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Abstract 

We consider a microscopic stochastic model of invasion of exotic 
species in a lake system in a random environment. We obtain the 
speed of the invasion when the spatial density of the invasion is 
controlled by changing the offspring generating mechanism of 
invaders at the infected lake. 

1. Introduction 

Biological invasions on native communities have been very extensively 
studied in the past by several researchers (see for example the monograph of 
Williamson [11]). Lewis [4] has formulated a set of equations describing the 
dynamics of spatial moments of the population and analysed the effect of 
intrinsic stochastic factors when individuals interact locally over small 
neighborhoods. He has exhibited that the spread of invasion can be slowed 
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down even in a uniform environment. Lewis and Pacala [5] derive integro-
difference equations to describe a stochastic invasion process and use these 
equations to analyse the wave of invasion. Neubert et al. [6] have modelled 
invasions in fluctuating environments with discrete-time, continuous space, 
integro-difference equations which incorporate wide range of dispersal 
mechanisms that are common in empirical data, and they have described the 
effect of temporal fluctuations in both the population growth rate and the 
dispersal kernel on the speed of invasion in single-species. Olson and Roy [7] 
have considered the economics of controlling a biological invasion whose 
natural growth and spread is subject to environmental disturbances, and 
examined conditions under which it is optimal to eradicate the invasive 
species and conditions under which eradication is not optimal. Snyder [10] 
has considered a single-species invasion model and studied the impact of 
demographic stochasticity on the speed of biological invasions. Kot et al. [3] 
have linked deterministic integro-difference equations to stochastic, 
individual-based simulations by means of branching random walks, and 
using standard methods determined speeds of biological invasion for both 
average densities and furthest-forward individuals. Potapov et al. [9] have 
investigated an optimal control of biological invasions in lake networks. 
Kawasaki and Shigesada [2] have used an integro-difference model with the 
intrinsic growth rate specified by a spatially periodic step-function and the 
redistribution kernel given by an exponentially damping function to describe 
and analyse the spread of invading species on a periodically fragmented 
environment. Potapov et al. [9] have considered a meta-population model for 
Invasive Alien Species (IAS) in a lake network coupled with an economic 
model of prevention and characterized prevention methods controlling both 
the outflow of invaders at infected lakes and the inflow of invaders at 
uninfected lakes. Potapov and Lewis [8] have considered a model of invasion 
prevention in a system of lakes that are connected via traffic of recreational 
boats, and they showed that in presence of an Allee effect, the general 
optimal control problem is reduced to a significantly simpler stationary 
optimization problem of optimal invasion stopping. Finnoff et al. [1] have 
considered the problem of management of an aquatic invader spreading in a 
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lake system and generated control decisions and compared for an optimally 
controlled system and for a static optimization across asymptotic steady 
states. In almost all the above papers, the choice of spatial density function 
for the propagules has been macroscopically modeled to mimic the 
experimental data. However, the formulation of the density should be made 
based upon the microscopic considerations. In this paper, we fill this gap by 
considering a microscopic stochastic model of Invasion of Exotic Species 
(IES) in a lake system to analyse the speed of the invasion when the spatial 
density of the invasion is controlled by changing the offspring generating 
mechanism of invaders at the infected lake. 

The lay out of the paper is as follows: Section 2 presents the stochastic 
model of the microscopic evolution of the cumulative invasion size ( )xtX ,  

at time t and at distance x from the origin. In Section 3, the integro-difference 
equation for the generating function of ( )xtX ,  is obtained. The speed of 

invasion is analysed in Section 4. A spectral analysis of the invasion process 
is provided in Section 5. Section 6 presents a discussion of the findings of the 
present work and a conclusion. 

2. The Stochastic Model of Invasion 

We consider one-dimensional spatial invasion. We assume that one 
individual has invaded at time 0=t  and at the origin .0=x  This individual 
lives for one unit of time and splits into a random number ξ of offsprings. 
We assume that the offsprings inherit their parent unless otherwise specified 
and behave identically and independently. Let the offsprings disperse with 
redistribution kernel ( ).xk  Let ( )xtX ,  be the number of individuals in the 

interval ( ]x,∞−  at time t, where ....,2,1,0=t  Since we start with one 

individual at the origin, we get 

( )
⎩
⎨
⎧

≥
<

=
.0,1
,0,0

,0
x
x

xX  

Clearly, ( )xtX ,  represents the number of individuals of the generation t 
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which are located with in the distance x from the origin. We assume that all 
individuals of a random generation change their reproductive capacity which 

alternates between two offspring generating functions ( )( ) ( )∑∞= 0
11 j
j spsh  

and ( )( ) ( )∑∞= 0
22 j
j spsh  at random generation times ...,,, 21 tt  where <0  

<< 21 tt  and the random variables ...,,, 23121 ttttt −−  are independent 

and identically distributed. We assume that 00 =t  and 

{ } ( ) ....,2,1...;,2,1,0,1 1
1 ==ρρ−==− −
+ kjkttP k

jj  

We note that all individuals existing at time t reproduce according to the 

offspring generating function ( )( ),1 sh  when ,122 +<≤ nn ttt  ...,2,1,0=n  

and those existing at time t reproduce according to the offspring generating 

function ( )( ),2 sh  when ,2212 ++ <≤ nn ttt  ....,2,1,0=n  We say that an 

1e -event occurs at the random time point ...,2,1,0, =ntn  and an 2e -event 

occurs at the random time point ,12 +nt  ....,2,1,0=n  The propagules 

disseminate according to the dispersal kernel ( )., yxk  The function ( )yxk ,  

has the following interpretation: 

( )dydxyxk ,  

( ) ( )
⎩
⎨
⎧ ++

=
time.ofunitonein

,to,fromdispersingindividualanofyProbabilit dxxxdyyy
 

3. The Integro-difference Equation 

To analyse the invasion process, we consider the generating function of 
( )xtX ,  defined by 

( ) [ ( ) ].;, , xtXsEtxsG =  

Then, we have the initial condition 

( ) [ ( ) ]
⎩
⎨
⎧

≥
<

==
.0,
,0,1

0;, ,0
xs
x

sExsG xX  
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Using the Heaviside function ( ),xH  we can write the initial condition as 

follows: 

( ) ( ) ( ).10;, xsHxHxsG +−=  

Since the offspring generating function of an individual at time 0t  is ( )( ),1 sh  

we get 

( ) ( ) ( ) ( )∑ ∫
∞

=

∞

∞− ⎭
⎬
⎫

⎩
⎨
⎧=

0

1 0;,,1;,
j

j

j dxysGyxkpxsG  

( ) ( ) ( ) .0;,,1 ⎟
⎠
⎞

⎜
⎝
⎛= ∫

∞

∞−
dxysGyxkh  

To be specific, we observe that the offspring generating function of an 

individual time at 1=t  is either ( )sh1  with probability ρ−1  or ( )( )sh 2  

with probability ρ, we get 

( ) ( ) ( ) ( ) ( )∑ ∫
∞

=

∞

∞− ⎭
⎬
⎫

⎩
⎨
⎧ρ−=

0

1 1;,,12;,
j

j

j dxysGyxkpxsG  

( ) ( ) ( )∑ ∫
∞

=

∞

∞− ⎭
⎬
⎫

⎩
⎨
⎧ρ+

0

2 1;,,
j

j

j dxysGyxkp  

( ) ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ρ−= ∫

∞

∞−
dxysGyxkh 1;,,1 1  

( ) ( ) ( ) .1;,,2 ⎟
⎠
⎞

⎜
⎝
⎛ρ+ ∫

∞

∞−
dxysGyxkh  

Next, we observe that the offspring generating function of an individual at 

2=t  is either ( )( )sh 1  with probability ( ) 221 ρ+ρ−  or ( )( )sh 2  with 

probability ( ) ,12 ρρ−  we get 
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( ) [( ) ] ( ) ( ) ( )∑ ∫
∞

=

∞

∞− ⎭
⎬
⎫

⎩
⎨
⎧ρ+ρ−=

0

122 2;,,13;,
j

j

j dxysGyxkpxsG  

( ) ( ) ( ) ( )∑ ∫
∞

=

∞

∞− ⎭
⎬
⎫

⎩
⎨
⎧ρρ−+

0

2 2;,,12
j

j

j dxysGyxkp  

[( ) ] ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ρ+ρ−= ∫

∞

∞−
dxysGyxkh 2;,,1 122  

( ) ( ) ( ) ( ) .2;,,12 2 ⎟
⎠
⎞

⎜
⎝
⎛ρρ−+ ∫

∞

∞−
dxysGyxkh  

It is instructive to derive a similar equation for ( ).4;, xsG  For this, we 

observe that the offspring generating function of an individual at 3=t  is 

either ( )( )sh 1  with probability ( ) ( )ρ−ρ+ρ− 131 23  or ( )( )sh 2  with probability 

( ) ,13 32 ρ+ρρ−  we get 

( ) [( ) ( )] ( ) ( ) ( )∑ ∫
∞

=

∞

∞− ⎭
⎬
⎫

⎩
⎨
⎧ρ−ρ+ρ−=

0

123 2;,,1314;,
j

j

j dxysGyxkpxsG  

[ ( ) ] ( ) ( ) ( )∑ ∫
∞

=

∞

∞− ⎭
⎬
⎫

⎩
⎨
⎧ρρ+ρρ−+

0

232 3;,,13
j

j

j dxysGyxkp  

[( ) ( )] ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ρ−ρ+ρ−= ∫

∞

∞−
dxysGyxkh 3;,,131 123  

[ ( ) ] ( ) ( ) ( ) .3;,,13 232 ⎟
⎠
⎞

⎜
⎝
⎛ρρ+ρρ−+ ∫

∞

∞−
dxysGyxkh  

Similarly, we obtain 

( )5;, xsG  

[( ) ( ) ] ( ) ( ) ( )∑ ∫
∞

=

∞

∞− ⎭
⎬
⎫

⎩
⎨
⎧ρ+ρ−ρ+ρ−=

0

14224 4;,,161
j

j

j dxysGyxkp  
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[ ( ) ( )] ( ) ( ) ( )∑ ∫
∞

=

∞

∞− ⎭
⎬
⎫

⎩
⎨
⎧ρ−ρ+ρρ−+

0

233 4;,,1414
j

j

j dxysGyxkp  

[( ) ( ) ] ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ρ+ρ−ρ+ρ−= ∫

∞

∞−
dxysGyxkh 4;,,161 14224  

[ ( ) ( )] ( ) ( ) ( ) .4;,,1414 233 ⎟
⎠
⎞

⎜
⎝
⎛ρ−ρ+ρρ−+ ∫

∞

∞−
dxysGyxkh  

From the above form, we identify the general result 

( )1;, +txsG  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,;,,;,, 21 ⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛= ∫∫

∞

∞−

∞

∞−
dxtysGyxkhtBdxtysGyxkhtA  

where 

( ) ( ) ( ) ( )∑ ∑
⎥⎦
⎤

⎢⎣
⎡

=

⎥⎦
⎤

⎢⎣
⎡

=

−−+− ρ−⎟
⎠
⎞

⎜
⎝
⎛

+
=ρ−⎟

⎠
⎞

⎜
⎝
⎛=

2

0

2

0

121222 .1
12

,1
2

t

j

t

j

jtjjtj p
j
ttBp

j
ttA  

We note that 

( ) ( ) ( ) ( ) ( ) 221 1
2

1
1

1
0

−− ρ−ρ⎟
⎠
⎞

⎜
⎝
⎛+ρ−ρ⎟

⎠
⎞

⎜
⎝
⎛+ρ−⎟

⎠
⎞

⎜
⎝
⎛=+ ttt ttt

tBtA  

( )[ ] ;11 =ρ+ρ−=ρ⎟
⎠
⎞

⎜
⎝
⎛++ tt
t
t

 

( ) ( ) ( ) ( ) ( ) 221 1
2

1
1

1
0

−− ρ−ρ⎟
⎠
⎞

⎜
⎝
⎛+ρ−ρ⎟

⎠
⎞

⎜
⎝
⎛−ρ−⎟

⎠
⎞

⎜
⎝
⎛=− ttt ttt

tBtA  

( ) ( )[ ] ( ) .2111 tttt
t
t

ρ−=ρ−ρ−=ρ⎟
⎠
⎞

⎜
⎝
⎛−+−  

Consequently, we obtain 

( ) ( ) ( ) ( ) .2
211,2

211 tt
tBtA ρ−−=ρ−+=  
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Theorem. 

( ) ( ) ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎦

⎤
⎢
⎣

⎡ ρ−+=+ ∫
∞

∞−
dxtysGyxkhtxsG

t
;,,2

2111;, 1  

( ) ( ) ( ) ( ) .;,,2
211 2 ⎟

⎠
⎞

⎜
⎝
⎛

⎥
⎦

⎤
⎢
⎣

⎡ ρ−−+ ∫
∞

∞−
dxtysGyxkh

t
 (3.1) 

Proof. The proof is obtained by applying the results of renewal theory. 
For this, we consider the random time points ....,,, 210 ttt  We note that the 

offspring generating function of all individuals existing at time t is ( )( )sh 1  

when .10 ttt ≤≤  The offspring generating function for all individuals 

existing at time point 1t  is ( )( )sh 2  and the offspring generating function for 

all individuals existing at all time points in the interval 21 ttt ≤≤  is ( )( ).2 sh  

Proceeding in this way, the offspring generating function of all individuals 

existing at an arbitrary generation time point t is either ( )( )sh 1  or ( )( )sh 2  

according as 122 +<≤ nn ttt  or .212 nn ttt <≤−  To study the probability 

structure of the random time points ...,,,,,, 43210 ttttt  we define the 

following conditional distributions: 

( )

( )

( )

,

functiongeneratingoffspringtheas
followsgenerationththatgiven

function generatingoffspringtheas
followsgenerationth

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧ +

=

sh
r

shrn

Pnp

i

j

ij  

.2,1,...;,2,1,0 == jin  

It is clear that ( ) ,10 =iip  .2,1=i  Using the Heaviside function ( ),mH  we 

obtain the following equations: 

( ) ( ) ( ) ( ) ( ) ( )∑
−

=

− −ρρ−−+ρ−=
1

1
21

1
11 ,121

n

j

jn jnpnHnHnp  (3.2) 
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( ) ( ) ( ) ( ) ( ) ( )∑
−

=

−− −ρρ−−+−ρρ−=
1

1
22

11
12 ,1211

n

j

jn jnpnHnHnp  (3.3) 

( ) ( ) ( ) ( ) ( ) ( )∑
−

=

−− −ρρ−−+−ρρ−=
1

1
11

11
21 ,1211

n

j

jn jnpnHnHnp  (3.4) 

( ) ( ) ( ) ( ) ( ) ( )∑
−

=

− −ρρ−−+ρ−=
1

1
12

1
22 .121

n

j

jn jnpnHnHnp  (3.5) 

The above equations can be solved by generating function technique. We use 
the notation 

( ) ( )∑
∞

=
==ψ

0
.2,1,,

n

n
ijij jisnps  

Multiplying (3.2) by ns  and summing from 0=n  to ∞, we get 

( ) ( )∑
∞

=
=ψ

0
1111

n

nsnps  

( ) ( ) ( )∑ ∑∑
∞

=

∞

=

−

=

− −ρρ−+ρ−=
0 2

1

1
21

111
n n

n

j

njnn sjnps  

( ) ( ) ( )∑ ∑
∞

=

∞

+=

− −ρ−ρ+
ρ−−

=
1 1

21
1111

1

j jn

nj sjnps  

( ) ( ) ( )∑ ∑
∞

=

∞

=

+−ρ−ρ+
ρ−−

=
1 1

21
1111

1

j m

jmj smps  

( )
( )

( ) .1111
1 21

ρ−−
ρψ

+
ρ−−

= s
ss

s  (3.6) 
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Multiplying (3.3) by ns  and summing from 0=n  to ∞, we get 

( ) ( ) ( ) ( )∑ ∑ ∑
∞

=

∞

=

∞

=

− ρρ−===ψ
0 1 1

1
121212 1

n n n

nnnn ssnpsnps  

( ) ( )∑∑
∞

=

−

=

− −ρρ−+
2

1

1
22

11
n

n

j

nj sjnp  

( ) ( ) ( )∑ ∑
∞

=

∞

+=

− −ρ−ρ+
ρ−−

ρ=
1 1

22
1111

j jn

nj sjnps
s  

( ) ( ) ( )∑ ∑
∞

=

∞

=

+−ρ−ρ+
ρ−−

ρ=
1 1

22
1111

j m

jmj smps
s  

( ) ( ) ( )∑
∞

=
ρ−−

ρ+
ρ−−

ρ=
1

221111
m

msmps
s

s
s  

( ) ( ) ( )
( )∑

∞

=
ρ−−

ψρ
=

ρ−−
ρ=

0

22
22 .1111

m

m
s

sssmps
s  (3.7) 

Multiplying (3.4) by ns  and summing from 0=n  to ∞, we get 

( ) ( ) ( )∑ ∑
∞

=

∞

=
==ψ

0 1
212121

n n

nn snpsnps  

( ) ( ) ( )∑ ∑∑
∞

=

∞

=

−

=

−− −ρρ−+ρρ−=
1 2

1

1
11

11 11
n n

n

j

njnn sjnps  

( ) ( ) ( )∑ ∑
∞

=

∞

+=

− −ρ−ρ+
ρ−−

ρ=
1 1

11
1111

j jn

nj sjnps
s  

( ) ( ) ( )∑ ∑
∞

=

∞

=

+−ρ−ρ+
ρ−−

ρ=
1 1

11
1111

j m

jmj smps
s  
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( ) ( ) ( )∑
∞

=
ρ−−

ρ+
ρ−−

ρ=
1

111111
m

msmps
s

s
s  

( ) ( ) ( )
( )∑

∞

=
ρ−−

ψρ
=

ρ−−
ρ=

0

11
11 .1111

m

m
s

sssmps
s  (3.8) 

Multiplying (3.5) by ns  and summing from 2=n  to ∞, we get 

( ) ( ) ( ) ( ) ( )∑ ∑ ∑∑
∞

=

∞

=

∞

=

−

=

− −ρρ−+ρ−==ψ
0 0 2

1

1
12

1
2222 11

n n n

n

j

njnnn sjnpssnps  

( ) ( ) ( )∑ ∑
∞

=

∞

=

+−ρ−ρ+
ρ−−

=
1 1

12
1111

1

j m

jmj smps  

( )
( )

( ) .1111
1 12

ρ−−
ρψ

+
ρ−−

= s
ss

s  (3.9) 

Substituting (3.8) in (3.6) and solving for ( ),11 sψ  we get 

( ) ( )

( )
( )

( )ρ−−
ρ−−

ψρ
ρ

+
ρ−−

=ψ 11
11

11
1

11

11 s
s

sss

ss  

and so we get 

( ) ( )
( ){ }( )ss

ss
−ρ−−

ρ−−
=ψ 1211

11
11  

( ) { ( ) }∑
∞

=
ρ−+=

ρ−−
+

−
=

0
.2112

1
211

1
2
1

1
1

2
1

n

nn sss  

Consequently, we get 

 ( ) ( ) ....,2,1,0,2
211

11 =ρ−+= ttp
t

 (3.10) 



S. Udayabaskaran and N. G. Renganathan 84 

Substituting (3.6) in (3.8) and solving for ( ),21 sψ  we get 

( ) ( ) ( )
( )

( ) .1111
1

11
21

21 ⎥⎦
⎤

⎢⎣
⎡

ρ−−
ρψ

+
ρ−−ρ−−

ρ=ψ s
ss

ss
ss  

Solving the above equation for ( ),21 sψ  we obtain 

( ) ( ){ }( )ss
ss

−ρ−−
ρ=ψ 121121  

( ) { ( ) }∑
∞

=
ρ−−=

ρ−−
−

−
=

0
2112

1
211

1
2
1

1
1

2
1

n

nn sss  

and hence, we get 

 ( ) ( ) ....,2,1,0,2
211

21 =ρ−−= ttp
t

 (3.11) 

Substituting (3.7) in (3.9) and solving for ( ),22 sψ  we get 

( ) ( )
( ){ }( )ss

ss
−ρ−−

ρ−−
=ψ 1211

11
22  

( ) { ( ) }∑
∞

=
ρ−+=

ρ−−
+

−
=

0
2112

1
211

1
2
1

1
1

2
1

n

nn sss  

and hence, we get 

 ( ) ( ) ....,2,1,0,2
211

22 =ρ−+= ttp
t

 (3.12) 

Substituting (3.9) in (3.7) and solving for ( ),12 sψ  we get 

( ) ( ){ }( ) { ( ) }∑
∞

=
ρ−−=

−ρ−−
ρ=ψ

0
12 2112

1
1211

n

nn sss
ss  

and hence, we get 

 ( ) ( ) ....,2,1,0,2
211

12 =ρ−−= ttp
t

 (3.13) 
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Using (3.10) and (3.13), we get 

( ) ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛=+ ∫

∞

∞−
dytysGyxkhtptxsG ;,,1;, 111  

( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛+ ∫

∞

∞−
dytysGyxkhtp ;,,212  

( ) ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ρ−+= ∫

∞

∞−
dytysGyxkh

t
;,,2

211 1  

( ) ( ) ( ) ( ) .;,,2
211 2 ⎟

⎠
⎞

⎜
⎝
⎛ρ−−+ ∫

∞

∞−
dytysGyxkh

t
 

This proves (3.1). 

We now proceed to derive several useful statistics from (3.1). 

4. The Speed of Invasion 

The average cumulative density of invasion is the expected value of 
( )., xtX  We put ( ) ( )[ ].,, xtXExta =  To get an integro-difference equation 

for ( ),, xta  we differentiate (3.1) with respect to s and put .1=s  Then, we get 

( )xta ,1+  

( ) ( ) ( ) ( )∫
∞

∞−
⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧ ρ−−+

⎭
⎬
⎫

⎩
⎨
⎧ ρ−+= dyytayxkRR

tt
,,2

211
2

211
2010  

( ) ( ) ( )∫
∞

∞−
= ,,,0 dyytayxktR  (4.1) 

where we have put 

( ) ( ) ( ) ( ),1,1 2
20

1
10

′′
== hRhR  

( ) ( ) ( ) .2
211

2
211

20100 RRtR
tt

⎭
⎬
⎫

⎩
⎨
⎧ ρ−−+

⎭
⎬
⎫

⎩
⎨
⎧ ρ−+=  
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It is important to note that the value of ( )tR0  depends on the generation level 

t. This form of ( )tR0  defers from the result of Kot et al. [3]. Following 

Snyder [10], we proceed to solve equation (4.1) explicitly for the leptokurtic 

Laplace kernel ( ) .2, yxeyxk −α−α=  Equation (4.1) becomes 

( ) ( ) ( )∫
∞

∞−
−α−α=+ dyytaetRxta yx ,2,1 0  

( )xta ,1+⇒  

( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ α+α= ∫ ∫∞−

∞ −α−−α−x

x
yxyx dyytaedyytaetR ,2,20  

( ) ( ) ( ) ( ) ( ) .,2,20 ⎥⎦
⎤

⎢⎣
⎡ α+α= ∫ ∫∞−

∞ −α−−α−x

x
xyyx dyytaedyytaetR  

Using the trial solution ( ) ( ) ,,, α<θ<α−= −θ− ctxexta  equation (4.1) gives 

( ) ( ) ( )
⎥⎦
⎤

⎢⎣
⎡ +

α
= ∫ ∫∞−

∞ θ−−α−θ−−α−θ+θ− x

x
yxyyyxcx dyeedyaetRe 2

0  

( ) ( ) ( )
⎥⎦
⎤

⎢⎣
⎡ +

α
= ∫ ∫∞−

∞ α−θ−αα+θ−α− x

x
yxyx dyeedyeetR

2
0  

( )
⎥
⎦

⎤
⎢
⎣

⎡
α−θ−

−
α+θ−

α
=

θ−θ− xx eetR
2
0  

and hence, we get 

 ( ) ( ) .11
2 22

0
2

0

θ−α

α
=⎥⎦

⎤
⎢⎣
⎡

α−θ−
−

α+θ−
α

=θ tRtRe c  (4.2) 

Using the parametric representation for c as 

 ,2
22 θ−α

θ=c  (4.3) 
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equation (4.2) gives 

 ( ) ( ).1
2222

2

2
0

θ−αθ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

α

θ−= etR  (4.4) 

We now proceed to find the speed of invasion for certain choices of ( ),1 sh  

( ),2 sh  ρ and α. 

Illustration 1. Let ( )( ) ( )( ) 5.0,, 2221 =ρ== sshssh  and .5.0=α  Then 

( ) ( ) ( ) ( ) ( ) .22
1

2
1,21,21 20100

2
20

1
10 =+=====

′′ RRtRhRhR  

Equation (4.4) becomes ( ) ( ).412
22 4182 θ−θθ−= e  The above equation is 

independent of the generation index t. Solving the above equation 
numerically, we get .301791.0=θ  Substituting in (4.2), we get the speed of 
invasion for all generations as .797971.3=c  This is in fact the result of 
Snyder [10]. 

Illustration 2. Let ( )( ) ,3
1

3
2 421 sssh +=  ( )( ) ,22 ssh =  4.0=ρ  and 

.5.0=α  Then 

( ) ( ) ( ) ( ) .21,3
81 2

20
1

10 ====
′′ hRhR  

Consequently, we get 

( ) ( ) ( ) ( ) .2.03
1

3
7

2
211

2
211

20100
t

tt
RRtR +=

⎭
⎬
⎫

⎩
⎨
⎧ ρ−−+

⎭
⎬
⎫

⎩
⎨
⎧ ρ−+=  

Then equation (4.4) becomes 

 ( ) ( ) ( ).412.03
1

3
7 22 4182 θ−θθ−=+ et  (4.5) 

From (4.5), we note that θ is a function of the generation index t and 
consequently, the invasion speed c is a function of t. Solving (4.5) 
numerically, we get the following table: 
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Table 1. Transient speed of invasion in random environment 

Generation time R0(t) θ Speed of invasion 

1 2.4 0.321424 4.382471 
2 2.365333  0.320033 4.337106 
3 2.339641 0.318971 4.302923 
4 2.334581 0.318758 4.296134 
5 2.333582 0.318716 4.294791 
6 2.333383 0.318708 4.294523 
7 2.333343 0.318706 4.29447 
8 2.333335 0.318706 4.294459 
9 2.333334 0.318706 4.294457 

10 2.333333 0.318706 4.294456 
11 2.333333 0.318706 4.294456 
12 2.333333 0.318706 4.294456 

 
Figure 1. Speed of invasion versus generation time. 
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We note that the speed of invasion decreases and reaches the steady-state 
at the tenth generation. The asymptotic speed of invasion is .29445.4=c  

Illustration 3. We assume 

( )( ) ( )( ) 6.0,,3
1

3
2 22421 =ρ=+= sshsssh   and  .5.0=α  

Then we obtain 

( ) ( ) ( ) ( ) ( ) ( ) .2.03
1

3
7,21,3

81 0
2

20
1

10
ttRhRhR −+=====

′′  

Now equation (4.5) becomes 

 ( ) ( ) ( ).412.03
1

3
7 22 4182 θ−θθ−=−+ et  (4.6) 

From equation (4.6), we note that θ is a function of the generation index t 
and consequently, the invasion speed c is a function of t. Solving (4.6) 
numerically, we get Table 2 and Figure 2. 

Table 2. Transient speed of invasion in random environment 

Generation time R0(t) θ Speed of invasion 

1 2.266667 0.3158 4.203088 
2 2.363556 0.31996 4.334756 
3 2.327031 0.318439 4.285966 
4 2.334574 0.318758 4.296125 
5 2.333084 0.318695 4.294121 
6 2.333383 0.318708 4.294523 
7 2.333323 0.318705 4.294443 
8 2.333335 0.318706 4.294459 
9 2.333333 0.318706 4.294456 

10 2.333333 0.318706 4.294456 
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Figure 2. Speed of invasion versus generation time. 

In this illustration, the speed of invasion oscillates and then reaches the 
asymptotic speed 4.294456 at the 9th generation. 

5. The Spectral Analysis of Invasion 

In this section, we provide a spectral analysis when the spatial 
distribution kernel is homogeneous, that is ( ) ( )., yxkyxk −=  We denote 

the Fourier transform of ( )xta ,  as 

( ) ( )∫
∞

∞−
ω

π
=ω .,2

1,ˆ dxxtaetf xi  

Then equation (4.1) gives 

 ( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
ω −

π
=ω+ .,2,1ˆ 0 dydxytayxketRta xi  (5.1) 

We assume that ( ) ( )., yxkyxk −=  Interchanging the order of integration 

in (5.1), we get 
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( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
ω −

π
=ω+ dxdyyxkeytatRta xi,2,1ˆ 0  

( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
ω −

π
= dxdyyxkeytatR xi,2

0  

( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
ωω

ππ
π= dzzkedyytaetR ziyi

2
1,2

12 0  

( ) ( ) ( ).ˆ,ˆ2 0 ωωπ= ktatR  

Iterating the above equation, we get 

( ) { ( )} ( ) ( )∏
=

+ ωωπ=ω+
t

l

t alRkta
0

0
1 .,0ˆˆ2,1ˆ  

But we have 

( ) ( ) ( )[ ]∫ ∫
∞

∞−

∞

∞−
ωω

π
=

π
=ω dyyXEedyyaea yiyi ,02

1,02
1,0ˆ  

( )∫
∞

∞−
ω

π
=δ

π
= .2

1
2
1 dyye yi  

Consequently, we obtain 

 ( )
{ ( )} ( )

.2

ˆ2
,ˆ

1

0
0

π

ωπ

=ω
∏
−

=

t

l

t lRk
ta  (5.2) 

Following Snyder [10], suppose that ( ) .,2 ∞<<∞−α= α xexk x  Then we 

have 

( ) ∫
∞

∞−
α−ω α−

π
=ω dxeek xyi

22
1ˆ  

( )∫
∞ α−

α+ω

α
π

=αω
π

=
0 22

2
.2

1
2cos1 dxex x  (5.3) 
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Substituting (5.3) into (5.2), we get 

 ( )
( ) ( )

( )
.

22
2
12

,ˆ 22

1

0
0

2
1

0
022

2

t

t

l

t
t

l

t
lRlR

ta
α+ωπ

α

=
π

⎭
⎬
⎫

⎩
⎨
⎧

α+ω
α

π
×π

=ω
∏∏
−

=

−

=  (5.4) 

Taking Fourier inversion of (5.4), we have 

( )
( )

( )

( )

( )∫ ∫
∏∏∞

∞−

∞

∞−

ω

−

=

−

=ω− ω
α+ωπ

α

=ω
α+ωπ

α

= .22
, 22

1

0
0

2

22

1

0
0

2

de
lR

d
lR

exta t

xi

t

l

t

t

t

l

t

xi  

 (5.5) 
Using the calculus of residues, we get 

 
( ) ( ) ( )∫

∞

∞− −

−

α→

ω

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

α+−
π=ω

α+ω
.!1

1lim2 1

1

22 t

izx

t

t

izt

xi

iz
e

dz
d

tide  (5.6) 

Using the theorem of Leibnitz, equation (5.6) gives 

( )∫
∞

∞−

ω
ω

α+ω
de

t

xi

22  

( ) ( ) {( ) }∑
−

=

−
−−α→

α+⎟
⎠
⎞

⎜
⎝
⎛ −

−
π=

1

0
1

1lim!1
2 t

j
j

t
jt

izx
iz

ize
j

t
t

i  

( ) ( ) ( ) ( ) ( )∑ ∏
−

=

−−
−

=

−−
α→

α+
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−⎟

⎠
⎞

⎜
⎝
⎛ −

−
π=

1

0

1

0

1 11lim!1
2 t

j

jt
j

l

jizxjt
iz

izlteix
j

t
t

i  

( ) ( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
α

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−⎟

⎠
⎞

⎜
⎝
⎛ −

−
π= ∑ ∏

−

=

−−
−

=

−−α−
1

0

1

0

1 211
!1

2 t

j

jt
j

l

jjtx iltix
j

tet
i  

( )

( )

( )∑
∏−

=
+

−

=−−α−

α

+

⎟
⎠
⎞

⎜
⎝
⎛ −

−
π=

1

0

1

01 .
2

1
!1

2 t

j
jt

j

ljtx
lt

x
j

tet  (5.7) 
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Substituting (5.7) into (5.5), we obtain 

( )
( )

( )

( )

( )∑
∏∏ −

=
+

−

=−−α−

−

=

α

+

⎟
⎠
⎞

⎜
⎝
⎛ −

−

α

=
1

0

1

01

1

0
0

2

.
2

1
!1,

t

j
jt

j

ljtx

t

l

t lt
x

j
tet

lR
xta  

Next we proceed to investigate the frequency analysis of the spatial 
covariance of the invasion process. For this, we need the product density 
functions ( )xtp ,1  and ( )yxtp ,,2  which are defined by the equations: 

( ) ( ){ } ,,:lim,
01 Δ

ΔΩ
=

→Δ

xtPxtp  

( ) ( ){ } ,,;,:lim,,
0,2 Δ′Δ

Δ′ΔΩ
=

→Δ′Δ

yxtPyxtp  

where ( )ΔΩ ,: xt  is the event that one individual of tth generation lies in 

( );, Δ+xx  and ( )Δ′ΔΩ ,;,: yxt  is the event that one individual of tth 

generation lies in ( )Δ+xx,  and one individual of tth generation lies in 

( )., Δ′+yy  Then, applying the offspring generation mechanism and the 

dispersal kernel ( ),, ηξk  we obtain the integro-difference equations for 

( )xtp ,1  and ( ).,,2 yxtp  To derive the integro-difference equation for 

( ),,1 xtp  we consider ( )xtp ,11 +  and observe that the individual at x in the 

1+t th generation is one of the offspring of an individual of the tth 
generation. Accordingly, we obtain that the function ( )xtp ,1  satisfies the 

integro-difference equation 

( ) ( ) ( ) ( ) ( )∫ ∑
∞

∞−

∞

=
=+

0

1
1111 ,,,1

j
j dzzxjkpztptpxtp  

( ) ( ) ( ) ( )∫ ∑
∞

∞−

∞

=
+

0

2
112 ,,

j
j dzzxjkpztptp  



S. Udayabaskaran and N. G. Renganathan 94 

( ) ( ) ( )∫
∞

∞−
= dzzxkztpRtp ,,11011  

( ) ( ) ( )∫
∞

∞−
+ dzzxkztpRtp ,,11012  

( ) ( ){ } ( ) ( )∫
∞

∞−
+= dzzxkztpRtpRtp ,,120121011  

( ) ( ) ( )∫
∞

∞−
= .,,10 dzzxkztptR  (5.8) 

To derive the integro-difference equation for ( ),,,2 yxtp  we consider 

( )yxtp ,,12 +  and observe that the two individuals at x and y of the 1+t th 

generation are due to the same parent of the tth generation or due to different 
parents of the tth generation. Accordingly, we obtain that the function 

( )yxtp ,,2  satisfies the integro-difference equation 

( ) ( ) ( ) ( ) ( )∫ ∑
∞

∞−

∞

=⎪⎩

⎪
⎨
⎧

−=+
0

1
1112 1,,,1

j
j jjptpztpyxtp  

( ) ( ) ( ) ( ) ( )dzzykzxkjjptp
j

j ,,1
0

2
12

⎪⎭

⎪
⎬
⎫

−+ ∑
∞

=
 

( ) ( ) ( )∫ ∫ ∑
∞

∞−

∞

≠∞−

∞

=⎪⎩

⎪
⎨
⎧

+
vu lj

lj ljpptpvutp
0,

1
112 ,,  

( ) ( ) ( ) ( ) ( ) .,,
0,

22
12 dudvvykuxkljpptp

lj
lj

⎪⎭

⎪
⎬
⎫

+ ∑
∞

=
 

In the above equation, we note that 

( ) ( ) ( )∑
∞

=

′
==

0

11
10 ,1

j
j jphR  
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( ) ( ) ( )∑
∞

=

′
==

0

22
20 ;1

j
j lphR  

( ) ( ) ( ) ( ) ( )∑
∞

=

″
−==

0

111
2 ,11

j
j jjphm  

( ) ( ) ( ) ( ) ( )∑
∞

=

″
−==

0

222
2 .11

j
j jjphm  

Consequently, the above equation becomes 

( )yxtp ,,12 +  

( ){ ( ) ( ) ( ) ( )} ( ) ( )∫
∞

∞−
+= dzzykzxkmtpmtpztp ,,, 2

212
1

2111  

( ){ ( ) ( ) } ( ) ( )∫ ∫
∞

∞−

∞

≠∞−
++

vu
dudvvykuxkRtpRtpvutp ,,,, 2

2012
2
10112  

( ) ( ) ( ) ( )∫
∞

∞−
= dzzykzxkztpta ,,,1  

( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

≠∞−
+

vu
dudvvykuxkvutptb ,,,,,2  (5.9) 

where we have put ( ) ( ) ( ) ( ) ( )2
212

1
211 mtpmtpta +=  and ( ) ( ) += 2

1011 Rtptb  

( ) .2
2012 Rtp  Putting ( )( ) ( )( ),21 shsh =  we get back the same equation as in 

Lewis and Pacala [5]. To solve equations (5.8) and (5.9), we assume ( )vuk ,  

( )vuk −=  and apply the Fourier transform and double Fourier transform, 

respectively, as defined by 

( ) ( )∫
∞

∞−
ω

π
=ω ,2

1ˆ dxxfef xi  

( ) ( )∫ ∫
∞

∞−

∞

∞−
ωω

π
=ωω .,

4
1,ˆ 21

221 dxdyyxfeef yixi  
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By taking Fourier transform of (5.8), we obtain 

( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
ω ⎟

⎠
⎞

⎜
⎝
⎛ −

π
=ω+ dzdxzxkeztptRtp xi

2
1,,1ˆ 101  

( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
+ξω ⎟

⎠
⎞

⎜
⎝
⎛ ξξ

π
= dzdkeztptR zi

2
1,10  

( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ξξ

π⎟
⎠
⎞

⎜
⎝
⎛

π
π= ∫∫

∞

∞−
ωξ∞

∞−
ω dkedzztpetR izi

2
1,2

12 10  

( ) ( ) ( ).ˆ,ˆ2 10 ωωπ= ktptR  (5.10) 

Similarly, taking double Fourier transform on both sides of (5.9), we get 

( )212 ,,1ˆ ωω+tp  

 ( ) ( ) ( ) ( )∫ ∫∫
∞

∞−

∞

∞−
ω∞

∞−
ω ⎟

⎠
⎞

⎜
⎝
⎛ −

π⎟
⎠
⎞

⎜
⎝
⎛ −

π
= dzdyzykedxzxkeztpta yixi 21

2
1

2
1,1  

( ) ( ) ( )∫ ∫ ∫
∞

∞−

∞

≠∞−

∞

∞−
ω ⎟

⎠
⎞

⎜
⎝
⎛ −

π
+

vu
xi dxuxkevutptb 1

2
1,,2  

( ) dudvdyvyke yi ⎟
⎠
⎞

⎜
⎝
⎛ −

π
× ∫

∞

∞−
ω2

2
1  

 ( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
+ξω ⎟

⎠
⎞

⎜
⎝
⎛ ξξ

π
= dkeztpta zi 1

2
1,1  

( ) ( ) dzdke zi ⎟
⎠
⎞

⎜
⎝
⎛ ηη

π
× ∫

∞

∞−
+ηω2

2
1  

( ) ( ) ( ) ( )∫ ∫ ∫
∞

∞−

∞

≠∞−

∞

∞−
+ξω ⎟

⎠
⎞

⎜
⎝
⎛ ξξ

π
+

vu
ui dkevutptb 1

2
1,,2  

( ) ( ) dudvdke vi ⎟
⎠
⎞

⎜
⎝
⎛ ηη

π
× ∫

∞

∞−
+ηω2

2
1  
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 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).ˆˆ,,ˆ4ˆˆ,ˆ2 21212
2

21211 ωωωωπ+ωωω+ωπ= kktptbkktpta  

 (5.11) 

Solving equation (5.10), we get 

 ( ) ( ) ( ){ ( )} ( )∏
−

=
ωωπ=ω

1

0
101 .,0ˆˆ2,ˆ

t

j

tt pkjRtp  (5.12) 

But, we have 

( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−
ωω

π
=δ

π
=

π
=ω .2

1
2
1,02

1,0ˆ 11 dxxedxxpep xixi  

Consequently, equation (5.12) gives 

 ( )
( ) ( ){ ( )}

.2

ˆ2
,ˆ

1
0 0

1 π

ωπ
=ω

∏ −

=

t
j

tt kjR
tp  (5.13) 

Solving equation (5.11), we get 

( ) ( ) ( ) ( ) ( )21121212 ,1ˆ1ˆˆ2,,ˆ ω+ω−−ωωπ=ωω tptakktp  

{ ( ) ( )} ( )∑
−

=

+ −−ωωπ
π

+
1

1

1
21

2 1ˆˆ42
1 t

j

j jtakk  

( ) ( )∏
−

=
ω+ω−−−−×

1

0
211 ,1ˆ1

j

l
jtpltb  

{ ( ) ( ) ( )} ( )∑
−

=
ωω−−ωωπ+

1

1
21221

2 .,,0ˆ1ˆˆ4
t

j
pjtbkk  (5.14) 

Since ( ) ( ),,01 xxp δ=  ( ) ,0,,02 =yxp  ,yx ≠  we get ( )
π

=ω 2
1,0ˆ1p  and 

( ) .0,,0ˆ 212 =ωωp  Consequently, (5.14) gives 
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( ) ( ) ( ) ( ) ( )21121212 ,1ˆ1ˆˆ2,,ˆ ω+ω−−ωωπ=ωω tptakktp  

{ ( ) ( )} ( )∑
−

=

+ −−ωωπ
π

+
1

1

1
21
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Let us consider the particular case, ( )( ) ( ) ,1−λ
=
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6. Discussion and Conclusion 

From the understanding of ecological and evolutionary theory, our 
ability to predict accurately future extinction events is limited. The total 
number of recent extinctions is not completely known. The present 
communication is towards estimating the effect of invasion of species in a 
lake environment. Figure 1 and Figure 2 show the effect of invasion. Both 
graphs indicate a general saturation after some generation time. As per Island 
Biography Theory (IBT), we can attribute this phenomenon to “extinctions 
based saturation.” This means that at the saturation point, the addition of new 
colonizing species will result in the local extinction. But there is different 
view point if we consider stochastic niche theory. According to this theory, 
the total number of species in a place, in the present case a lake, could be 
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maintained by suppression of colonization which is indicated by our 
stochastic model because of the inhibitive effect of species already present to 
the invading species. This is understandable from the fact that there is 
resource constraint and the available resource is to be partitioned among the 
total species and thus there is an inhibitive effect. But as per IBT, continued 
addition of exotic species should result in the extinction of native species. 
The rate of extinction will increase if the rate of colonization increases. If 
this is accepted, then the number of native plant extinctions can be 
understood. But as per colonization based saturations, the existing species 
should get benefits if the invading species judiciously and efficiently adjust 
the resources. From the analysis of the results of extinction patterns over the 
last 500 years, the majority of documented extinctions have taken place on 
islands and not on main lands and this goes well with colonization based 
saturation. This is true for both terrestrial vertebrates and plants. On the other 
hand, extinctions facilitated by exotic species which are considered to be one 
of the factors contributing to the native species extinction. Among the 204 
vertebrates species that are reported to have become extinct, predation 
(human hunting, carnivorous activity, death due to infectious diseases) is 
reported to be the main reason. 

The above can be viewed from a kinetic angle. There is a competition 
between coarsening dynamics and reactive stationary state. There is a similar 
situation in kinetics. Depending on mutation rate, equilibrium and non-
equilibrium process may result. Depending on mutations to predator and on 
mutations to the prey, the shift of the equilibrium occurs. The present work 
suggests that invasion speed is rather slow compared to traditional methods. 
This may be due to the effect of demographic stochasticity and generally 
density-dependent births will show the wave. Lewis [4] explored the speed 
rate for a particular nonlinear stochastic invasion model which is generally a 
macroscopic model. In the present work, microscopic invasions have been 
considered in terms of demographic stochasticity and the individuals are 
supposed to interact in pairs and not in clusters. Further, the present work 
clearly obtains the upper bound speed that would have been predicted by the 
deterministic model. If the stochasticity difference is larger, then the 
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differences in speeds also would have been wider. Generally higher carrying 
capacity or mutation rate will make anomalous speed. In the present work, 
moderate carrying capacity and moderate mutation rates have been assumed. 
Hence the invasion speed attains constant velocity with generation time as 
indicated in Figure 1 and Figure 2. 

All along we have discussed for the growth rate of morphs with 
generation time. This may not be constant, as we have achieved in our 
present model, if the morphs differ in both, then dispersal ability and the 
invasion speed can be faster than the speed of either morph on its own. Our 
model will be valid in the case of carrying capacity is high enough or when 
the mutation rates between morphs is big. We have shown that demographic 
stochasticity can slow down invasions. But this is dependent on the carrying 
capacity and the mutation rate. We will take these aspects in our future model 
in motivating further research into understanding the difference between 
deterministic and stochastic models and the implications that anomalous 
speeds have for predicting the rate of range expansions. 
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