(Al —S)

for all A e C. Moreover, Ker(Al —=T)" ¢ N*(AM =T) < Hy(AMl =T) for

all ne N.

Proof. Let x € Ker(Al —T). Then (A —T)"x = 0 for all positive integer

m € N. Since
k k m k k—m m
CAl =S, Al =T)*(1) = Zmzo(— 1) (m)(ll -S) A =T)",

0=C(S, T)()x = (=D*CO =S, Al =T)(1)x = (= DX = $)¥x.

Thus x € Ker(Al — S) and hence Ker(Al —T) < Ker(Al — S)X. It follows

from Lemma 1.67 [1] that Ker(Al —T)" ¢ N*(Al =T) < Ho(Al = T) for
all ne N. O

A bounded operator T € L(X) is said to have property (Q) if Hy(Al —T)
is closed for every A € C. Evidently, if T has SVEP, then Ho(Al -T) =
X1 ({A}) for every A e C.If T has property (C), then Ho(Al = T) = X7 ({1})
is closed for every A € C, so that the implication hold:

T has property (C) = T has property (Q) = T has SVEP.

The following result is an immediate consequence of Proposition 2.3.

Corollary 2.6. If the operators S € L(X) and T e L(X) are nilpotent
equivalent, then T has property (Q) if and only if S has property (Q).

We shall be concerned with the following classical parts of the spectrum
o(T) of the operator T, the point spectrum o ,(T):={A € C: Al - T is not
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injective}, the surjectivity spectrum og, (T)={A e C: (Al =T)X = X}.
The localizable spectrum o)o:(T) of an operator T € L(X) defined as the
set of all A € C for which X7 (V) # {0} for each open neighborhood V of

A. As shown by Muller and Neumann [12], the localizable spectrum plays an
important role in the theory of invariant subspaces, see more details [8, 15,
18].

Proposition 2.7. Let S, T € L(X) and let T e Helton,(S). Then we
have the following:

(a) 6p(T) < 6p(S);

(b) 610¢(T) < G10c(S);

(©) osur(S) = ogr(T);

(d) if S has SVEP, then o(S) < o(T).

Moreover, if the operators S e L(X) and T e L(X) are nilpotent
equivalent, then c,(T)=0,(S), Gloc(T) = Oloc(S), Osur(T) = osur (S)
and o(T) = o(S).

Proof. (a) Suppose that A € Gp(T) and let X € X be an eigenvector for
the eigenvalue A of T, then (Al —T)™x = 0 forall m € N. Thus we have

k

0=CO =S, Al =T)()x = Z(:J(M — )Mo - T)Mx

m=0
= (S —a)¥x.
Thus A € 6,(S), and hence 6,(T) < op(S).

(b) Proposition 2.3 guarantees that X7(V) < Xg(V) for every open
subset V < C. Hence we get 6jc(T) < 010c(S).
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(c) By Theorem 2.43 [1] and Proposition 2.3,

osur(8) = | os(0) < (Jor (%) = oqur ().

xe X xeX

(d) Suppose that S has SVEP. Then Corollary 2.4 ensures that T has
SVEP. It follows from Proposition 1.3.2 [14] that o(S) < o(T). O

Let U be an open subset of the complex plane C and H(U, X) be the

Frécht algebra of all analytic X-valued functions on U endowed with uniform

convergence on compact sets of U.
Recall that an operator T e L(X) is said to satisfy Bishop’s property ()
at A e C if there exists r > 0 such that for every open subset U < D(A, r),
open disc centered at A with radius r, and for any sequence (f,),c H(U, X)
if
Tim (4l =) fo (1) = 0
in H(U, X), then lim_,, fy(n) =0 in H(U, X). We denote by cg(T) by

the set where T fails to satisfy (B), i.e.,
op(T):=1{r € C:T fails to satisfy Bishop’s property (B) at A}.

We say that T e L(X) satisfies Bishop’s property (B) precisely when
op(T) = ¢.

The analytic residuum S(T) is the open set of points A € C for which
there exists a non-vanishing analytic function f :U — X on some open

neighborhood U of A so that (ul —T)f(u) =0 for all u e U. Obviously,
S(T) is a subset of the interior of the point spectrum &, (T) of T. It is clear

that the set S(T) is empty precisely when T has SVEP.

Recall that an operator T e L(X) is said to have the decomposition

property (8) if the adjoint operator T™ on the dual space X * satisfies Bishop’s
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property (B), equivalently, X = X1(U)+ X7 (V) for every open covering
{U,V} of C.

An operator T e L(X) is called decomposable if, for every open covering

{U, V} of the complex plane C, there are T-invariant closed linear subspaces
Y and Z of X such that

X=Y+2Z, ofT|Y)cU and o(T|Z)c V.
In [4], Albrecht et al. show that an operator T € L(X) is decomposable
if and only if T has both properties (B) and (8). Moreover, Albrecht and

Eschmeier proved that the property (B) and (8) are dual to each other in the
sense that an operator T € L(X) satisfies (B) if and only if the adjoint

operator T" on the dual space X satisfies (8) and that the corresponding

statement remains valid if both properties are interchanged.

Theorem 2.8. Let T, S € L(X) be operators on the complex Banach
space X. If T e Helton, (S), then op(T) < og(S) and S(T) < S(S).

Proof. We only give the proof for (B), the case of the analytic residuum
is clear similar. Let & ¢ op(S) and let (fj,), be sequence of X-valued analytic

functions in a neighborhood U of A such that

lim (ul = T) fp(n) =0 in H(U, X).
N—o0

At first, we claim that lim,_, (S — pl )k (1) = 0. Since

C(S. T)(1) = (-DfCul =S, pl =T)*(1) = C(S —pl, wl ~T)*(1),

forall n € N and all p € C, we have
limg oo [C(S, T)(1) = (S = )T ()

= limp_,,,[C(S — pl, pl = T) (1) = (S — p)*] ()
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, k=1(k i —j
i 3 ()68 - =TT 1o

timn ) 30468 ) =TI G Tt 0

=0\ j
and hence
lim (S — pl) f,(u) = 0.
nN—o0
Since A & og(S), limp_,o, (S — pl )k_1 f(1) = 0. By induction, we have
lim f,(n) = 0.
nN—o0
Thus T has Bishop’s property (B) at A, and hence A & og(T). O

The following result is an immediate consequence of Theorem 2.8.

Corollary 2.9. Let T, S € L(X) and let T € Helton,(S). If S has
Bishop’s property (), then T has Bishop’s property (B).

If TeL(X) and S e L(X) are commuting operators on X, then
C(S, T)"(A)=(S-T)"A forall Ae L(X)and n e N.

Theorem 2.10. Let T, N e L(X) be commuting operators, and suppose
that N is quasi-nilpotent. Then we have

(@) T + N has property (8) if and only if T has property (3);

(b) T + N has property (Q) if and only if T has property (Q).

Proof. It suffices to show that X1, N(F) = X1 (F) for every closed
subset F < C. Evidently, C(T + N, T)"(1)= N" and C(T, T + N)"(I) =

(=1)"N" forall n e N. Since N is quasi-nilpotent, we have
1 1
lim || C(T +N,T)"(1)n =0 and lim | C(T,T + N)"(1)[n = 0.
n—>c0 n—co

By Proposition 2.2 of [13], o1,n(X)=o7(x) for all x e X. Hence
X1 ,.N(F) = X1 (F) for every closed subset F < C.
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(a) For every open cover {U, V} of C,
Xr(U)+ X7 (V) =X nU) + Xp oy (V),
and hence T + N has property (8) if and only if T has property (3).
(b) By Theorem 2.20 [1], Hy(Al —T) = X1 ({1}) for all A € C. Thus
we have Hy(Al =T — N) = Hy(Al —T), and hence T + N has property (Q)
if and only if T has property (Q). O
It is well known that T € L(X) is decomposable if and only if T has both
properties (B) and (8). It is well known that T e L(X) is decomposable if

and only if T* € L(X™) is decomposable, see more details [1, 3, 4, 14].

Corollary 2.11. Let T,SeL(X) and let T € Helton,(S). If T has
property (8), then S has property (8). Moreover, if T is decomposable, then
S is decomposable.

Proof. Suppose that T has property (8). Then, by standard duality theory,

S* e Helton, (T™) and T™ has property (). By Corollary 2.9, S™ has property
(B), and hence S has property (). O

Recall that an operator T e L(X) is said to be a spectral operator in the
sense of Dunford if T = S + N, where S is a scalar type operator and N is a
quasi-nilpotent operator commuting with S.

Corollary 2.12. Let T, S € L(X) and let T e Helton,(S). If S is a
spectral operator with o1 (x) < og(x) for all non-zero x € X, then T is
decomposable.

Proposition 2.13. Let T, S € L(X) and let T e Helton,(S). If T is
algebraic, then S is decomposable.

Proof. Suppose that T is algebraic. Then T has SVEP. Let p be the non-
zero polynomial p such that p(T) = 0. By the spectral mapping theorem,

P(c(T)) = o(p(T)) = {0}. Thus o(T) is contained in the set of zeros of p. By
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Proposition 2.7, o(S) < o(T). Thus o(T) is contained in the set of zeros of

p, and hence o(S) is a finite set. It follows that S is decomposable. O

Proposition 2.14. Let T, S € L(X) be operators on complex Banach
space X, and let T e Helton,(S). Suppose that o7 (x) < o5(x) for all non-
zero x € X. Then

(a) S has SVEP if and only if T has SVEP;

(b) S has property (C) if and only if T has property (C);

(c) S has property () if and only if T has property (3);

(d) S is decomposable if and only if T is decomposable.

Proof. By Proposition 2.3, o1(X) = og(x) for all x € X and hence
X1(F) = Xg(F) for all closed subset F < C.

(a) follows from Proposition 1.2.16 of [14].

(b), (¢) clear.

(d) If S is decomposable, then S* is decomposable. Since S e

Helton, (T™), by Proposition 2.14, T* is decomposable, and hence T is

decomposable. O

Recall that an operator T € L(X) has fat local spectra if o7 (x) = o(T)

for all non-zero X € X. For example, semi-shift operators and quasi-nilpotent

operators have fat local spectra. Obviously, if T € L(X) has fat local spectra,
then X1(F) = {0} for every closed subset F < C that does not contain
o(T), and X7(F) = X otherwise, and hence T has property (C).

Corollary 2.15. Let T, S € L(X) and let T e Helton, (S). Suppose that

T* has SVEP. If S has fat local spectra, then T has fat local spectra.

Proof. Suppose that o(S) = o5(x) for all non-zero X € X. Then S has
property (C) and hence S has SVEP. By Proposition 2.3 and Proposition
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1.3.2 [14],

o(8) = oqur(8) = | 050 = [ Jor (0 = 050 (T) = o(T).
xeX xeX
Since T* has SVEP and S* € Helton, (T*), S has SVEP, by Corollary
2.4. 1t follows from Proposition 2.7 that

o(T*) = o(S*) = a(S)" = o5(x)* < o1 (x)" for all non-zero x € X.

This implies that o(T ) < o7 (x) for all non-zero X € X, and hence T has fat

local spectra. O

Corollary 2.16. Suppose that T € L(X) and S € L(X) are nilpotent

equivalent. Then T is decomposable if and only if S is decomposable.

An operator T e L(X) is said to be a Riesz operator if, for each non-
zero A € C, the operator Al — T has finite-dimensional kernel and cofinite-

dimensional range. By the classical Fredholm alternative, all compact
operators, also quasi-nilpotent operators are Riesz operators. The spectrum of
a Riesz operator is at most countable, clusters only at the origin if any where,
and consists, except for zero, only of eigenvalues, see [1] and [14].

Proposition 2.17. Let T, S € L(X) and let T e Helton,(S). Suppose

that T* has SVEP. If S is a Riesz operator with o7 (x) < o5(x) for all non-
zero x e X, then T is a Riesz operator. Moreover, if T € L(X) and S e
L(X) are nilpotent equivalent, then S is a Riesz operator if and only if T is a
Riesz operator.

Proof. Suppose that S is a Riesz operator with o7 (x) < og(x) for all
non-zero X € X. By Theorem 1.4.7 [14], S is decomposable and Xg(F) is
finite-dimensional for every closed set F < C for which 0 ¢ F. By
Proposition 2.7, T is decomposable and o1 (X) = 65(x) for all x € X. Thus

X1 (F) = Xg(F) is finite-dimensional. Hence T is a Riesz operator. O
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