http://dx.doi.org/10.17654/MS101010201 Volume 101, Number 1, 2017, Pages 201-214

ISSN: 0972-0871

ON GENERALIZED w-CLOSED SETS IN ASSOCIATED WEAK SPACES

Won Keun Min* and Young Key Kim

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea

Department of Mathematics MyongJi University Yongin 449-728, Korea

Abstract

The purpose of this note is to introduce the notion of generalized w_{τ} -closed (w_{τ} -open) sets in an associated w_{τ} -space and to study its properties. In particular, we find the conditions of continuous functions to preserve generalized w_{τ} -closed sets or generalized w_{τ} -open sets.

1. Introduction

Siwiec [13] introduced the notions of weak neighborhoods and weak base in a topological space. We introduced the weak neighborhood systems defined by using the notion of weak neighborhoods in [8]. The weak

Received: August 24, 2016; Accepted: October 20, 2016

2010 Mathematics Subject Classification: 54A05, 54B10, 54C10, 54D30.

Keywords and phrases: w-spaces, w_{τ} -closed, associated w_{τ} -space, gw_{τ} -closed.

*Corresponding author

neighborhood system induces a weak neighborhood space which is independent of neighborhood spaces [2] and general topological spaces [1]. The notions of weak structure, w-space, W-continuity and W^* -continuity were investigated in [9]. In fact, the set of all g-closed subsets [3] in a topological space is a kind of weak structure. Moreover, in [10], we introduced the notion of an associated weak space (simply, associated w_{τ} -space) containing a given topology τ . The one purpose of our research is to generalize w_{τ} -open sets in an associated weak space w_{τ} in the similar way introduced by Levine [3] in topological spaces. So we introduce the notion of generalize w_{τ} -open sets (generalize w_{τ} -closed sets) in an associated weak space w_{τ} and study its properties. In particular, we have the following theorems: (A) If f is continuous and W^* -closed, then for every gw_{τ} -open subset B in Y, $f^{-1}(B)$ is gw_{τ} -open. (B) If f is W^* -continuous and closed, for every gw_{τ} -closed set A in X, f(A) is gw_{τ} -closed.

2. Preliminaries

Definition 2.1 [9]. Let X be a nonempty set. A subfamily w_X of the power set P(X) is called a *weak structure* on X if it satisfies the following:

- (1) $\emptyset \in w_X$ and $X \in w_X$.
- (2) For $U_1, U_2 \in w_X, U_1 \cap U_2 \in w_X$.

Then the pair (X, w_X) is called a *w-space* on X. Then $V \in w_X$ is called a *w-open set* and the complement of a *w-open set* is a *w-closed set*.

The collection of all w-open sets (resp., w-closed sets) in a w-space X will be denoted by WO(X) (resp., WC(X)). We set $W(x) = \{U \in WO(X) : x \in U\}$.

Let S be a subset of a topological space X. The closure (resp., interior) of S will be denoted by clS (resp., intS). A subset S of X is called a preopen set [6] (resp., α -open set [12], semi-open [4]) if $S \subset \operatorname{int}(cl(S))$ (resp., $S \subset \operatorname{int}(cl(S))$)

 $\operatorname{int}(cl(\operatorname{int}(S)))$, $S \subset cl(\operatorname{int}(S))$). The complement of a preopen set (resp., α -open set, *semi-open*) is called a *preclosed set* (resp., α -closed set, *semi-closed*). The family of all preopen sets (resp., α -open sets, semi-open sets) in X will be denoted by PO(X) (resp., $\alpha(X)$, SO(X)). We know the family $\alpha(X)$ is a topology finer than the given topology on X.

Moreover, a subset S of X is said to be g-closed [3] if $cl(A) \subset U$ whenever $A \subset U$ and U is open in X.

Then the family $GO(X) = \{U \subseteq X : U \text{ is } g\text{-open}\}, \ O(X) = \{U \subseteq X : U \text{ is open}\}$ and $CL(X) = \{F \subseteq X : F \text{ is closed}\}$ are all weak structures on X. But PO(X), GPO(X) and SO(X) are not weak structures on X. A subfamily m_X of the power set P(X) of a nonempty set X is called a *minimal structure* on X [5] if $\emptyset \in w_X$ and $X \in w_X$. Thus clearly every weak structure is a minimal structure.

Let (X, w_X) be a w-space. For a subset A of X, the w-closure of A and the w-interior of A are defined as follows:

- $(1) wC(A) = \bigcap \{F : A \subseteq F, X F \in w_X\}.$
- (2) $wI(A) = \bigcup \{U : U \subseteq A, U \in w_X\}.$

Theorem 2.2 [9]. Let (X, w_X) be a w-space and $A \subseteq X$. Then the following things hold:

- (1) If $A \subset B$, then $wI(A) \subset wI(B)$; $wC(A) \subset wC(B)$.
- (2) wI(wI(A)) = wI(A); wC(wC(A)) = wC(A).
- (3) wC(X A) = X wI(A); wI(X A) = X wC(A).
- (4) If A is w-closed (resp., w-open), then wC(A) = A (resp., wI(A) = A).

3. Main Results

First, we recall the notion of an associated w-space with τ introduced in

[10]. Let X be a nonempty set and let (X, τ) be a topological space. A subfamily w of the power set P(X) is called an *associated weak structure* (simply, w_{τ}) on X if $\tau \subseteq w$ and w is a weak structure. Then the pair (X, w_{τ}) is called an *associated w-space* with τ .

Definition 3.1. Let (X, w_{τ}) be an associated w-space with a topology τ and $A \subseteq X$. Then A is called a *generalized* w_{τ} -closed set (simply, gw_{τ} -closed set) if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is w-open.

Remark 3.2. (1) If $w_{\tau} = \tau$, then the generalized w_{τ} -closed set is exactly a generalized closed set in sense of Levine in [3].

- (2) If w_{τ} is the family of all g-open sets in sense of Levine, then the generalized w_{τ} -closed set is exactly a g^* -closed set [14].
- (3) Obviously, every w-closed set is generalized w_{τ} -closed, but in general, the converse is not true as the next example.

Example 3.3. Let $X = \{a, b, c, d\}$, a topology $\tau = \{\emptyset, \{b\}, X\}$ and a w-structure $w_X = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, d\}, X\}$ in X. For $A = \{a, c\}$, obviously A is gw_{τ} -closed but not w-closed.

We recall that: A is called a *generalized w-closed set* (simply, *gw-closed set*) [11] if $wC(A) \subseteq U$, whenever $A \subseteq U$ and U is w-open.

Remark 3.4. Let (X, w_{τ}) be an associated w-space with a topology τ and $A \subseteq X$. Since $wC(A) \subseteq cl(A)$, every gw_{τ} -closed set is gw-closed. But, the converse may not be true as the next example.

Example 3.5. In Example 3.3, let $A = \{d\}$. Then wC(A) = A, so A is gw-closed. Consider a w-open set $U = \{a, d\}$ such that $A \subseteq U$. Since $cl(A) = \{a, c, d\}$, A is not gw_{τ} -closed.

Theorem 3.6. Let (X, w_{τ}) be an associated w-space with a topology τ . Then the union of two gw_{τ} -closed sets is a gw_{τ} -closed set.

Proof. Let A and B be any two gw_{τ} -closed sets. Let G be any w-open set such that $A \cup B \subseteq G$. Then $A \subseteq G$ and $B \subseteq G$. Since A and B are gw_{τ} -closed sets, $cl(A) \subseteq G$ and $cl(B) \subseteq G$. So, $cl(A \cup B) = cl(A) \cup cl(B) \subseteq G$. Hence $A \cup B$ is gw_{τ} -closed.

In general, the intersection of two gw_{τ} -closed sets is not gw_{τ} -closed:

Example 3.7. Let $X = \{a, b, c, d\}$, a topology $\tau = \{\emptyset, \{b\}, X\}$ and a w-structure $w_X = \{\emptyset, \{a, c\}, \{a\}, \{b\}, \{c\}, \{a, d\}, X\}$ in X. Now, consider $A = \{a, b, c\}$, and $B = \{a, c, d\}$. Then A and B are gw_{τ} -closed. But $A \cap B = \{a, c\}$ is not gw_{τ} -closed because $\{a, c\}$ is w-open and $cl(\{a, c\}) = \{a, c, d\}$.

Theorem 3.8. Let (X, w_{τ}) be an associated w-space with a topology τ . Then if A is a gw_{τ} -closed set, then cl(A) - A contains no non-empty w-closed set.

Proof. Suppose that there is a *w*-closed set F such that $F \subseteq cl(A) - A$. Then $A \subseteq X - F$, and since X - F is *w*-open and A is gw_{τ} -closed, $cl(A) \subseteq X - F$ and $F \subseteq X - cl(A)$. It implies that $F \subseteq cl(A) \cap (X - cl(A)) = \emptyset$. Hence, $F = \emptyset$.

Corollary 3.9. Let (X, w_{τ}) be an associated w-space with a topology τ . Then if A is a gw_{τ} -closed set, then cl(A) - A contains no non-empty closed set.

Proof. Since X is an associated w-space, every closed set is w-closed. The corollary is obtained by the above theorem.

In Theorem 3.8, the converse is not true as shown in the next example.

Example 3.10. Let $X = \{a, b, c, d\}$, a topology $\tau = \{\emptyset, \{b, c\}, X\}$ and a *w*-structure $w_X = \{\emptyset, \{a\}, \{b, c\}, \{a, d\}, X\}$ in *X*. Consider $A = \{a\}$. Note $cl(A) = \{a, d\}$ and $cl(A) - A = \{a, d\} - \{a\} = \{d\}$. Since $\{d\}$ is not *w*-closed, cl(A) - A contains no non-empty *w*-closed set, but *A* is not *w*-closed.

Theorem 3.11. Let (X, w_{τ}) be an associated w-space with a topology τ . Then if A is a gw_{τ} -closed set and $A \subseteq B \subseteq cl(A)$, then B is gw_{τ} -closed.

Proof. Let U be any w-open set such that $B \subseteq U$. Then $A \subseteq U$ and $cl(B) \subseteq cl(A)$. Since A is a gw_{τ} -closed set, $cl(B) \subseteq cl(A) \subseteq U$. It implies that B is gw_{τ} -closed set.

Theorem 3.12. Let (X, w_{τ}) be an associated w-space with a topology τ . Then if A is a gw_{τ} -closed set and $A \subseteq B \subseteq wC(A)$, then B is gw_{τ} -closed.

Proof. From $wC(A) \subseteq cl(A)$ and Theorem 3.11, B is gw_{τ} -closed set. \square

Corollary 3.13. Let (X, w_{τ}) be an associated w-space with a topology τ . Then if A is a gw_{τ} -closed set and $A \subseteq B \subseteq wC(A)$, then B is gw-closed.

Proof. It follows from the fact that every gw_{τ} -closed set is gw-closed. \square

Definition 3.14. Let (X, w_{τ}) be an associated w-space with a topology τ and $A \subseteq X$. Then A is called a *generalized* w_{τ} -open set (simply, gw_{τ} -open set) if X - A is gw_{τ} -closed.

Theorem 3.15. Let (X, w_{τ}) be an associated w-space with a topology τ and $A \subseteq X$. Then A is gw_{τ} -open if and only if $F \subseteq \text{int}(A)$ whenever $F \subseteq A$ and F is w-closed.

Proof. It follows from Definition 3.1.

Theorem 3.16. Let (X, w_{τ}) be an associated w-space with a topology τ . Then the intersection of two gw_{τ} -open sets is a gw_{τ} -open set.

Proof. It is obvious from Theorem 3.6.

In general, the union of two gw_{τ} -open sets is not gw_{τ} -open (see Example 3.7).

Theorem 3.17. Let (X, w_{τ}) be an associated w-space with a topology τ

and $A \subseteq X$. Then if A is gw_{τ} -open, then U = X, whenever $int(A) \cup (X - A)$ $\subseteq U$ and U is w-open.

Proof. Let U be any w-open set and $\operatorname{int}(A) \cup (X - A) \subseteq U$. Then X - U $\subseteq (X - \operatorname{int}(A)) \cap A = cl(X - A) \cap A = cl(X - A) - (X - A)$. Since X - A is gw_{τ} -closed, by Theorem 3.8, the w-closed set X - U must be empty. Hence, U = X.

Corollary 3.18. Let (X, w_{τ}) be an associated w-space with a topology τ and $A \subseteq X$. Then if A is gw_{τ} -open, then U = X, whenever $\operatorname{int}(A) \cup (X - A)$ $\subseteq U$ and U is open.

Proof. Since every open set is w-open, it follows from the above theorem.

Theorem 3.19. Let (X, w_{τ}) be an associated w-space with a topology τ . Then if A is a gw_{τ} -open set and $wI(A) \subseteq B \subseteq A$, then B is gw_{τ} -open.

Proof. It is similar to the proof of Theorem 3.11.

Theorem 3.20. Let (X, w_{τ}) be an associated w-space with a topology τ . Then if A is a gw_{τ} -open set and $int(A) \subseteq B \subseteq A$, then B is gw_{τ} -open.

Proof. Since $int(A) \subseteq wI(A)$, it is obtained from Theorem 3.19.

Theorem 3.21. Let (X, w_{τ}) be an associated w-space with a topology τ . Then if A is a gw_{τ} -closed set, then cl(A) - A is gw_{τ} -open.

Proof. Suppose that A is a gw_{τ} -closed set. Then by Theorem 3.8, the empty set is the only one w-closed subset of cl(A) - A. So, for the only w-closed subset \varnothing of cl(A) - A, $\varnothing \subseteq cl(A) - A$ and $\varnothing \subseteq \operatorname{int}(cl(A) - A)$. From Theorem 3.15, cl(A) - A is gw_{τ} -open.

Theorem 3.22. Let (X, w_{τ}) be an associated w-space with a topology τ . Then if A is a gw_{τ} -open set, then $int(A) \cup (X - A)$ is gw_{τ} -closed. **Proof.** Suppose that A is a gw_{τ} -open set. Then by Theorem 3.17, the whole set X is the only one w-open set containing $\operatorname{int}(A) \cup (X - A)$. So, $\operatorname{int}(A) \cup (X - A) \subseteq X$ and $\operatorname{cl}(\operatorname{int}(A) \cup (X - A)) \subseteq X$. Hence, by definition of gw_{τ} -closedness, $\operatorname{int}(A) \cup (X - A)$ is gw_{τ} -closed.

Let (X, w_{τ}) be an associated w-space with a topology τ . For a subset A of X, gw_{τ} -closure of A and gw_{τ} -interior of A are defined as the following:

- (1) $gw_{\tau}C(A) = \bigcap \{F : A \subseteq F, F \text{ is } gw_{\tau}\text{-closed}\}.$
- (2) $gw_{\tau}I(A) = \bigcup \{U : U \subseteq A, U \text{ is } gw_{\tau}\text{-open}\}.$

Theorem 3.23. Let (X, w_{τ}) be an associated w-space with a topology τ and $A \subseteq X$.

- (1) If A is gw_{τ} -open, then $gw_{\tau}I(A) = A$.
- (2) If A is gw_{τ} -closed, then $gw_{\tau}C(A) = A$.

But the converses in the above theorem are not always true as shown in the next example.

Example 3.24. In Example 3.7, let $F = \{a, c\}$. Since $\{a, b, c\}$ and $\{a, c, d\}$ are gw_{τ} -closed sets, $gw_{\tau}C(F) = \{a, c\}$. But from the fact that $\{a, c\}$ is w-open and $wC(\{a, c\}) = \{a, c, d\}$, F is not gw_{τ} -closed. Similarly, we can show that the converse of (2) in Theorem 3.23 is not true, in general.

Theorem 3.25. Let (X, w_{τ}) be an associated w-space with a topology τ and $A, B \subseteq X$.

- (1) If $A \subseteq B$, then $gw_{\tau}I(A) \subseteq gw_{\tau}I(B)$ and $gw_{\tau}C(A) \subseteq gw_{\tau}C(B)$.
- (2) $gw_{\tau}C(X-A) = X gw_{\tau}I(A)$; $gw_{\tau}I(X-A) = X gw_{\tau}C(A)$.
- (3) $x \in gw_{\tau}I(A)$ if and only if there exists a gw_{τ} -open set U containing x such that $U \subseteq A$.

(4) $x \in gw_{\tau}C(A)$ if and only if $A \cap V \neq \emptyset$ for all gw_{τ} -open set V containing x.

Theorem 3.26. Let (X, w_{τ}) be an associated w-space with a topology τ and $A, B \subset X$.

- (1) $\emptyset = gw_{\tau}C(\emptyset)$.
- (2) $A \subseteq gw_{\tau}C(A)$.
- (3) $gw_{\tau}C(A \cup B) = gw_{\tau}C(A) \cup gw_{\tau}C(B)$.
- $(4) gw_{\tau}C(gw_{\tau}C(A)) = gw_{\tau}C(A).$

Proof. (1) and (2) are obvious.

- (3) It is obvious that $gw_{\tau}C(A \cup B) \supseteq gw_{\tau}C(A) \cup gw_{\tau}C(B)$. We only show that $gw_{\tau}C(A \cup B) \subseteq gw_{\tau}C(A) \cup gw_{\tau}C(B)$. Suppose that $x \notin gw_{\tau}C(A) \cup gw_{\tau}C(B)$. Suppose that $x \notin gw_{\tau}C(A) \cup gw_{\tau}C(B)$. Then there exist gw_{τ} -closed sets F_1 and F_2 such that $x \notin F_1$ and $A \subseteq F_1$; $x \notin F_2$ and $B \subseteq F_2$. So $x \notin F_1 \cup F_2$ and $A \cup B \subseteq F_1 \cup F_2$. From Theorem 3.6, $F_1 \cup F_2$ is gw_{τ} -closed, and $x \notin gw_{\tau}C(A \cup B)$. So $gw_{\tau}C(A \cup B) \subseteq gw_{\tau}C(A) \cup gw_{\tau}C(B)$.
- (4) It is sufficient to show that $gw_{\tau}C(gw_{\tau}C(A)) \subseteq gw_{\tau}C(A)$. For any gw_{τ} -closed set F satisfying $A \subseteq F$, since $gw_{\tau}C(A) \subseteq gw_{\tau}C(F) = F$,

$$gw_{\tau}C(gw_{\tau}C(A)) = \bigcap \{K : gw_{\tau}C(A) \subseteq K, K \text{ is } gw_{\tau}\text{-closed}\}$$
$$\subseteq \bigcap \{F : A \subseteq F, F \text{ is } gw_{\tau}\text{-closed}\} = gw_{\tau}C(A). \qquad \Box$$

Theorem 3.27. Let (X, w_{τ}) be an associated w-space with a topology τ and $A, B \subset X$.

- $(1) X = gw_{\tau}I(X).$
- (2) $gw_{\tau}I(A) \subseteq A$.

- (3) $gw_{\tau}I(A \cap B) = gw_{\tau}I(A) \cap gw_{\tau}I(B)$.
- (4) $gw_{\tau}I(gw_{\tau}I(A)) = gw_{\tau}I(A)$.

Proof. These are easily obtained by Theorem 3.25 and Theorem 3.26. \Box Finally, we have a topology induced by gw_{τ} -open sets as the following:

Theorem 3.28. Let (X, w_{τ}) be an associated w-space with a topology τ . Then the family $w_{\tau}^* = \{U \subseteq X : U = gw_{\tau}I(U)\}$ is a topology containing the weak structure w, that is, $\tau \subseteq w \subseteq w_{\tau}^*$.

Proof. It is easily obtained by Theorem 3.27.

We recall that: Let (X, w_X) be a w-space and $A \subseteq X$. Then A is called a generalized w-open set (simply, gw-open set) [11] if X - A is gw-closed.

Then A is generalized w-open if and only if $F \subseteq wI(A)$ whenever $F \subseteq A$ and F is w-closed.

Let $f:(X, w_{\tau}) \to (Y, \mu)$ be a function on an associated w-space with τ and a topological space (Y, μ) . Then f is said to be

- (1) WO-continuous [10] if for $x \in X$ and $V \in O(f(x))$, there is $U \in W(x)$ such that $f(U) \subseteq V$;
 - (2) W^* -continuous [9] if for every $A \in W(f(x))$, $f^{-1}(A)$ is in W(x).

Theorem 3.29 [10]. Let $f:(X, w_{\tau}) \to (Y, \mu)$ be a function on an associated w-space with τ and a topological space (Y, μ) . Then the following statements are equivalent:

- (1) f is WO-continuous.
- (2) $f(wC(A)) \subseteq cl(f(A))$ for $A \subseteq X$.
- (3) $wC(f^{-1}(V)) \subseteq f^{-1}(cl(V))$ for $V \subseteq Y$.
- (4) $f^{-1}(\operatorname{int}(V)) \subseteq wI(f^{-1}(V))$ for $V \subseteq Y$.

Let X and Y be w-spaces. A function $f:(X, w_X) \to (Y, w_Y)$ is said to be

- (1) W^* -closed [11] if for every w-closed set F in X, f(F) is a w-closed set in Y.
 - (2) quasi- W^* -closed [11] if for $A \subseteq X$, $wC(f(A)) \subseteq f(wC(A))$.

In fact, there is no any relation between the notions of W^* -closed function is quasi- W^* -closed function.

Theorem 3.30. Let $f:(X, w_X) \to (Y, w_Y)$ be a function on w-spaces X and Y. Then the following statements hold:

- (1) If f is WO-continuous and W^* -closed, then for every gw-open subset B in Y, $f^{-1}(B)$ is gw-open.
- (2) If f is continuous and W^* -closed, then for every gw_{τ} -open subset B in Y, $f^{-1}(B)$ is gw_{τ} -open.
- **Proof.** (1) Let B be any gw_{τ} -open subset B in Y and F be a w-closed set in X such that $F \subseteq f^{-1}(B)$. Now, we show that $F \subseteq wI(f^{-1}(B))$. Since f is W^* -closed, f(F) is w-closed. Moreover, since B is gw_{τ} -open, $f(F) \subseteq int(B)$. From Theorem 3.29, it follows that $F \subseteq f^{-1}(int(B)) \subseteq wI(f^{-1}(B))$. Hence, $f^{-1}(B)$ is gw-open.
 - (2) It is similar to the proof of (1).

Corollary 3.31. Let $f:(X, w_X) \to (Y, w_Y)$ be a function on w-spaces X and Y. Then the following statements hold:

- (1) If f is WO-continuous and W^* -closed, then for every open subset B in Y, $f^{-1}(B)$ is gw-open.
- (2) If f is continuous and W^* -closed, then for every open subset B in Y, $f^{-1}(B)$ is gw_{τ} -open.

Proof. From the fact that every open set is gw_{τ} -open set and the above theorem, the things are obtained.

Theorem 3.32. Let $f:(X, w_X) \to (Y, w_Y)$ be a function on w-spaces X and Y. Then the following statements hold:

- (1) If f is W^* -continuous and closed, for every gw_{τ} -closed set A in X, f(A) is gw_{τ} -closed.
- (2) If f is W^* -continuous and quasi- W^* -closed, for every gw_{τ} -closed set A in X, f(A) is gw-closed.
- **Proof.** (1) Let A be any gw_{τ} -closed subset A in X, and U be a w-open set in Y such that $f(A) \subseteq U$. Now, we show that $cl(f(A)) \subseteq U$. Since f is W^* -continuous and A is gw-closed, $f^{-1}(U)$ is w-open and $cl(A) \subseteq f^{-1}(U)$. Since f is closed, $cl(f(A)) \subseteq f(cl(A)) \subseteq ff^{-1}(U) \subseteq U$, and hence, f(A) is gw_{τ} -closed.
- (2) Let A be any gw_{τ} -closed subset A in X, and U be a w-open set in Y such that $f(A) \subseteq U$. Now, we show that $cl(f(A)) \subseteq U$. Since f is W^* -continuous and A is gw-closed, $f^{-1}(U)$ is w-open and $cl(A) \subseteq f^{-1}(U)$. Since f is quasi- W^* -closed, $wC(f(A)) \subseteq f(cl(A)) \subseteq ff^{-1}(U) \subseteq U$, and hence, f(A) is gw-closed.

We get directly the following corollary:

Corollary 3.33. Let $f:(X, w_X) \to (Y, w_Y)$ be a function on w-spaces X and Y. Then the following statements hold:

- (1) If f is W^* -continuous and closed, for every closed set A in X, f(A) is gw_{τ} -closed.
- (2) If f is W^* -continuous and quasi- W^* -closed, for every closed set A in X, f(A) is gw-closed.

4. Conclusion

In this paper, we introduced the notion of generalized w-closed (w-open) sets in an associated weak space and studied some basic properties. In Theorem 3.30, particularly, we established that if f is continuous and W^* -closed (resp., WO-continuous and W^* -closed), then for every gw_{τ} -open subset B in Y, $f^{-1}(B)$ is gw_{τ} -open (resp., gw-open). In the next research, we will intensively investigate the notions of functions from an associated weak space to an associated weak space satisfying for every gw_{τ} -open subset (or open set) in the codomain, its preimage is gw_{τ} -open.

References

- [1] Á. Csázár, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002), 351-357.
- [2] D. C. Kent and W. K. Min, Neighborhood spaces, Int. J. Math. Math. Sci. 32(7) (2002), 387-399.
- [3] N. Levine, Generalized closed sets in topology, Rend. Cir. Mat. Palermo 19 (1970), 89-96.
- [4] N. Levine, Semi-open sets and semi-continuity in topological spaces, Ams. Math. Monthly 70 (1963), 36-41.
- [5] H. Maki, On generalizing semi-open and preopen sets, Report for Meeting on topological spaces theory and its applications, August 1996, Yatsushiro College of Technology, pp. 13-18.
- [6] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.
- [7] W. K. Min, Some results on generalized topological spaces and generalized systems, Acta Math. Hungar. 108(1-2) (2005), 171-181.
- [8] W. K. Min, On weak neighborhood systems and spaces, Acta Math. Hungar. 121(3) (2008), 283-292.
- [9] Y. K. Kim and W. K. Min, On weak structures and *w*-spaces, Far East J. Math. Sci. (FJMS) 97(5) (2015), 549-561.
- [10] W. K. Min and Y. K. Kim, *WO*-continuity and *WK*-continuity on associated *w*-spaces, Int. J. Pure Appl. Math. 102(2) (2015), 349-356.

- [11] W. K. Min and Y. K. Kim, On generalized w-closed sets in w-spaces (submitted).
- [12] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15(3) (1964), 961-970.
- [13] F. Siwiec, On defining a space by a weak base, Pacific J. Math. 52(1) (1974), 351-357.
- [14] M. K. R. S. Veerakumar, Between closed sets and *g*-closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A, Math. 17(21) (2000), 1-19.