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Abstract

We consider a microscopic stochastic model of invasion of exotic
species in a lake system in a random environment. We obtain the
speed of the invasion when the spatial density of the invasion is
controlled by changing the offspring generating mechanism of
invaders at the infected lake.

1. Introduction

Biological invasions on native communities have been very extensively
studied in the past by several researchers (see for example the monograph of
Williamson [11]). Lewis [4] has formulated a set of equations describing the
dynamics of spatial moments of the population and analysed the effect of
intrinsic stochastic factors when individuals interact locally over small
neighborhoods. He has exhibited that the spread of invasion can be slowed
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down even in a uniform environment. Lewis and Pacala [5] derive integro-
difference equations to describe a stochastic invasion process and use these
equations to analyse the wave of invasion. Neubert et al. [6] have modelled
invasions in fluctuating environments with discrete-time, continuous space,
integro-difference equations which incorporate wide range of dispersal
mechanisms that are common in empirical data, and they have described the
effect of temporal fluctuations in both the population growth rate and the
dispersal kernel on the speed of invasion in single-species. Olson and Roy [7]
have considered the economics of controlling a biological invasion whose
natural growth and spread is subject to environmental disturbances, and
examined conditions under which it is optimal to eradicate the invasive
species and conditions under which eradication is not optimal. Snyder [10]
has considered a single-species invasion model and studied the impact of
demographic stochasticity on the speed of biological invasions. Kot et al. [3]
have linked deterministic integro-difference equations to stochastic,
individual-based simulations by means of branching random walks, and
using standard methods determined speeds of biological invasion for both
average densities and furthest-forward individuals. Potapov et al. [9] have
investigated an optimal control of biological invasions in lake networks.
Kawasaki and Shigesada [2] have used an integro-difference model with the
intrinsic growth rate specified by a spatially periodic step-function and the
redistribution kernel given by an exponentially damping function to describe
and analyse the spread of invading species on a periodically fragmented
environment. Potapov et al. [9] have considered a meta-population model for
Invasive Alien Species (IAS) in a lake network coupled with an economic
model of prevention and characterized prevention methods controlling both
the outflow of invaders at infected lakes and the inflow of invaders at
uninfected lakes. Potapov and Lewis [8] have considered a model of invasion
prevention in a system of lakes that are connected via traffic of recreational
boats, and they showed that in presence of an Allee effect, the general
optimal control problem is reduced to a significantly simpler stationary
optimization problem of optimal invasion stopping. Finnoff et al. [1] have
considered the problem of management of an aquatic invader spreading in a
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lake system and generated control decisions and compared for an optimally
controlled system and for a static optimization across asymptotic steady
states. In almost all the above papers, the choice of spatial density function
for the propagules has been macroscopically modeled to mimic the
experimental data. However, the formulation of the density should be made
based upon the microscopic considerations. In this paper, we fill this gap by
considering a microscopic stochastic model of Invasion of Exotic Species
(IES) in a lake system to analyse the speed of the invasion when the spatial
density of the invasion is controlled by changing the offspring generating
mechanism of invaders at the infected lake.

The lay out of the paper is as follows: Section 2 presents the stochastic
model of the microscopic evolution of the cumulative invasion size X(t, x)
at time t and at distance x from the origin. In Section 3, the integro-difference
equation for the generating function of X(t, x) is obtained. The speed of
invasion is analysed in Section 4. A spectral analysis of the invasion process

is provided in Section 5. Section 6 presents a discussion of the findings of the
present work and a conclusion.

2. The Stochastic Model of Invasion

We consider one-dimensional spatial invasion. We assume that one
individual has invaded at time t = 0 and at the origin x = 0. This individual
lives for one unit of time and splits into a random number & of offsprings.
We assume that the offsprings inherit their parent unless otherwise specified
and behave identically and independently. Let the offsprings disperse with
redistribution kernel k(x). Let X(t, x) be the number of individuals in the

interval (—oo, x] at time t, where t =0, 1, 2, ... Since we start with one
individual at the origin, we get

0, x<0,

X(0.%) = {1, x > 0.

Clearly, X(t, x) represents the number of individuals of the generation t
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which are located with in the distance x from the origin. We assume that all
individuals of a random generation change their reproductive capacity which

alternates between two offspring generating functions h(l)(s) = Z;Opgl)sj

and h(z)(s) = Z;Opgz)sj at random generation times ty, t,, ..., where 0 <

t; <ty <--- and the random variables t;, t, —t;, t3 — t,, ... are independent

and identically distributed. We assume that ty = 0 and
Pltia—t;=kl=@Q-p)fTp, j=012.; k=12..

We note that all individuals existing at time t reproduce according to the
offspring generating function h(l)(s), when to, <t <tyny1, N=0,12, ...
and those existing at time t reproduce according to the offspring generating
function h(z)(s), when tyn,1 <t <trio, N=0,1 2 ... We say that an
e, -event occurs at the random time point t,, n =0, 1, 2, ... and an e, -event
occurs at the random time point ty,,;, n=0,1 2, ... The propagules
disseminate according to the dispersal kernel k(x, y). The function k(x, y)
has the following interpretation:

k(x, y)dydx
B {Probability of anindividual dispersing from (y, y + dy)to(x, x + dx)

in one unit of time.

3. The Integro-difference Equation
To analyse the invasion process, we consider the generating function of
X(t, x) defined by
G(s, x; t) = E[s* (X)),
Then, we have the initial condition

X <0,

G(s, x: 0) = E[s**] - {i x>0
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Using the Heaviside function H(x), we can write the initial condition as

follows:
G(s, x; 0) =1— H(x) + sH(x).

Since the offspring generating function of an individual at time t; is h(l)(s),

we get

o i
k(x, y)G(s, y; O)dx}

G(s, x;1) = JZ:;) pgl){j

= h(l)Uio k(x, y)G(s, y; O)dxj.

To be specific, we observe that the offspring generating function of an
individual time at t =1 is either hy(s) with probability 1—p or h(z)(s)
with probability p, we get

o0 © J
G(s, % 2)=(1-p)> pﬁ”{j k(% Y)G(s, ¥; 1)dX}
i=0
o) © J
+ pZ pgz){j_w k(x, y)G(s, Y; 1)dx}
j=0

- (1—p)h(1)U OOOO k(x, y)G(s, y; 1)dxj

+ ph(Z)Ui k(x, y)G(s, V; 1)dxj.

Next, we observe that the offspring generating function of an individual at
t=2 is either h(l)(s) with probability (1- p)2 +p? or h(z)(s) with
probability 2(1 - p)p, we get
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0 © j
665,53~ [a- 92 + 21 o] [ kix, y)&s, ¥: 200n]

j=0
j
+2(1- p)pz p(2){j_ k(x, y)G(s, y; 2)dx}

k(x, Y)G(s, Y; 2)dxj

=[a-p)* +p ]h(l)(j

L2 p)ph(z)(J K(x, V)G(s, V: 2)dxj

It is instructive to derive a similar equation for G(s, x; 4). For this, we

observe that the offspring generating function of an individual at t =3 is
either h®(s) with probability (1 - p)® + 3p2(1 - p) or h(?)(s) with probability

31- p)2p + p3, we get

j
k(x, y)G(s, y; 2)dx}

6(s, x; 4) = [ p)? +3p2(1- p)]z o

j
+[3@-p)p+p° p]z p(z){j k(x, y)G(s, ¥; 3)dx}

- + 3020 I [ kx vt v e

k(x, y)G(s, v; 3)dxj.

+[30-p)p + p3p]h(2)“ )

Similarly, we obtain

G(s, x; 5)

o) o j
~0-p)* +op2a-p)? oY o7 kx )6, i 41
10
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o j
k(x, y)G(s, y; 4)dx}

+[40-p)°p +4p°1-p)] D pﬁz){_[
j=0

(09" + 6920 p)? +p 10 [kl )65, i 4

+[40-p)°p + 4p°(L- p)]h<2>( |7 kx y66s, v; 4>dxj.

From the above form, we identify the general result

G(s, x; t +1)

= A(t)h(l)u_ooOo k(x, Y)G(s, Y; t)de+ B(t)h(z)Ui k(x, Y)G(s, y; t)dxj,

where

i 2
At) = 221(2‘]) 21— p)2i, B(t)= Zzl(zjtJr J p2i+(q _ )t-2i-1

j=0 j=0
We note that

A0+ 80 = g Ja-pt [} Joa—p L+ () o2a- o2

+ "'+®pt =[@-p)+pl' =1
At) - B(t) = @ 1-p) - @p(l —p) 7t @pz(l _p)2

t
e (ot = 1a-p)- o =290
Consequently, we obtain

1+ (1-2p)

1-(1-2p)
- .

Alt) = )

B(t) =
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Theorem.

G(s, x;t+1) = {w} h(l)Ujo k(x, Y)G(s, y; t)dxj

n {ﬂ}h(@uf k(x, y)G(s, y; t)dx} (3.1)

Proof. The proof is obtained by applying the results of renewal theory.
For this, we consider the random time points tg, t1, tp, ... We note that the
offspring generating function of all individuals existing at time t is h(l)(s)
when ty <t <t. The offspring generating function for all individuals
existing at time point t; is h(z)(s) and the offspring generating function for
all individuals existing at all time points in the interval t; <t <ty is h(z)(s).
Proceeding in this way, the offspring generating function of all individuals
existing at an arbitrary generation time point t is either h(l)(s) or h(2)(s)
according as ty, <t <tyh,q Or trh_q <t <ty,. To study the probability

structure of the random time points tg, t, ty, t3, t4, ..., we define the
following conditional distributions:

n + rth generation follows h;(s)

as the offspring generating function
given that rth generation follows

h;(s) as the offspring generating function

pij(n) = P

n=012.; i j=12

It is clear that p;j(0) =1, i =1, 2. Using the Heaviside function H(m), we
obtain the following equations:

n-1

pr1(n) = @=p)"H(M) + H(N=2) D" 1= p) " ppp(n - ), (3.2)
j=1



A Stochastic Analysis of Invasion of Exotic Species 81

n-1 _
pra(n) = @—p)" tpH(N =D+ H(=2) D" @ -p)) Fppya(n - ), (3.3)

j=1

n-1

p21(n) = L= p)"TpH(N = 1)+ H(1=2)> (1 - p) ppus(n - ), (34)
j=1

n-1 _
p22(n) = (L= p)"H(n)+ H(n=2) > (1 -p)) Fppyo(n - j). (35)
j=1

The above equations can be solved by generating function technique. We use
the notation

vij(s) = Z (s, i, j=12
n=0
Multiplying (3.2) by s" and summing from n = 0 to oo, we get

y11(s) = Z p11(n)s”
n=0

0 o n-1 .
= @-p)"s" + D> (0= p) Fpppy(n - )s"
n=0 n=2j=1
1 o0 o o0 )
T @-p)s PZ(l— p) Z p22(n — j)s”
P =i nSj

1 - j—1 < m+ j
=+ E 1-p) E m)s™*!

_ 1 spy21(s)
T1-(1-p)s 1- s(il— p)’ (3.6)
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Multiplying (3.3) by s" and summing from n = 0 to o, we get

v12(8) = D pra(ms” = ppa(m)s” = (- p)"Fps”
n=0 n=1

n=1

o n-1 )
+ 23 @=p) Fppa(n - j)s"

n=2j=1

T1- (1 0)s PZ Z (L= p) pga(n - j)s"

j=ln=j+1

- wZamJmewﬂ

pPS

‘4am1samzmms

Py (s)

samzmms‘sam

Multiplying (3.4) by s" and summing from n = 0 to oo, we get

v21(5) = D par(n)s™ = D ppy(n)s”
n=0 n=1

n-1

=Y @-p)"tps" + > > @-p) Tppu(n - j)s"
n=1

n=2j=1

+PZ Z @-p) Fpa(n - j)s"

j=ln=j+1

—Sameﬂm’ZmWW*

(3.7)
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S
=1_ S‘Zl p) 1_ S(l ) Z pll(m)s

S(l p) Z pll(m)s = ps:l(]il(sz)) (38)

Multiplying (3.5) by s" and summing from n = 2 to oo, we get

0 0 o n-1 .
Y22(s) = Y poa(ms” = D (@=p)"s" + DD (1= p) Fppp(n - j)s”
n=0 n=0 n=2j=1

1 < 1% m+ j
=———+ E 1-p)! E m)s™ !

_ 1 Spy12(S)
TG s sl ) (39)

Substituting (3.8) in (3.6) and solving for yq4(s), we get

sp pS\V(ll(S))
1 1-5(1
) = Ty * T8t p)

and so we get

1-(1-p)s
OB oy Ty

R —li 1+@1-2p)"s".
21-s 21—3(1 2p) 244

Consequently, we get

t
py1(t) = M, t=0,12, .. (3.10)
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Substituting (3.6) in (3.8) and solving for yo1(s), we get

S 1 S (S)
y21(s) = 1= s(f— 0) [1 —s-p) "1 —p\sv(il— p)}

Solving the above equation for y,4(s), we obtain

S
y21(s) = 1-s( —p2p)} (1-5s)

111 _1w N
T 21-s 21—5(1 20) 221 (-2p)"}s

and hence, we get

p21(t) = %, t=0,1 2, .. (3.11)

Substituting (3.7) in (3.9) and solving for o, (s), we get

1-(1-p)s
V228 = T 2 a=s)

11 1 _1w o amen
_21—s+21—s(1 2p) 22“(1 2p)"}s

and hence, we get

t
Poo(t) = M, t=0,12 .. (3.12)

Substituting (3.9) in (3.7) and solving for y15(s), we get

\VlZ(S) = {1_ S(l _pzsp)}(l_ S) = %rg{l_ (1_ 2p)n}sn

and hence, we get

p12(t) = %, t=01 2, ... (313)
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Using (3.10) and (3.13), we get

(5, % t+3) = pusOn | k(x ¥)G(s,¥; 0y

+piaOe [ Kk )G(s, vi 1y

_ ﬂha)gi k(x, y)G(s, V: t)dyJ

+Mh<z)[ |

5 Ook(x, y)G(s, v t)dy}

This proves (3.1).

We now proceed to derive several useful statistics from (3.1).
4. The Speed of Invasion

The average cumulative density of invasion is the expected value of
X(t, x). We put a(t, x) = E[X(t, x)]. To get an integro-difference equation

for a(t, x), we differentiate (3.1) with respect to s and put s = 1. Then, we get

a(t+1, x)

t : .
= H@} Rio + {%} RZO}J._OO k(x, y)a(t, y)dy

=Ro®[ _ k(x, yjalt, y)ay, (4.1)
where we have put

Rio = hW (@), Ry =h@ (),

t t
Rdoz%iﬁgﬂ&}&o+%;E%ﬁi}%o
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It is important to note that the value of Ry(t) depends on the generation level
t. This form of Ry(t) defers from the result of Kot et al. [3]. Following

Snyder [10], we proceed to solve equation (4.1) explicitly for the leptokurtic

Laplace kernel k(x, y) = %e_“‘ X=Y|, Equation (4.1) becomes

at +1, x) = Ro(t)jOO %e_“‘ ~Yla(t, y)dy

= alt+1 x)
- Ro(w[ [ Zerha yyy + [ FemeVlag, y)dy}
= Ro(t)U_xoo%e_“(x_y)a(t, y)dy + Ij%e_“(y_x)a(t, y)dy}.

—0(x—ct)

Using the trial solution a(t, x) = e —-a < 0 < a, equation (4.1) gives

o Ox+6C _ aRy(t) _J'X e—a(x—y)a—eydy + J'ooe—a(y—x)e—eydy}
2 —® X

_ Ry (t) [ [ ¥ (-0+a)y ax [ © (-0-a)y
= _e J_we dy +e J.X e dy

2 O+0 -0-a

aRy(t)[ e % e }

and hence, we get

2
oc _ (lRo(t) 1 _ 1 _ (04 Ro(t)
T2 [ Tera 0-al] o2 g2 (4.2)

Using the parametric representation for ¢ as

20

C= ,
a? — 02

(4.3)
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equation (4.2) gives
2
Ro(t) = (1 - 9_2}292/(@2_92). (4.4)
a

We now proceed to find the speed of invasion for certain choices of hy(s),

h,(s), p and a.

Ilustration 1. Let h(l)(s) =52, h(z)(s) =s?, p=05and a = 0.5. Then

1

Rio=hVU®) =2 Ryp=h@@=2 Ryt)= %RIO +5

Ry = 2.

Equation (4.4) becomes 2 = (1—462)e892/(1_492). The above equation is
independent of the generation index t. Solving the above equation
numerically, we get 6 = 0.301791. Substituting in (4.2), we get the speed of
invasion for all generations as ¢ = 3.797971. This is in fact the result of
Snyder [10].

Ilustration 2. Let h(l)(s) = %sz +%s4, h(z)(s) =s?, p=04 and

o = 0.5. Then
Ro ~h W =2, Ry -hP -2

Consequently, we get

t t
vt = 10 20 gy o (2 2 gy < T 0o

Then equation (4.4) becomes

2 2
% + %(0.2)t = (1 - 402)e807/(1-407) (4.5)

From (4.5), we note that 0 is a function of the generation index t and
consequently, the invasion speed ¢ is a function of t. Solving (4.5)

numerically, we get the following table:
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Table 1. Transient speed of invasion in random environment

Generation time Ro(t) 0 Speed of invasion
1 2.4 0.321424 4.382471
2 2.365333 0.320033 4.337106
3 2.339641 0.318971 4.302923
4 2.334581 0.318758 4.296134
5 2.333582 0.318716 4.294791
6 2.333383 0.318708 4.294523
7 2.333343 0.318706 4.29447
8 2.333335 0.318706 4.294459
9 2.333334 0.318706 4.294457
10 2.333333 0.318706 4.294456
11 2.333333 0.318706 4.294456
12 2.333333 0.318706 4.294456
4.39
4.381
4371
436
% 4.5}
% 434+
(% 4.33f
432+
4311
43+
2% 2 4 6 8 10 12

Generalion time

Figure 1. Speed of invasion versus generation time.
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We note that the speed of invasion decreases and reaches the steady-state
at the tenth generation. The asymptotic speed of invasion is ¢ = 4.29445.

Hlustration 3. We assume

1

h(l)(s) = %32 + 554, h(z)(s) =s?, p=06 and a =05

Then we obtain
Rio = N @) = % Ryp =h@' @) =2, Ry(t) = % + %(—0.2)3

Now equation (4.5) becomes

7 1

3 §(—0.2)t _ (1 40?)eB0°/1-40%) (4.6)

From equation (4.6), we note that 6 is a function of the generation index t
and consequently, the invasion speed c is a function of t. Solving (4.6)

numerically, we get Table 2 and Figure 2.

Table 2. Transient speed of invasion in random environment

Generation time Ro(t) 0 Speed of invasion
1 2.266667 0.3158 4.203088
2 2.363556 0.31996 4.334756
3 2.327031 0.318439 4.285966
4 2.334574 0.318758 4.296125
5 2.333084 0.318695 4.294121
6 2.333383 0.318708 4.294523
7 2.333323 0.318705 4.294443
8 2.333335 0.318706 4.294459
9 2.333333 0.318706 4.294456
10 2.333333 0.318706 4.294456
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Figure 2. Speed of invasion versus generation time.

In this illustration, the speed of invasion oscillates and then reaches the
asymptotic speed 4.294456 at the 9th generation.

5. The Spectral Analysis of Invasion

In this section, we provide a spectral analysis when the spatial
distribution kernel is homogeneous, that is k(x, y) = k(x — y). We denote

the Fourier transform of a(t, x) as
f(t, 0) = iJ.OO e'*a(t, x)dx.

Then equation (4.1) gives

att +1, o) = Rg—g)j_oo ei"”‘J‘OO k(x — y)a(t, y)dydx. (5.1)

We assume that k(x, y) = k(x — y). Interchanging the order of integration
in (5.1), we get
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at+1 o) = RS—S)J.:D a(t, y)J._OO ek (x — y)dxdy
= Rg—f:)ji a(t, y)Iiei"’Xk(x — y)dxdy

1 1>
= 2nR0(t)2—nJ. e'Ya(t, y)dyz—nj_we'mzk(z)dz

= 2nRy(1)A(t, w)k(w).
Iterating the above equation, we get
t
at+1 o) = {2nk(@)} ] JRo(H a0, o).
1=0

But we have

A L[, L[
a0, 0) = 5| ea(0, y)dy = [~ eVE[X(0, y)ldy

_ 1 ey _1
B ZRJ_we 8(y)dy = 2n’
Consequently, we obtain

t-1
{2nk(@) T ] Ro()
1=0

at, o) = o : (5.2)

Following Snyder [10], suppose that k(x) = %e“‘ X _o0 < x < o. Then we

have

(5.3)
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Substituting (5.3) into (5.2), we get

tt-1 2tt—l
{2nx2nm2+ }HR(I) QRO(I)

2n 2n(oa2 + o)
Taking Fourier inversion of (5.4), we have
t-1 t-1
5 ) U ) OB
_ _ _ ® e
a(t, x) = .[ lox __1=0___ g = 1=0 j do.
—00 2n(0? + a?) 2n —0 (02 + o)t
(5.5)
Using the calculus of residues, we get
o eicox 1 dt—l eizx
——d 2ni lim 5.6
I_w @+t A T Azt (z +ia)t | 50)

Using the theorem of Leibnitz, equation (5.6) gives

0 ioX

J & de
—oo (2 25t
(@ +0a%)

1 .
(tz—n;.)' zll>n|](x f ( J 1) (elzx )t—l—j {(Z + ia)_t}j

=0

e—r
|_\

-1

—
Il
o

[EEN

o —ax < e AN - L
= (tz_:ll)!e [ O(t J j(lx)t 1 J[(_l)lll:(!(t+|):l(2|a) t J:l

]

j-1
B (t+1)
2n —axtlt_l tle
_ _ _ = 5.7
T-1° ,Z:;‘)( j ) (20)H1 (5.7)
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Substituting (5.7) into (5.5), we obtain
j-1

ZIHR(l)_ ., . H(Hl)
0=y

Next we proceed to investigate the frequency analysis of the spatial
covariance of the invasion process. For this, we need the product density
functions py(t, x) and p,(t, X, y) which are defined by the equations:

POt x, A)}
p(t, x) = Jim ===

P{OQ(t: x, A; y, A')}
A, A0 AN '

pa(t, X, y) =

where Q(t : x, A) is the event that one individual of tth generation lies in
(x, x+A); and Q(t:x, A; y, A") is the event that one individual of tth
generation lies in (x, x + A) and one individual of tth generation lies in
(y, y+A"). Then, applying the offspring generation mechanism and the
dispersal kernel k(&, n), we obtain the integro-difference equations for
p(t, x) and p,(t, x, y). To derive the integro-difference equation for
py(t, x), we consider p;(t +1, x) and observe that the individual at x in the
t +1th generation is one of the offspring of an individual of the tth
generation. Accordingly, we obtain that the function p;(t, x) satisfies the
integro-difference equation

Pt +1 0= pu® | pilt )Y pPik(x, 2)dz
i=0

+o® [ mit )Y PP ik(x, 2)dz
j=0
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~ PR | plt, 2)k(x, 2)dz
+ PoORw [ pult, 2)k(x, 2)dz
= {pra(t)Ryp + If’lz(t)Rzo}J.jo py(t, 2)k(x, z)dz

_ Ro(t)j: p(t, 2)k(x, 2)dz. (5.8)

To derive the integro-difference equation for ps(t, x, y), we consider
po(t +1, X, y) and observe that the two individuals at x and y of the t + 1th

generation are due to the same parent of the tth generation or due to different
parents of the tth generation. Accordingly, we obtain that the function
P2 (t, X, y) satisfies the integro-difference equation

pat+1 % y) = [ putt Z){pll(t)z pi(i -1
j=0

+pp® > pP (] —1>}k<x, 2)k(y, 2)dz
j=0

J

L 0| E b

j.1=0

+ pra(t) Z pgz)jpfz)l}k(x, u)k(y, v)dudv.
jT=0

In the above equation, we note that

Rio = h® (1) = > ptY],
j=0
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Roo = h(z)'(l) = Z pgz)l;
=0

0

m) =@ = 3" p{i(i-1),
j=0

m? =h@ @) = > pP (i - .
j=0

Consequently, the above equation becomes

pa(t +1, %, y)

= [ mtt D {puOmE? + pro®mPk(x, 2)k(y, 2)dz

1 Pt u PR + pio®)REk(x, wk(y, v)dudy
= a(t)j_ooOO py(t, 2)k(x, 2)k(y, z)dz

+ b(t)j_z Ij;uw Po(t, u, v)k(x, u)k(y, v)dudv, (5.9)

where we have put a(t) = pll(t)mgl) + plz(t)mgz) and b(t) = pll(t)Rle +

p12(t)R§0. Putting h(l)(s) = h(z)(s), we get back the same equation as in
Lewis and Pacala [5]. To solve equations (5.8) and (5.9), we assume k(u, v)
= k(u —v) and apply the Fourier transform and double Fourier transform,
respectively, as defined by

f(o) = 2_175 j joooei“)xf(x)dx,

f(o, wp) = %jw on e!Xel®2Y f (x, y)dxdy.
4n” ¥ —od—0
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By taking Fourier transform of (5.8), we obtain

Bt +1 ®) = Ro(t)ji py(t, z)[% j el (x z)dx)dz

—0

= Ro(0]” putt2) 5 e ey o

- 2an0(t)[2—1TE [ _Ze‘@z oy, z)dzj(z—ln [ ie‘@%k(g)dgj

= 2Ry (t) Py (t, w)K(w). (5.10)
Similarly, taking double Fourier transform on both sides of (5.9), we get

Pa(t+1 oy, )

= a(t)j_ooOO p(t, z)[z—lrtjjoweiwlxk(x - z)dxj [2—1n J.iei"’zyk(y -~ z)dyjdz
+ b(t)jio jiu# P, (t, u, v)z—z(jfweimlxk(x - u)dx)
x (2—1n I_Z elO2Yk(y - v)dy)dudv
~a0)” it ) [ e ey
x (2_17{ j joooei°°2(“+z)k(n)danz
o " [7 pattu {7 e gae

10 i
x (2—nj_ooe' Z(n”)k(n)dnjdudv
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= 2ma(t) py(t, oy + 0p)K(o)K(wp) + 4n%b(t) P (t, @1, 0p)K(ep)K(0p).
(5.11)

Solving equation (5.10), we get
t-1
pu(t, ©) = 2m)' [ T Ro(i) (@)} p1(0, ). (5.12)
j=0

But, we have

A _i ©_iox _i X Jiox _i
P1(0, ©) = - j_we p1(0, )k = - j e00dx = 5

Consequently, equation (5.12) gives

2m)t t__l Ro(j) k(o)
o )H’:OznO(J){( " o

Solving equation (5.11), we get

P2(t, @1, @) = 2nk(p)K(wp)a(t ~1) Pyt ~1 op + 0)

t-1 o .
N %Z{%Zk(ml)k(coz)}”la(t -1-j)
j=1
j-1
<[ ot -1-Dpyt—1-j, oy + o)
1=0

t-1
+ Y {4n%K(y)K(02)b(t =1 = })} P2(0, @y, ©3). (5.14)
=1

Since py(0, x) = 8(x), P2(0, x, y) =0, x =y, weget {(0, o) = 2_1n and

P2(0, w1, w,) = 0. Consequently, (5.14) gives
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Pa(t, @1, ;) = 2nk(op)k(wp)alt —1) pr(t -1, @ + wp)

t-1 .
3 2 R o) a1 )

j-1
x[Jott-1-Dpyt-1-j, 0y + ;). (5.15)
1=0

kj(s—l)

Let us consider the particular case, h(j)(s) =e j =1 2. Then, we

have
1 2 2 2
RlO = }”1’ R20 = 7\,2, mg) = 7\,1, mg ) = 7\,2

so that a(t) = pll(t)x% + plz(t)kzz = b(t). Consequently, equation (5.15)

gives

Po(t, o1, @y)

t-1 i
1 < " j a .
- Z_nz{4n2k(°’1)k(“)2)}1+ll [at-1-D)put -1 j, o1 + wp).
j=t 1=0

6. Discussion and Conclusion

From the understanding of ecological and evolutionary theory, our
ability to predict accurately future extinction events is limited. The total
number of recent extinctions is not completely known. The present
communication is towards estimating the effect of invasion of species in a
lake environment. Figure 1 and Figure 2 show the effect of invasion. Both
graphs indicate a general saturation after some generation time. As per Island
Biography Theory (IBT), we can attribute this phenomenon to “extinctions
based saturation?” This means that at the saturation point, the addition of new
colonizing species will result in the local extinction. But there is different
view point if we consider stochastic niche theory. According to this theory,
the total number of species in a place, in the present case a lake, could be
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maintained by suppression of colonization which is indicated by our
stochastic model because of the inhibitive effect of species already present to
the invading species. This is understandable from the fact that there is
resource constraint and the available resource is to be partitioned among the
total species and thus there is an inhibitive effect. But as per IBT, continued
addition of exotic species should result in the extinction of native species.
The rate of extinction will increase if the rate of colonization increases. If
this is accepted, then the number of native plant extinctions can be
understood. But as per colonization based saturations, the existing species
should get benefits if the invading species judiciously and efficiently adjust
the resources. From the analysis of the results of extinction patterns over the
last 500 years, the majority of documented extinctions have taken place on
islands and not on main lands and this goes well with colonization based
saturation. This is true for both terrestrial vertebrates and plants. On the other
hand, extinctions facilitated by exotic species which are considered to be one
of the factors contributing to the native species extinction. Among the 204
vertebrates species that are reported to have become extinct, predation
(human hunting, carnivorous activity, death due to infectious diseases) is
reported to be the main reason.

The above can be viewed from a kinetic angle. There is a competition
between coarsening dynamics and reactive stationary state. There is a similar
situation in Kinetics. Depending on mutation rate, equilibrium and non-
equilibrium process may result. Depending on mutations to predator and on
mutations to the prey, the shift of the equilibrium occurs. The present work
suggests that invasion speed is rather slow compared to traditional methods.
This may be due to the effect of demographic stochasticity and generally
density-dependent births will show the wave. Lewis [4] explored the speed
rate for a particular nonlinear stochastic invasion model which is generally a
macroscopic model. In the present work, microscopic invasions have been
considered in terms of demographic stochasticity and the individuals are
supposed to interact in pairs and not in clusters. Further, the present work
clearly obtains the upper bound speed that would have been predicted by the
deterministic model. If the stochasticity difference is larger, then the
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differences in speeds also would have been wider. Generally higher carrying
capacity or mutation rate will make anomalous speed. In the present work,
moderate carrying capacity and moderate mutation rates have been assumed.
Hence the invasion speed attains constant velocity with generation time as
indicated in Figure 1 and Figure 2.

All along we have discussed for the growth rate of morphs with
generation time. This may not be constant, as we have achieved in our
present model, if the morphs differ in both, then dispersal ability and the
invasion speed can be faster than the speed of either morph on its own. Our
model will be valid in the case of carrying capacity is high enough or when
the mutation rates between morphs is big. We have shown that demographic
stochasticity can slow down invasions. But this is dependent on the carrying
capacity and the mutation rate. We will take these aspects in our future model
in motivating further research into understanding the difference between
deterministic and stochastic models and the implications that anomalous
speeds have for predicting the rate of range expansions.
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