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Abstract 

In this paper, we introduce a new concept for Riesz almost lacunary 
3Γ  sequence spaces strong P-convergent to zero with respect to an 

Orlicz function and examine some properties of the resulting sequence 
spaces. We also introduce and study statistical convergence of Riesz 

almost lacunary 3Γ  sequence spaces and also some inclusion theorems 
are discussed. 
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1. Introduction 

A triple sequence (real or complex) can be defined as a function :x  
( ),CRNNN →××  where RN,  and C  denote the set of natural numbers, 

real numbers and complex numbers, respectively. The new classes of 
difference sequence spaces and vector valued sequence spaces investigated 
by Mursaleen et al. [8-10]. The different types of notions of triple sequence 
was introduced and investigated at the initial by Sahiner et al. [12, 13], Esi et 
al. [1-3], Datta et al. [4], Subramanian and Esi [14], Debnath et al. [5] and 
many others. 

A triple sequence ( )mnkxx =  is said to be triple analytic if 

.sup
1

,, ∞<++ knmmnkknm x  

The space of all triple analytic sequences are usually denoted by .3Λ  A triple 
sequence ( )mnkxx =  is called triple entire sequence if 

0
1

→++ knmmnkx  as .,, ∞→knm  

The space of all triple entire sequences are usually denoted by .3Γ  

2. Definitions and Preliminaries 

Definition 2.1. An Orlicz function (see [6, 11]) is a function [ )∞,0:M  

[ )∞→ ,0  which is continuous, non-decreasing and convex with ( ) ,00 =M  

( ) ,0>xM  for 0>x  and ( ) ∞→xM  as .∞→x  If convexity of Orlicz 

function M is replaced by ( ) ( ) ( ),yMxMyxM +≤+  then this function is 

called modulus function. 

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to 
construct Orlicz sequence space. 

Definition 2.2. The four dimensional matrix A is said to be RH-regular if 
it maps every bounded P-convergent sequence into a P-convergent sequence 
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with the same P-limit. The assumption of boundedness was made because a 
triple sequence spaces which is P-convergent is not necessarily bounded. 

Definition 2.3. A triple sequence ( )mnkxx =  of real numbers is called 

almost P-convergent to a limit 0 if 
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,0→  

that is, the average value of ( )mnkx  taken over any rectangle 

( ){ }1,1,1:,, −+≤≤−+≤≤−+≤≤ utktqsnsprmrknm  

tends to 0 as both p, q and u to ,∞  and this P-convergence is uniform in ,i  

and j. Let denote the set of sequences with this property as [ ]3 .Γ  

Definition 2.4. Let ( ) ( ) ( )rstrstrst qqq ,,  be sequences of positive numbers 

and 
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Then the transformation is given by 

∑ ∑ ∑= = =
++=

r
m

n
n

t
k

knm
mnkknm

tsr
rst xqqq

QQQ
T

1 1 1
11  

is called the Riesz mean of triple sequence ( ).mnkxx =  If ( )xTP rstrstlim−  

,0=  ,0 R∈  then the sequence ( )mnkxx =  is said to be Riesz convergent to 

0. If ( )mnkxx =  is Riesz convergent to 0, then we write .0lim =− xPR  

Definition 2.5. The triple sequence {( )}jiji knm ,,,, =θ  is called triple 

lacunary if there exist three increasing sequences of integers such that 

∞→−== −10 ,0 rii mmhm  as ∞→i  and 

∞→−== −10 ,0 nnhn  as ,∞→  

∞→−== −10 ,0 jjj kkhk  as .∞→j  

Let ,, ,,,, jijijiji hhhhknmm ==  and ji ,,θ  is determined by 

 {( ) },andand:,, 111,, jjiiji kkknnnmmmknmI ≤<≤<<<= −−−  

 .,,
111 −−−

===
j

j
j

k
k

k k
k

qn
nqm

mq  

We use the notations of lacunary sequence and Riesz mean for triple 
sequences. {( )}jiji knm ,,,, =θ  be a triple lacunary sequence and knm qqq  

be sequences of positive real numbers such that ( ]∑ ∈=
i ii mm mm pQ ,0 ,  nQ  

( ]∑ ∈= nn np,0 ,  ( ]∑ ∈=
j jj kk kn pQ ,0  and ( ]∑ ∈=

i imm mi pH ,0 ,  =H  
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( ]∑ ∈ nn np,0 ,  ( ]∑ ∈=
j jkk kpH ,0 .  Clearly, ,1−−= ii mmi QQH  nQH =  

,1−− nQ  .1−−= kjkjj QQH  If the Riesz transformation of triple sequences is 

RH-regular, and ∞→−=
−1ii mmi QQH  as ,∞→i  ( ] ∞→= ∑ ∈ nn npH ,0  

as ( ]∑ ∈ ∞→=∞→
j jkk kpH ,0,  as ,∞→j  then {( )}jiji knm ,,,, =θ′  

{( )}kji knm QQQ=  is a triple lacunary sequence. If the assumptions ∞→rQ  

as ∞→∞→ sQr ,  as ∞→s  and ∞→tQ  as ∞→t  may be not enough 

to obtain the conditions ∞→iH  as ,∞→i  ∞→H  as ∞→  and jH  

∞→  as ,∞→j  respectively. For any lacunary sequences ( ) ( )nmi ,  and 

( )jk  are integers. Throughout the paper, we assume that 1211 qqQr +=  

( ),∞→∞→++ rqrs  ( ),1211 ∞→∞→+++= sqqqQ rss  =tQ  

( ),1211 ∞→∞→+++ tqqq rs  such that ∞→−=
−1ii mmi QQH  as 

,∞→i  ∞→−=
−1nn QQH  as ∞→  and ∞→−=

−1jj kkj QQH  

as .∞→j  

Let ,,,, jijiknmknm HHHHQQQQ jiji ==  

{( ) nnmmji QnQQmQknmI ii <<<<=′
−− 11 ,:,,  

and },1 jj kk QkQ ≤<
−
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V  and .jiji VVVV =  

If we take 1,1 == nm qq  and 1=kq  for all m, n and k, then ,, jiji QH  

jiV  and jiI ′  reduce to jijiji vqh ,,  and .jiI  

Let f be an Orlicz function and ( )mnkpp =  be any factorable triple 

sequence of strictly positive real numbers, we define the following sequence 
spaces: 
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[ ]
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uniformly in ,i  and j, 
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uniformly in ,i  and j. 

Let f be an Orlicz function, mnkpp =  be any factorable double sequence 

of strictly positive real numbers and nm qq ,  and kq  be sequences of positive 

numbers and rssrsr qqQqqQ 1111 , =+=  and .11 rst qqQ =  

If we choose ,1=mq  1=nq  and 1=kq  for all m, n and k, then we 

obtain the following sequence spaces: 

[ ]
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uniformly in ,i  and j. 
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Definition 2.6. Let f be an Orlicz function and ( )mnkpp =  be any 

factorable triple sequence of strictly positive real numbers, we define the 
following sequence space:  

{( )}jiji knm ,,,, =θ  be a triple lacunary sequence 

[ ]
⎪⎩

⎪
⎨
⎧

−=Γ θ
j

ji i
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uniformly in ,i  and j. 

We shall denote [ ]pAC jif ,,,
3

θΓ  as [ ],,,,
3 pAC jiθΓ  respectively, when 

1=mnkp  for all m, n and k. If x is in [ ],,,,
3 pAC jiθΓ  we shall say that x is 

almost lacunary 3Γ  strongly p-convergent with respect to the Orlicz function 

f. Also note if ( ) ,xxf =  1=mnkp  for all m, n and k, then [ ]pAC jif ,,,
3

θΓ  

[ ]jiAC ,,
3

θΓ=  which are defined as follows: 
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uniformly in ,i  and j. 

Again note if 1=mnkp  for all m, n and k, then 

[ ] [ ]., ,,,,
33

jiji ACpAC ff θθ Γ=Γ  

We define 
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uniformly in ,i  and j. 

Definition 2.7. Let f be an Orlicz function ( )mnkpp =  be any factorable 

triple sequence of strictly positive real numbers, we define the following 
sequence space: 

[ ]
⎩
⎨
⎧

−=Γ ∞→ rstPp tsrf
1lim ,,

3  
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1 1 1
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uniformly in ,i  and j. 

If we take ( ) 1, == mnkpxxf  for all m, n and k, then [ ] .33 Γ=Γ pf  

Definition 2.8. Let ji ,,θ  be a triple lacunary sequence; the triple number 

sequence x is , ,i jS pθ − -convergent to 0. Then 

ji
ji

ji hP ,,
,,

,, max1lim−  

{( ) ( ) } .00:,, 1
,,,, =−∈× ++
+++

knm
jknimji xfIknm  

In this case, we write ( ), ,
1

, ,lim 0 0.i j
m n k

m i n k jS f x + +
θ + + +− − =  

3. Main Results 

Theorem 3.1. If f be any Orlicz function and a bounded factorable 

positive triple number sequence ,mnkp  then [ ]PAC jif ,,,
3

θΓ  is linear space. 
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Proof. The proof is easy. Therefore we omit the proof. 

Theorem 3.2. For any Orlicz function f, we have 

[ ] [ ].,,,,
33

jiji ACAC f θθ Γ⊂Γ  

Proof. Let [ ]jiACx ,,
3

θΓ∈  so that for each ,i  and j, 
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Since f is continuous at zero, for 0>ε  and choose δ  with 10 <δ<  such 
that ( ) ε<tf  for every t with .0 δ≤≤ t  We obtain the following: 
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Hence ,i  and j goes to infinity, we are granted [ ].,,
3

jiACx f θΓ∈  

Theorem 3.3. Let { }jiji knm ,,,, =θ  be a triple lacunary sequence 

with ,1>iiqf  1inflim >q  and .1inflim >jj q  Then for any Orlicz 

function ( ) ( ).,, ,,
33 PACPf jiff θΓ⊂Γ  

Proof. Suppose 1inflim,1inflim >> qqii  and 1inflim >jj q  then 

there exists 0>δ  such that ,1 δ+>iq  δ+> 1q  and .1 δ+>jq  This 
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implies 
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3Γ∈  the last three terms tend to zero uniformly in m, n, k in the 
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are both chi sequences for all ,i  and j. Thus jiB  is a chi sequence for each 

,i  and j. Hence ( ).,,,
3 PACx jif θΓ∈  
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Theorem 3.4. Let { }knmji ,,,, =θ  be a triple lacunary sequence with 

∞<ηη qsuplim  and .suplim ∞<ii q  Then for any Orlicz function f, 
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jcjbiai cbacba Ah
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,,,,∪∪
 

( )
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111

000 1sup 000
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−−−
≥≥≥

−−−
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′
≤
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cbajcbia
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knmAknm

jinmG j
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( ) ( ) ( )∑ ≤<≤<≤<
×

jcjbiai cbah
000

,,∪∪
 

( ) ( ) ( )∑ ≤<≤<≤<−−−−−−
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≤
jcjbiai cba

jiii
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hknmknm

jinmG j

000

000
,,

111111

000
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.3

111

000000 Hknm

jinmG

ii

ki j ε+
′

≤
−−−

 

Since nmi ,  and jk  both approaches infinity as both p, q and t approaches 

infinity, it follows that 

[( ) ]∑ ∑ ∑= = =
++

+++ =
p
m

q
n

t
k

pknm
jknim mnkxfpqt 1 1 1

1
,, ,01  

uniformly in ,i  and j. 

Hence ( ).3 Px fΓ∈  
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Theorem 3.5. Let ji ,,θ  be a triple lacunary sequence. Then 

  (i) ( ) ( ), ,
3 ,i j

P
mnkx Sθ→ Γ  

 (ii) ( )jiAC ,,θ  is a proper subset of ( ), , ,i jSθ  

(iii) If 3Λ∈x  and ( ) ( ), ,
3 ,i j

P
mnkx Sθ→ Γ  then ( ) ( ),,,

3
jiACx

P
mnk θΓ→  

(iv) ( ) [ ], , , ,
3 3 3 3.i j i jS ACθ θΓ Λ = Γ Λ∩ ∩  

Proof. (i) Since for all ,i  and j, 

{( ) ( ) } 00:,, 1
,,,, =−∈ ++
+++

knm
jknimji xIknm  

∑ ∑∈ ∈
≤

ji jiIm In,, ,,
 

( )∑ =∈
++

+++
+++

−×
0

1
,,

,,,,
0

jknimji xandIk
knm

jknimx  

( )∑ ∑ ∑∈ ∈ ∈
++

+++ −≤
ji ji jiIm In Ik

knm
jknimx

,, ,, ,,
,0 1

,,  

for all ,i  and j, 

∑ ∑∈ ∈
−

ji jiIm Inji
ji hP

,, ,,,,
,,

1lim  

( )∑ ∈
++

+++ =−×
jiIk

knm
jknimx

,,
.00 1

,,  

This implies that for all ,i  and j, 

{( ) ( ) }00:,,1lim 1
,,,,

,,
,, =−∈− ++

+++
knm

jknimji
ji

ji xIknmhP  

,0=  

(ii) let ( )mnkxx =  be defined as follows: 
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h
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h
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Here x is a trible sequence and for all ,i  and j, 

{( ) ( ) }00:,,1lim 1
,,,,

,,
,, =−∈− ++

+++
knm

jknimji
ji

ji xIknmhP  

[ ]
( ) .0!1
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4 ,,

,,
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⎠

⎞

⎜
⎜

⎝

⎛
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++++ knmknm
ji

ji
ji

h
hP  

Therefore ( ) ( ), ,
3 .i j

P
mnkx Sθ→ Γ  Also 

( )∑ ∑ ∑∈ ∈ ∈
++

+++−
ji ji jiIm In Ik

knm
jknim

ji
ji xhP

,, ,, ,,

1
,,,,

1lim  

−= P  

[ ] [ ] [ ]
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.2
1=  

Therefore ( ) ( ).,,
3

j
P

mnk ACx θΓ→/  

(iii) If 3Λ∈x  and ( ) ( ), ,
3 ,i j

P
mnkx Sθ→ Γ  then ( ) ( ).,,

3
j

P
mnk ACx θΓ→  

Suppose 3Λ∈x  then for all ,i  and j, ( ) knm
jknimx ++

+++ − 1
,, 0  

M≤  for all m, n, k. 

Also for given 0>ε  and ,i  and j large for all ,i  and j we obtain the 

following: 

( )∑ ∑ ∑∈ ∈ ∈
++

+++ −
ji ji jiIm In Ik

knm
jknim

ji
xh ,, ,, ,,

1
,, 01  

∑ ∑∈ ∈
=

, ,,

1
k jiIm Injih  

( )∑ ≥∈
++

+++
+++

−×
0

1
,,

,,,,
0

jknimjk xandIk
knm

jknimx  

∑ ∑∈ ∈
+

ji jiIm Injih ,, ,,

1  

( )∑ ≤∈
++

+++
+++

−×
0

1
,,

,,,,
0

jknimji xandIk
knm

jknimx  

{( ) ( ) } .00:,, 1
,,,, ε+=−∈≤ ++
+++

knm
jknimji

ji
xIknmh

M  

Therefore 3Λ∈x  and ( ) ( ), ,
3

i j

P
mnkx Sθ→ Γ  then 

( ) ( ).,,
3

j
P

mnk ACx θΓ→  

(iv) ( ) [ ], , , ,
3 3 3 3

i j i jS ACθ θΓ Λ = Γ Λ∩ ∩  follows from (i), (ii) and (iii). 
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Theorem 3.6. If f be any Orlicz function, then 

[ ] ( ), , , ,
3 3 .i j i jf AC Sθ θΓ ∉Γ  

Proof. Let [ ],,,
3

jiACx f θΓ∈  for all ,i  and j. 

Therefore we have 

[( ) ]∑ ∑ ∑∈ ∈ ∈
++

+++ −
ji ji jiIm In Ik

knm
jknim

ji
xfh ,, ,, ,,

1
,, 01  

∑ ∑ ∑∈ ∈ =∈ +++
≥

ji ji jknimjiIm In xIkjih ,, ,, ,,,, 0and
1  

[( ) ]knm
jknimxf ++

+++ − 1
,, 0  

( ) {( ) ( ) } .00:,,01 1
,,,, =−∈> ++
+++

knm
jknimji

ji
xIknmfh  

Hence ( ), ,
3 .i jx Sθ∉Γ  
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