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Abstract 

In this paper, we study the problem of input-output group decoupling 
for regular linear descriptor systems of index at most one. The 
problem is handled in geometric setting. Necessary and sufficient 
conditions for a solution of the input-output group decoupling problem 
are established. Finally, we give other equivalent formulations of the 
input-output group decoupling problem for linear descriptor system 
with index one. 
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1. Introduction 

It is known that in multivariable control systems, the relations of input 
and output are very fundamental as a realization control role. In the control 
system, every input generally controls more than one output and every output 
can be controlled by more than one input. This phenomenon is called 
coupled system. In general, the coupled system is very difficult to control. It 
is known that not all coupled system can always be converted into decoupled 
system. Therefore, we need to design a control law that a coupled system 
may become a decoupled system in the sense that every input controls only 
one output and every output is controlled by only one input. Consequently, a 
decoupled system can be considered as consisting of a set of independent 
single-variable systems. This problem is called input-output decoupling. 
Thus, to simplify the relations of input and output of the system is an 
important problem in the control system theory. For the case of linear 
descriptor system, the problems of input-output decoupling have a more 
complex structure and properties than the problem of input-output 
decoupling in classical linear system. With the development and 
implementation of the research on descriptor systems, it is found that many 
practical systems, such as engineering systems (for example, power system, 
electrical network, aerospace engineering, chemical process), social 
economic system, network analysis, biological systems, time-series analysis, 
system modeling, and so on (Dai [5]), can be modeled as descriptor 
(singular) system. Therefore, discussion for input-output decoupling problem 
of linear descriptor system becomes very important. 

Input-output decoupling is a problem that reduces a multiple input-
multiple output system to a set of single input-single output systems. For 
classical linear systems, this issue was first introduced by Morgan [13], 
which investigated the decoupling synthesis via state feedback control using 
a state space approach. Then the problems posed by Morgan [13] can be 
solved by Falb and Wolovich [9], through the study of decoupling in the 
design and synthesis of multivariable control systems. Wonham and Morse 
[19] and Morse and Wonham [14] presented a condition that is more general 
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for decoupling problem using geometric approach based on the concept of 
controllability subspace. 

A generalization of the state feedback decoupling problem for classical 
linear system has been investigated by Sato and Lopresti [16], who obtained 
conditions for decoupling subsets of elements of the output set when the 
necessary conditions for system decoupling are not satisfied. Decoupling 
system under these conditions is referred to as partially decoupling. 
Furthermore, Sato and Lopresti [17] presented the concept of decoupling by 
state feedback which is extended from its normal interpretation of decoupling 
output elements to that of decoupling groups. All the results obtained by Sato 
and Lopresti [16, 17] are investigated using algebraic approach. Then 
Descusse et al. [6], block decoupling problem can be solved using static state 
feedback. In Dion et al. [7] and Commault et al. [4], block decoupling 
problem could be solved with a transfer function approach. All results 
studied above use only classical linear system tools for the solution of the 
problem. 

The problem of input-output decoupling for descriptor system has been 
discussed by some researchers. For instance, Christodoulou [3] investigated 
the necessary and sufficient condition of input-output decoupling singular 
system using proportional plus derivative feedback. Dai [5] investigated the 
problem of input-output decoupling with impulse-free response. Ailon [1] 
presented a necessary and sufficient condition for decoupling singular system 
using proportional state feedback. The results on the same subject with the 
structure of closed loop system were also established by Paraskevopoulos 
and Koumboulis [15]. Chu and Hung [2] proposed the problem of row by 
row decoupling (RRDP) using a proportional state feedback and input 
transformation. 

For the problem of input-output block decoupling for linear descriptor 
system was first presented by Koumboulis [11] through the regular static 
state feedback using algebraic approach. Furthermore, Liu et al. [12] 
proposed the problem of input-output block decoupling using state feedback 
for time-varying singular systems. Vaviadis and Karcanias [18] addressed the 
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problem of block decoupling for singular systems through state feedback and 
input transformation using matrix fraction description approach (MFD). 

Thus, it can be said that the main focus have been made by many authors 
is input-output decoupling problem via feedback control law using algebraic 
method. They derived the analytic expressions and structural properties of 
the transfer matrix function for closed-loop system. Wonham and Morse [19] 
and Morse and Wonham [14] studied only the decoupling problem for 
classical linear system using geometric approach. They derived more general 
conditions for decoupling problem by geometric approach based on the 
concept of controllability subspace of classical linear systems. Input-output 
group decoupling problem for regular linear descriptor system with index 
one using geometric approach through controllability subspaces is still to be 
studied in more detail. 

In this paper, we mainly discuss the problem of input-output group 
decoupling for the case of regular linear descriptor system with index one 
using geometric approach. Here input and output can be partitioned into 
multiple subvectors such that every group of inputs affect only one group of 
outputs and does not affect other outputs. Then the necessary and sufficient 
condition for solution of input-output group decoupling is derived. Finally, 
we give some equivalent formulations of input-output group decoupling 
problem for regular linear descriptor system with index one. 

This paper is organized as follows: In Section 2, we formalize the 
problem statement and summarize some basic properties about linear 
descriptor systems. We give the necessary and sufficient condition of input-
output group decoupling for regular linear descriptor system with index one 
in Section 3. In Section 4, we present other equivalent formulation for the 
problem of input-output group decoupling. In Section 5, we illustrate our 
results by an example. Finally, conclusion is given in Section 6. 

2. Preliminaries 

Consider the following linear descriptor systems of the form: 
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where ,nx R∈  mu R∈  and py R∈  are, respectively, the state vector, the 

input vector and the output vector of system; ,, nnAE ×∈ R  mnB ×∈ R  and 
npC ×∈ R  are constant coefficient matrices, and E is singular. It is well 

known that the existence and uniqueness of solution to (1) are guaranteed if 
( )AE,  is regular, i.e., ( ) ,0det ≠− AsE  for some .C∈s  The systems (1) 

are said to have an index at most one if the dimension of the largest nilpotent 
block in the Kronecker canonical form of ( )AE,  is at most one, Gerstner et 

al. [10]. 

The Kronecker canonical equivalent form for a general linear descriptor 
system is very complicated. However, the following theorem shows that the 
Kronecker form for a regular descriptor system is very simple. 

Theorem 2.1 (Duan [8]). Given the linear descriptor systems (1) with 

,, nnAE ×∈ R  ,mnB ×∈ R  ,npC ×∈ R  and ( )AE,  is regular, there exist 

two nonsingular matrices Q and P such that 
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where ,21 nnn =+  and the involved partitions are compatible. Furthermore, 

the matrix 22 nnN ×∈ R  is nilpotent. 

Theorem 2.1 shows that for regular linear descriptor systems (1), there 
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exist two nonsingular matrices Q and P such that the systems (1) are a 
restricted system equivalent by the following systems: 
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and 
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with the output of system as 

 ( ) ( ) ( ) ( ) ( ),221121 txCtxCtytyty +=+=  (5) 
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In this form, subsystems (3) and (4) are called the slow and fast 
subsystems, respectively. The system represented by (3)-(5) is the Kronecker 
form for regular systems. This form is usually called the standard 
decomposition form of the linear descriptor systems (1). Furthermore, if the 

nilpotent matrix N in (4) has index h (i.e., 0=hN  and ,)01 ≠−hN  then the 

systems (1) are called a system with index h. If 0=N  in the fast subsystem 
(4), then the original systems (1) are called a regular linear descriptor system 
with index one. 

The solution of regular linear descriptor systems (1) takes the form 
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( ) ( ) ( ) ( ) ,0
0 111 11 ∫ ττ+= τ−t tAtA duBexetx  
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( ) ( )( )∑ −
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Here h is the degree of nilpotency of N. That is the integer h for which 

0=hN  and .01 ≠−hN  The index of the systems (1) is the degree of 
nilpotency of N. We define the index to be zero, if E is nonsingular. 

From the above formulae, it is obvious that the solution ( )tx  will not 

contain derivatives of the input function u if and only if .1≤h  In that case, 
the solution ( )tx  is called impulse free. In general, the solution ( )tx  involves 

derivatives of order 1−h  of the forcing input function u if the systems (1) 
have index h. 

The following lemma presents a necessary and sufficient condition for 
the system ( )BAE ,,  to be regular with index one. 

Lemma 2.2 (Dai [5] and Gerstner et al. [10]). Let ., nnAE ×∈ R  Then 

the following statements are equivalent: 

  (i) ( )AE,  is regular and of index at most one. 

 (ii) ( )[ ] ,nEASErank =∞  where ( )ES∞  denotes a matrix with 

orthogonal columns spanning the kernel of matrix E. 

(iii) ( )( ) ( ).ErankAsEdetdeg =−  

Since we do not want to consider derivatives of the input function in this 
paper, we restrict the analysis to regular index one systems here. The 
problem addressed in this paper is to find the necessary and sufficient 
condition for solution of input-output group decoupling for regular linear 
descriptor system with index one using geometric approach method. Then the 
definition of input-output group decoupling is given below. 

Suppose that the systems (1) are a regular linear descriptor system with 
index one. Given muuu ...,,, 21  are input elements and pyyy ...,,, 21  are 

output elements of the systems (1). Then the relationship between input and 
output of system can be presented in the following definition: 
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Definition 2.3. Given the regular linear descriptor system of the form 
(1). The output iy  is not controlled by the input ju  (or equivalently, the 

input ju  does not control the output ,)iy  if we have, for all nx R∈0  and all 

admissible inputs ,...,,,...,,, 1121 mjj uuuuu +−  

( )mjji uuvuuxty ...,,,,...,,,; 1110 +−  

( )mjji uuwuuxty ...,,,,...,,,; 1110 +−=  

for all [ ]Tt ,0∈  and all admissible inputs v, w. 

We assume that the input vector mu R∈  and the output vector py R∈  

can be partitioned into q subvectors, i.e., 
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Here iI  is the ii ll ×  identity matrix. If we define the iln × -matrix iB  by 

,...,,2,1, qiBHB ii ==  then the systems (1) become 
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Systems (1) can be rewritten as 
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where iu  and iy  are group of inputs and group of outputs, respectively, with 
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The following definition is a slight extension of Definition 2.3: 

Definition 2.4. Given a regular linear descriptor systems of the form (7), 
with ....,,2,1, qji =  

 (i) The group of outputs ( )Tikiii iyyyy ...,,, 21=  is not controlled by 

the group of inputs ( )Tjljjj juuuu ...,,, 21=  if for all iks ...,,2,1= , the 

output isy  is not controlled by any of the inputs ....,,2,1, jjr lru =  

(ii) The group of outputs ( )Tikiii iyyyy ...,,, 21=  is controlled by the 

group of inputs ( )Tjljjj juuuu ...,,, 21=  if part (i) does not hold, i.e., there 

exist an { }iks ...,,2,1∈  and an { }jlr ...,,2,1∈  such that jru  controls .isy  
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Regular linear descriptor system (7) is said to be input-output group 
decoupling if for given a set of inputs { },...,,, 21 quuu  the group of inputs 

iu  only controls the group of outputs iy  and does not control other output 

jy  for .ij ≠  This leads to the following definition: 

Definition 2.5. A regular linear descriptor system (7) is said to be input-
output group decoupling if the following statements are true: 

 (i) The group iy  of output is not controlled by the group ju  of input for 

....,,2,1,, qjiji =≠  

(ii) The group iy  of output is controlled by the group iu  of input for 

....,,2,1 qi =  

3. Input-output Group Decoupling for Linear Descriptor  
System with Index One 

We refer to systems (1) for linear descriptor system that are regular and 
of index at most one can be separated into slow subsystem (3) and fast 
subsystems (4) with 0=N  of the form 
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In order to solve linear descriptor systems (1) that are regular and of 
index at most one, it suffices only to find the solution of the slow and fast 
subsystems (3) and (8). Note that the slow subsystem (3) is an ordinary 
differential equation. It has a unique solution with any initial condition 
( ) 101 0 xx =  for any piecewise continuous input function ( ).tu  This solution 

is given by 

 ( ) ( ) ( ) ( )∫ ττ+= τ−t tAtA duBexetx
0 111 .0 11  (9) 

Thus, the response, ( ),1 tx  of the slow subsystem (8) is completely 

determined by the initial value ( ) 101 0 xx =  and the control ( ) ( ).0 tu ≤τ≤τ  
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The fast subsystem (8) has a solution 
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By combining the solutions (9) and (10), we obtain the solution 
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Suppose that the output ( ) pty R∈  and the input ( ) mtu R∈  can be 
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Then equation (12), for ,...,,2,1 qi =  can be written as 
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Based on these results, we obtain the theorem which is a necessary and 
sufficient condition for the problem of input-output group decoupling of 
regular linear descriptor systems with index one. 

Theorem 3.1. Consider a regular linear descriptor system with index 
one of the form (7) and let { }....,,2,1, qji ∈  Then the group of outputs iy  

is not controlled by the group of inputs ,ju  for ji ≠  if and only if 

 ...,2,1,0,;0111 =≠= kjiBAC j
k

i  (15) 

and 

 .,022 jiBC ji ≠∀=  (16) 
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Proof. Suppose that the output iy  is not controlled by the input ,ju  for 

....,,2,1, qji =  With Definition 2.3, for any inputs ,, jlwv R∈  we have 
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and the analogous one with input v replaced by input w, we obtain 
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Repeating the procedure, differentiating (20) with respect to t using 
Leibniz rule, we obtain 
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Conversely, suppose that (15) and (16) are satisfied, for .ji ≠  Then 
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1 22  
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( ) ( ) ( )∫ ∑ ∑∞

= =
ττ−⎟

⎠
⎞⎜

⎝
⎛ τ+=

t

k
kq

l ll
k

i
tA

i dtuBACkxeC
0 0 1 11111 !

101  

( )∑ =
−

q
l lli tuBC

1 22  

( ) ( ) ( ) ( )∫ ∑ ∑∞

= =
ττ−⎟

⎠
⎞⎜

⎝
⎛ τ+=

t

k
kq

l ll
k

i
tA

i dtuBACkxeC
0 0 1 11111 !

101  

( )∑ =
−

q
l lli tuBC

1 22 .  

Because 0111 =j
k

i BAC  and ,022 =jiBC  for ( )tykji i...,,2,1,0, =≠  can 

be written as 

( ) ( ) ( ) ( ) ( )∫ ∑ ∑∞

= =
ττ−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
τ+=

≠

t

k
kq

l lj
k

i
tA

ii dtuBACkxeCty
jl

0 0 1 11111 !
101  

( ) ( )∑
≠
=

τ−
q
l lli

jl

uBC
1 22 .  

Consequently, the group iy  of output is not controlled by the group ju  

of input, for ,ji ≠  with { }....,,2,1, qji ∈  ~ 

4. Equivalent Formulation of Input-output Group Decoupling 

In this section, we give some equivalent formulations of conditions (15) 
and (16). If M is a matrix of order ,mn ×  then we shall denote by M  the 

image of M. In other words, M  is the subspace of nR  generated by the 
columns of M. With this notation, first we consider the subspace 

∩ 1
0 11

1 .−
=

n
k

k
i AKerC  

Lemma 4.1. Subspace ∩ 1
0 11

1−
=

n
k

k
i AKerC  is invariant under .1A  

Proof. To prove that ∩ 1
0 11

1−
=

n
k

k
i AKerC  is invariant under ,1A  it will be 
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shown that 

∩∩ 1

0 11
1

0 111
11 .
−

=

−

=
⊂⎟

⎠
⎞⎜

⎝
⎛ n

k
k

i
n

k
k

i AKerCAKerCA  

For ∩ 1
0 11

1 ,−
=∈ n

k
k

i AKerCz  it will be shown that ∩ 1
0 111

1 .−
=∈ n

k
k

i AKerCzA  From 

∩ 1
0 11

1 ,−
=∈ n

k
k

i AKerCz  we infer that ,011 =zAC k
i  .1...,,2,1,0 1 −= nk  

Because ( ) ,011
1

11111 === + zACzACzAAC l
i

k
i

k
i  for every ,...,,2,1 nl =  we 

obtain .111
k

i AKerCzA ∈  Consequently, ∩ 1
0 111

1 ,−
=∈ n

k
k

i AKerCzA  ,1,0=k  

.1..., −n  This proves that the subspace ∩ 1
0 11

1−
=

n
k

k
i AKerC  is invariant under 

.1A  ~ 

Next, we give an equivalent formulation of conditions (15) and (16) 

according to subspaces ∩ 1
0 11

1−
=

n
k

k
i AKerC  and ∩q

i iKerC0 2 .=  This is stated in 

the following theorem: 

Theorem 4.2. Consider linear descriptor system (7) and let ∈ji,  

{ }....,,2,1 q  Then the group of outputs is not controlled by the group of 

inputs ,ju  for ,...,,2,1, qji =  ji ≠∀  if and only if the following conditions 

are satisfied: 

 ∩ 1

0 111
1−

=
⊂

n

k
k

ij AKerCB  (23) 

and 

 ∩q

i ij KerC
0 22 .

=
⊂B  (24) 

Proof. It follows from Theorem 3.1 that .0111 =j
k

i BAC  This implies that 

,111
k

ij AKerCB ∈  for .1...,,2,1,0 1 −= nk  Thus, j1B  is a subset of 
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.11
k

i AKerC  Consequently, we have ∩ 1
0 111

1 .−
=⊂ n

k
k

ij AKerCB  Then, from 

,022 =jiBC  it follows that .22 ij KerCB ∈  Therefore, j2B  is a subset of 

,2iKerC  i.e., .22 ij KerC⊂B  Consequently, ∩q
i ij KerC0 22 .=⊂B  

On the other hand, suppose that (23) and (24) are satisfied. It will be 
shown that the output iy  is not controlled by the input ,ju  for every ji ≠  

with ....,,2,1, qji =  From ∩ 1
0 111

1 ,−
=⊂ n

k
k

ij AKerCB  we have ∈zB j1  

,11
k

i AKerC  for every .jlz R∈  It implies that .0111 =zBAC j
k

i  Consequently, 

we have .0111 =j
k

i BAC  

Then from ∩q
i ij KerC0 22 ,=⊂B  we have ,22 ij KerCzB ∈  for every 

.jlz R∈  This implies that .022 =zBC ji  As a consequence, .022 =jiBC  

Using Theorem 3.1, we conclude that the output iy  is not affected by the 

input ,ju  for ji ≠  with ....,,2,1, qji =  ~ 

Furthermore, we consider the subspaces ∑ −
=

1
0 11

1n
k j

k BImA  and ,2 jImB  for 

....,,2,1 qj =  We have the following lemma: 

Lemma 4.3. The subspace ∑ −
=

1
0 11

1n
k j

k BImA  is the smallest subspace 

which contains j1B  and is invariant under .1A  

Proof. First, it will be shown that ∑ −
=

1
0 11

1n
k j

k BImA  contains j1B  

( ).where 11 jj ImB=B  Since ,1
0 1

1
1111

1 1∑ −
=

−++=n
k j

n
jj

k BImAImBBImA  

∑ −
=⊂ 1

0 111
1 .n

k j
k

j BImAImB  Further, it will be shown that ∑ −
=

1
0 11

1n
k j

k BImA  is 

invariant under .1A  From ∑∑ −
=

+−
= = 1

0 1
1

1
1
0 111

11 n
k j

kn
k j

k BImABImAA  and Cayley-

Hamilton theorem, j
n BA 11
1  can be expressed as a linear combination of the 
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column vectors of ...,,, 111 jj BAB  .1
1

1
1

j
n BA −  Therefore, we have 

∑ ∑ ∑−

=

−

=

−

=
+ ⊂=

1
0

1
0

1
0 111

1
1111

1 1 1 .
n
k

n
k

n
k j

k
j

k
j

k BImABImABImAA  

It remains to show that ∑ −
=

1
0 11

1n
k j

k BImA  is the smallest subspace invariant 

under 1A  that contains .1 jB  Let V be a linear subspace which is invariant 

under 1A  and contains .1 jB  It will be shown that .1
0 11

1 VBImAn
k j

k ⊂∑ −
=  Since 

VImB j ⊂1  and ,1 VVA ⊂  the following holds: 

( ) VVAImBABImA jj ⊂⊂= 11111  

( ) VVABImAABImA jj ⊂⊂= 11111
2
1  

 

( ) .11
2

111
1

1
11 VVABImAABImA j

n
j

n ⊂⊂= −−  

Therefore, .1
1

11
2
1111

1 VBImABImABImAImB j
n

jjj ⊂++++ −  We have 

∑ −
= ⊂1

0 11
1 .n

k j
k VBImA  Thus, the subspace ∑ −

=
1
0 11

1n
k j

k BImA  is the smallest 

subspace which contains .1 jB  ~ 

Further, we have an equivalent formulation of conditions (15) and (16) 

according to the subspaces ∑ −
=

1
0 11

1n
k j

k BImA  and .2 jImB  This result is 

expressed as follows: 

Theorem 4.4. Consider linear descriptor system (7) with index one and 
let { }....,,2,1, qji ∈  Then the group of outputs iy  is not controlled by the 

group of inputs ju  if and only if one of the following conditions is satisfied: 

 (i) ∑ −
=

−
=⊂1

0
1
0 1111

1 1n
k

n
k

k
ij

k AKerCBImA ∩  and ∩q
i ij KerC0 22 .=⊂B  
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(ii) ∑ −
= ⊂1

0 111
1n

k ij
k KerCBImA  and .22 ij KerC⊂B  

Proof. It follows from Theorem 4.2 that ∩ 1
0 111

1−
=⊂ n

k
k

ij AKerCB  and by 

Lemma 4.3, that the subspace ∑ −
=

1
0 11

1n
k j

k BImA  is the smallest subspace that 

contains .1 jB  Thus, it satisfies the relation ∑ −
= ⊂⊂ 1

0 111
1n

k j
k

j BImAB  

∩ 1
0 11

1 .−
=

n
k

k
i AKerC  Therefore, the first term of condition (i) is proven, i.e., 

 ∑ −

=

−

=
⊂

1
0

1

0 1111
1 1 .

n
k

n

k
k

ij
k AKerCBImA ∩  (25) 

It is clear that 

 ∩ 1

0 111
1 .
−

=
⊂

n

k i
k

i KerCAKerC  (26) 

Thus, from (25) and (26), we get the relation 

∑ −

=

−

=
⊂⊂

1
0

1

0 11111
1 1 .

n
k

n

k i
k

ij
k KerCAKerCBImA ∩  

This implies that 

 ∑ −

=
⊂

1
0 111

1 .
n
k ij

k KerCBImA  (27) 

Thus, the first term of condition (ii) is proven. For ij KerCImB 22 ⊂  which 

implies ∩q
i ij KerCImB 0 22 =⊂  has been proved in Theorem 4.2. 

Furthermore, to show the reverse implication of this statement, we 

consider the system (ii). This implies ,11111 ij
k

j
k KerCBImAA ⊂=B  for =k  

.1...,,2,1,0 1 −n  Therefore, we get ,0111 =j
k

i AC B  for .1...,,2,1,0 1 −= nk  

Consequently, this implies ∩ 1
0 111

1 .−
=⊂ n

k
k

ij AKerCB  Since ∑ −
=

1
0 11

1n
k j

k BImA  

is the smallest subspace that contains ,1 jB  we have the following 
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relationship: 

∑ −

=

−

=
⊂⊂

1
0

1

0 11111
1 1 .

n
k

n

k
k

ij
k

j AKerCBImA ∩B  

It follows from Theorem 4.2 that the group of outputs iy  is not controlled by 

the group of inputs ,ju  for qji ...,,2,1, =  with .ji ≠  ~ 

Let 1V  be a subspace of 1nR  which is invariant under 1A  and satisfies 

 ,111 ij KerC⊂⊂ VB  (28) 

and let 2V  be a subspace of 2nR  that satisfies 

 .222 ij KerC⊂⊂ VB  (29) 

This means that condition (ii) of Theorem 4.4 holds. 

According to subspaces 1V  and 2V  in (28) and (29), we have another 

equivalent formulation of conditions (15) and (16). This result is presented in 
the following theorem: 

Theorem 4.5. Consider linear descriptor system (7) with index one and 
let { }....,,2,1, qji ∈  Then the group of outputs iy  is not controlled by the 

group of inputs ,ju  for ,ji ≠  if and only if there exist subspaces 11
nR⊂V  

and 22
nR⊂V  with the following properties: 

  (i) 1V  is invariant under .1A  

 (ii) .111 ij KerC⊂⊂ VB  

(iii) .222 ij KerC⊂⊂ VB  

Proof. Let the output iy  be not controlled by the input ,ju  for every 

,ji ≠  with qji ...,,2,1, =  and suppose that 1V  is a subspace of .1nR  By 
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Lemma 4.3 and Theorem 4.4, we have the following relation: 

∑ −

=

−

=
⊂⊂⊂

1
0

1

0 111111
1 1 .

n
k

n

k i
k

ij
k

j KerCAKerCBImA ∩B  

Therefore, the subspace ∩ 1
0 111

1−
== n

k
k

i AKerCV  is invariant under 1A  (by 

Lemma 4.1) and satisfies .111 ij KerC⊂⊂ VB  Thus, conditions (i) and (ii) 

are established. Further, to prove (iii), it follows from Theorem 4.4 that 

∩q
i iij KerCKerC0 222 .= ⊂⊂B  Thus, ∩q

i iKerC0 22 ==V  satisfies 22 V⊂jB  

.2iKerC⊂  This proves (iii). 

Conversely, let conditions (i), (ii) and (iii) hold. Then there exist 

subspaces 11
nR⊂V  and 22

nR⊂V  such that ij KerC111 ⊂⊂ VB  and j2B  

.22 iKerC⊂⊂ V  By Lemma 4.3, ∑ −
=

1
0 11

1n
k j

k BImA  is the smallest subspace 

containing .1 jB  Thus, ∑ −
=⊂ 1

0 111
1 .n

k j
k

j BImAB  Therefore, we get 

i
n
k

n

k
k

ij
k

j KerCAKerCBImA 1
1
0

1

0 11111
1 1 ⊂⊂⊂ ∑ −

=

−

=∩B  

and ∩q
i iij KerCKerC0 222 .= ⊂⊂B  Based on the equivalence of conditions 

(i) and (ii) of Theorem 4.4, we have the conclusion that the output iy  is not 

controlled by the input ,ju  for every ji ≠  with ....,,2,1, qji =  ~ 

By Theorem 4.4(ii) and Definition 2.4(ii), it is clear how to characterize 
the fact that the group of outputs iy  is controlled by the group of inputs ju  

for ....,,2,1, qji =  A necessary and sufficient condition for this condition 

is 

{ }∑ −

=
≠

1
0 111

1 0
n
k j

k
i BImAC    and   { }.022 ≠ji ImBC  

Thus, we have the following theorem: 
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Theorem 4.6. The linear descriptor system (7) with index one is an 
input-output group decoupled in the sense of Definition 2.5 if and only if the 
following statements are true: 

 (i) For any { },...,,2,1, qji ∈  with ,ji ≠  one of the conditions of 

Theorem 4.4 is satisfied. 

(ii) For all ,...,,2,1 qi =  

 { }∑ −

=
≠

1
0 111

1 0
n
k i

k
i BImAC  (30) 

and 

 { }.022 ≠iiImBC  (31) 

If subsystem (3) is controllable, then the condition (30) can be replaced 
by 

 ∑ −

=
=

1
0 1111

1 ,
n
k ij

k
i ImCBImAC  (32) 

and if subsystem (8) is controllable, then the condition (31) can be replaced 
by 

 .222 iii ImCImBC =  (33) 

Proof. Condition (i) has been proved in Theorem 4.4. Thus, we need 
only to prove (ii) that (30) implies (32). By using condition (ii) of Theorem 
4.4, for ji ≠  and controllability of ( ),, 11 BA  we have 

∑ ∑=

−

=
=

q
j

n
k

n
j

k BImA
1

1
0 11

1 1.R  

Thus, we get 

∑∑
=

−

=

==
q

j

n

k
j

k
i

n
ii BImACCImC

1

1

0
11111

1
1R  
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⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++++= ∑ ∑ ∑

−

=

−

=

−

=

1

0

1

0

1

0
1111111

1 1 1n

k

n

k

n

k
q

k
i

k
i

k
i BImABImABImAC  

∑ −

=
=

1
0 11

1 .
n
k i

k
ii BImAC  

This establishes condition (31). 

Further, we need to prove (31) implies (33). By controllability properties 

of subsystem (8), we have ∑ = =q
j

n
iImB1 2 .2R  Thus, we get 

∑
=

==
q

j
ii

n
ii ImBCCImC

1
2222 2R  

( )qii ImBImBImBC 22212 ++++=  

.22 ii ImBC=  

This shows that condition (33) is proved. ~ 

5. A Numerical Example 

In this section, a numerical example is provided to illustrate the results 
obtained in this paper. Consider a linear descriptor system with index one 

( ) ( ) ( ),
00
01
00

200
011
010

000
010
001

tutxtx
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎡
+
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⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
 

( ) ( ).

100
011
100
101

txty

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=  

There exist two nonsingular matrices 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

100
010
001

3IQ    and   .

2
100

010
001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=P  
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⎥⎦

⎤
⎢⎣
⎡=

000
010
001

0
0
N

I
QEP    and   ,

100
011
010

0
01

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=⎥⎦

⎤
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⎡=

I
A

QAP  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⎥⎦

⎤
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00

2

1
B
B

QB    and   [ ] .

2
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2
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2
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

== CCCP  

It will become a regular linear descriptor system with index one of the form 

( ) ( ) ( )

( ) [ ] ( )⎪⎩

⎪
⎨
⎧
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⎤
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⎤
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⎡
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,
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−
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⎡
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We obtain 

[ ] ,

2
1

0
2
1
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,
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11
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,
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10
21211

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
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⎤

⎢⎣
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⎤
⎢⎣
⎡

−−
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and we have partition 

,0,0,
0
0

,
1
0

22211211 ==⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡= BBBB  

[ ] .2
1,

0
2
1
2
1

,00,
11
00
01

22211211 ⎥⎦
⎤

⎢⎣
⎡−=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= CCCC  

We can calculate that 

,0...,,0,0 12111121111211 === BACBACBC k  

,0...,,0,0 11112111121112 === BACBACBC k  

.0,0 21222221 == BCBC  

Hence, conditions (15) and (16) are satisfied. Therefore, the group of outputs 

iy  is not controlled by the group of inputs ,ju  for ji ≠  with .2,1, =ji  

6. Conclusion 

The problem of input-output group decoupling for regular linear 
descriptor system with index at most one using geometric approach has been 
solved. The input and output of system can be partitioned into multiple 
subvectors such that every group of input controls only one group of outputs 
and does not control other outputs. The necessary and sufficient condition of 
input-output group decoupling problem has been derived. Furthermore, other 
equivalent formulations of input-output group decoupling problem for 
regular linear descriptor system with index one have been presented. 
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