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Abstract 

Let BA ⊂  be (commutative) rings (with the same 1); let ∗A  denote 

the integral closure of A in B. Suppose that ∗⊂ AA  and BA ⊂∗  are 
minimal ring extensions whose crucial maximal ideals are M and N, 

respectively. Then ∗A  is the only ring C such that BCA ⊂⊂  if and 

only if .MAN =∩  This generalizes a recent for integral domains 

due to Ben Nasr and Zeidi [2]. We give examples with nontrivial zero-
divisors to illustrate both possibilities (i.e., where AN ∩  may or may 

not be M ). 

1. Introduction 

All rings considered in this note are commutative with identity; all 
subrings, inclusions of rings, and ring homomorphisms are unital. If BA ⊆  

is a ring extension, it is convenient to let [ ]BA,  denote the set of intermediate 
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rings (that is, the set of rings C such that ).BCA ⊆⊆  Recall from [1] that 

if BA ⊆  is a ring extension, then BA ⊆  is said to satisfy FIP if there are 

only finitely many rings contained between A and B (that is, if [ ] )., ∞<BA  

Whenever BA ⊂  satisfies FIP, one has a finite (maximal) chain of rings 
BAAAAA nii =⊂⊂⊂⊂⊂= + …… 10  for some positive integer n, 

such that 1+⊂ ii AA  is a minimal ring extension for all .1...,,0 −= ni  (As 

usual, ⊂ denotes proper inclusion. Some useful background on minimal ring 
extensions will be given in the next paragraph.) Not all such “compositions” 
of minimal ring extensions produce a ring extension BA ⊂  that satisfies 
FIP. In [7], Dobbs and Shapiro focussed on the case .2=n  Indeed, if 

CA ⊂  and BC ⊂  are each minimal ring extensions [7, Theorem 4.1] gave 
13 mutually exclusive conditions on these minimal ring extensions and their 
crucial maximal ideals to characterize when BA ⊂  satisfies FIP. As [ ]BA,  

3≥  in general, much of the subsequent material in [7] began to examine the 
relationship between each of the 13 conditions from [7, Theorem 4.1] and the 
possible conclusion that [ ] 3, =BA  (that is, the possible conclusion that C 

is the only ring that is properly contained between A and B). 

That study continued in [3, Theorem 2.9], where it was shown that there 
are two of the 13 conditions from [7, Theorem 4.1] which each implies that C 
is the only ring properly contained between A and B; there are seven (of the 
13) conditions which each implies that C is not the only ring properly 
contained between A and B; and for each of the remaining four conditions, 
some examples satisfying the condition are such that C is the only ring 
properly contained between A and B while other examples satisfying the 
condition do not have this feature. The main purpose of this note is to 
characterize “ [ ] 3, =BA ” for one of those four “ambiguous” conditions, 

namely, the context where the minimal ring extension CA ⊂  is integral and 
the minimal ring extension BC ⊂  is integrally closed (in the sense that C is 
integrally closed in B). Equivalently, since integrality is transitive, one can 
describe this context as consisting of minimal ring extensions CA ⊂  and 

BC ⊂  where C is the integral closure of A in B. We will state the 
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characterization of “ [ ] 3, =BA ” for this context after a brief paragraph of 

background information. 

Recall (cf. [8]) that a ring extension TR ⊂  is a minimal ring extension 
if there does not exist a ring properly contained between R and T. A minimal 
ring extension TR ⊂  is either integral or integrally closed. If TR ⊂  is a 
minimal ring extension, it follows from [8, Théorème 2.2(i) and Lemme 1.3] 
that there exists a unique maximal ideal M of R (called the crucial maximal 
ideal of )TR ⊂  such that the canonical injective ring homomorphism 

MM TR →  ( )MRT \:=  can be viewed as a minimal ring extension while the 

canonical ring homomorphism PP TR →  is an isomorphism for all prime 

ideals P of R except M. 

For the context of interest, where C is the integral closure of A in B and 
CA ⊂  and BC ⊂  are minimal ring extensions having crucial maximal ideals 

M and N, respectively, Theorem 2.1 establishes that [ ] 3, =BA  if and only 

if .MAN =∩  In case A and B are (commutative integral) domains, this 
result was obtained recently by Ben Nasr and Zeidi [2, Corollary 2.11] as a 
consequence of the two main results in [2], namely, Theorems 2.1 and 2.7 of 
[2]. The proofs of those two theorems are extremely domain-theoretic in 
nature, as they involve several intersections of localizations which would be 
meaningless (for lack of a universe of discourse) in a more general ring-
theoretic setting. On the other hand, our proof of the ring-theoretic 
generalization in Theorem 2.1 is comparatively short and involves no new 
technical results. To show that this is a meaningful generalization, Example 
2.3 provides data showing that both of the possible conclusions (i.e., [ ]BA,  

3=  and [ ] )3, >BA  can be realized by extensions involving rings that are 

not domains. For the sake of completeness, Remark 2.2 provides data that 
accomplish the same for ring extensions involving domains. 

If A is a ring, then )(Spec A  (resp., ))(Max A  denotes the set of prime 

(resp., maximal) ideals of A. For rings ,BA ⊆  ( ) ( )ABAB ASupp:Supp =  

( ){ }.Spec: PP BAAP ⊂|∈=  Following [11, p. 28], we let INC and GU, 
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respectively, denote the incomparable and going-up properties of ring 
extensions. By the “dimension” of a ring, we mean its Krull dimension. As 
usual, if S  is a set, then S  denotes the cardinal number of .S  Any 

unexplained material is standard, as in [9, 11]. 

2. Results 

Before giving our main result, we recall a definition and some related 
facts. A ring extension TR ⊆  is said to satisfy FCP (also known as FC) if 

each chain of rings in [ ]TR,  is finite. While FIP ⇒ FCP, the converse is 

false. 

Theorem 2.1. Let BA ⊂  be rings, with ∗A  denoting the integral closure 

of A in B. Suppose that ∗⊂ AA  and BA ⊂∗  are minimal ring extensions 

whose crucial maximal ideals are M and N, respectively. Then ∗A  is the only 
ring C such that BCA ⊂⊂  if and only if .MAN =∩  

Proof. By integrality, ∗⊂ AA  satisfies both GU and INC (cf. [11, 
Theorem 42]). It follows that ( ),Max AAN ∈∩  and so the condition that 

MAN =∩  is equivalent to .MAN ⊆∩  We will first prove the 

contrapositive of the “only if ” assertion. Assume, then, that ;MAN ≠∩  our 

task is to show that [ ] { }∗ABABA ,,\,  is nonempty. By the above comment, 

.MAN ∩  Hence, by the Crosswise Exchange Lemma [5, Lemma 2.7], 

there exists [ ]BAD ,∈  such that DA ⊂  inherits from BA ⊂∗  the property 

of being an integrally closed minimal ring extension. Thus, [ ]\, BAD ∈  

{ }∗ABA ,,  as desired. 

Next, we will prove the contrapositive of the “if ” assertion. Assume, 

then, that there exists a ring [ ] { };,,\, ∗∈ ABABAE  our task is to show that 

.MAN ≠∩  As mentioned in the introduction, the present context ensures 
that BA ⊂  satisfies FIP. (This part of [7, Theorem 4.1] actually followed 
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from the proof of [6, Proposition 2.1 (c)]. The main focus of [6] was on the 
FCP property.) In particular, BA ⊂  satisfies FCP. Hence, so do EA ⊂  and 

.BE ⊂  Since any decreasing chain in [ ]EA,  must terminate in finitely many 

steps, there exists [ ]EAE ,1 ∈  such that 1EA ⊂  is a minimal ring extension. 

It is straightforward to verify that [ ] { };,,\,1
∗∈ ABABAE  also, BE ⊂1  

satisfies FCP. Thus, it is harmless to change notation and take ;1EE =  that 

is, to assume that EA ⊂  is a minimal ring extension. 

Let Q denote the crucial maximal ideal of .EA ⊂  Since ,EA ≠∗  we 

get ;AEA =∗ ∩  that is, the extension EA ⊂  is integrally closed. Hence, by 
[8, Théorème 2.2(ii)], no prime ideal of E can lie over Q, that is, Q is not in 
the image of the canonical map ( ) ( ).SpecSpec AE →  Next, by considering 

increasing chains in [ ],, BE  we get (since BE ⊂  satisfies FCP) a chain 

BAAAAE nii =⊂⊂⊂⊂⊂= + …… 10  

where n is a positive integer and 1+⊂ ii AA  is a minimal ring extension for 

all .1...,,0 −= ni  For each i, let iQ  denote the crucial maximal ideal of 

.1+⊂ ii AA  As no prime ideal of E can lie over Q, we have .0 QAQ ≠∩  

Next, consider the finite maximal chain of minimal ring extensions 

.10 BAAAAA nii =⊂⊂⊂⊂⊂⊂ + ……  

Applying [5, Corollary 3.2] to this chain, we get that 

( ) { } { }.1...,,0Supp: −=|== niAQQAB iA ∩∪S  

In particular, { },, 0 AQQ ∩⊇S  and so .2≥S  On the other hand, by 

applying [5, Corollary 3.2] to the chain ,BAA ⊂⊂ ∗  we get that =S  

{ }., ANM ∩  Therefore, { } ,2, ≥ANM ∩  whence .ANM ∩≠  ~ 

We pause to collect some domain-theoretic data realizing the possible 
cases in Theorem 2.1, namely, where AN ∩  is or is not M. 

Remark 2.2. (a) It was shown in [3, Theorem 2.4] (with nearly all the 
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relevant work being done in [3, Lemma 2.3]) that if CA ⊂  is an integral 
minimal ring extension and BC ⊂  is an integrally closed minimal ring 
extension (so that C is necessarily the integral closure of A in B) and if A is 
quasi-local, then [ ] ;3, =BA  that is, C is the only ring H such that HA ⊂  

.B⊂  Therefore, by Theorem 2.1, ,MAN =∩  where M and N denote the 
crucial maximal ideals of CA ⊂  and ,BC ⊂  respectively. (This equality is 
also clear directly since A is assumed quasi-local and integrality ensures that 

).)Max(AAN ∈∩  One way to build such data is to take A to be a 

(necessarily quasi-local one-dimensional) domain, with quotient field B, 
whose integral closure (in B) is a one-dimensional valuation domain C such 
that CA ⊂  is a minimal ring extension. (One example of such data is found 
by using [ ][ ],: XXA CR +=  where X is an analytic indeterminate over ;C  the 

integral closure of A is [ ][ ] [ ][ ].XXXC CCC =+=  This ring will also play 

an auxiliary role in Example 2.3.) To complete the verification, it remains 
only to show that BC ⊂  is an integrally closed minimal ring extension. This, 
in turn, is standard: cf. [11, Theorem 65], [9, Theorem 26.1 (2)]. 

(b) If CA ⊂  is an integral minimal ring extension and BC ⊂  is an 
integrally closed minimal ring extension (so that C is necessarily the integral 
closure of A in B), then it need not be the case that [ ] .3, =BA  An example 

illustrating this was essentially given in [7, Remark 4.2 (d)]. This involves 
taking [ ],2: iA Z=  [ ]iC Z=:  (the ring of Gaussian integers), and =:B  

,PQP C≠∩  where the index set for this intersection consists of all the prime 

ideals P of C other than .3: CQ =  It is well known that CA ⊂  is an integral 

minimal ring extension. Hence, by [8, Théorème 2.2(ii)], its crucial maximal 
ideal is ( ) ( ) .222,2:: iCiCAM ZZ +===  It was shown in [7, Remark 

4.2(d)] that BC ⊂  is an integrally closed minimal ring extension. Since 
every prime ideal of C except Q is lain over from B, it follows from [8, 
Théorème 2.2(ii)] that QN =:  is the crucial maximal ideal of .BC ⊂  Note 

that .63 MiAN ≠+= ZZ∩  So, by Theorem 2.1, [ ] { }CBABA ,,\,  is 

nonempty. In fact, it was shown in [7, Remark 4.2(d)] that [ ] [ ]\,31 BAA ∈  
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{ }.,, CBA  Thus, C is not the only ring H such that .BHA ⊂⊂  This 

completes the verification. 

(c) Recall that the domain-theoretic case of Theorem 2.1 was given 
earlier by Ben Nasr and Zeidi in [2, Corollary 2.11]. To illustrate that result, 
they gave, in [2, Example 2.12], an example of a one-dimensional quasi-local 
domain ( )MA,  and a one-dimensional valuation overring B of A such that 

∗⊂ AA  and BA ⊂∗  are minimal ring extensions, each of which has crucial 
maximal ideal M. Two significant ways in which that example differs from 

our construction in (a) are the following: the ring ∗A  (resp., B) in [2, 
Example 2.12] is not quasi-local (resp., is not a field). In any event, one can 
fairly conclude that the main point of (a) was anticipated in [2, Example 
2.12]. However, the same cannot be said of the point made in (b). Indeed, [2] 
did not address the possible existence of data that would fit the context of [2, 
Corollary 2.11] but fail to satisfy the equivalent conditions in that result. As 
explained in (a), results from [3] show that any such data (for instance, the 
data in (b)) must feature a base ring that is not quasi-local. 

We close with examples showing that rings that have non-trivial zero-
divisors can exhibit the same diversity of behavior as in parts (a) and (b) of 
Remark 2.2. Recall from [10] that a (necessarily quasi-local) domain D is 
said to be a pseudo-valuation domain if there is a (uniquely determined) 
valuation overring V of D (inside the quotient field of D) that has the same 
maximal ideal as D; V is referred to as the canonically associated valuation 
overring of D. 

Example 2.3. Let ( )mD,  be a one-dimensional pseudo-valuation domain 

with quotient field K such that the integral closure of D (in K) is the 
canonically associated valuation overring V of D and also such that VD ⊂  is 
a minimal ring extension. (For instance, take [ ][ ],XXD CR +=  where X is 

an analytic indeterminate over .)C  Then: 

(a) Let E be any nonzero ring. Put EDA ×=:  and .: EKB ×=  Then 

the integral closure of A in B is ∗∗ ⊂×= AAEVA ,  is an integral minimal 
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ring extension whose crucial maximal ideal is ,: EmM ×=  BA ⊂∗  is an 
integrally closed minimal ring extension whose crucial maximal ideal is =:N  

Em ×  ( ),M=  and ∗A  is the only ring C such that .BCA ⊂⊂  

(b) Put VDA ×=:  and .: KVB ×=  Then the integral closure of A in B 

is ,VVA ×=∗  ∗⊂ AA  is an integral minimal ring extension whose crucial 

maximal ideal is ,: VmM ×=  BA ⊂∗  is an integrally closed minimal ring 

extension whose crucial maximal ideal is ,: mVN ×=  and ∗A  is not the only 

ring C such that .BCA ⊂⊂  Indeed, the only such C other than ∗A  is .KD ×  

Proof. It is well known that ( ) ( )VD SpecSpec =  as sets. In particular, 

( ) ( ) .1dimdim == DV  (The latter conclusion also follows via integrality, as 

in [11, Theorem 48].) In addition, KV ⊂  is an integrally closed minimal 
ring extension, necessarily with crucial maximal ideal m (cf. [11, Theorem 
65], [9, Theorem 26.1 (2)]). 

(a) The hypothesis that 0≠E  has been made only to ensure that A, B 

and ∗A  are non-domains. It is straightforward to show that the integral 

closure of A in B is .: EVA ×=∗  Hence, ∗A  is integrally closed in B. Since 

the assignment EHH ×  gives a bijection [ ] [ ]∗→ AAVD ,,  and VD ⊂  

is a minimal ring extension, we now have that ∗⊂ AA  is an integral minimal 
ring extension. By [8, Théorème 2.2(ii)], ( ),: VDm =  the crucial maximal 

ideal of .VD ⊂  Thus, the crucial maximal ideal of ∗⊂ AA  is 

( ) ( ) ( ) .:::: MEmEVDEVEDAA =×=×=××=∗  

Since the assignment EHH ×  gives a bijection [ ] [ ]BAKV ,, ∗→  and 

KV ⊂  is a minimal ring extension, it now follows that BA ⊂∗  is an 
integrally closed minimal ring extension. By [8, Théorème 2.2(ii)], the crucial 

maximal ideal of this extension is the only maximal ideal of ∗A  which is not 
lain over from B, namely, ( ).: MNEm ==×  Of course, ,MAN =∩  and 
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so by Theorem 2.1, ∗A  is the only ring C such that .BCA ⊂⊂  A direct 
proof of the last assertion is also available, since [ ] [ ] { }.,, EKDBA ×=  

(b) Insofar as possible, we will argue as in (a). It is straightforward to 

show that the integral closure of A in B is .: VVA ×=∗  Hence, ∗A  is 

integrally closed in B. To show that ∗⊂ AA  is a(n integral) minimal ring 
extension with crucial maximal ideal ,: VmM ×=  one need only observe that 

( ) ( ) .:: MVVDAA =×=∗  (Here is another way to show that the integral 

extension ∗⊂ AA  is minimal, with crucial maximal ideal M. Note that MA  

mD≅  and .mVMA ≅∗  Hence by [4, Proposition II.4] (cf. also [12, 

Theorem 3.3]), the minimality of VD ⊂  implies that of ,mVmD ⊂  hence 

that of ,MAMA ∗⊂  hence that of ;∗⊂ AA  the cited references can also 

be used to show that M is the crucial maximal ideal of .∗⊂ AA  Of course, 
this alternate reasoning could also have been used at the corresponding point 

in the proof of (a).) Next, to show that BA ⊂∗  is a(n integrally closed) 
minimal ring extension with crucial maximal ideal ,: mVN ×=  note that N 

is the only maximal ideal of ∗A  which is not lain over from B. Finally, since 

( ) ( ) ,MVmmDVmDVAN =×≠×=×= ∩∩∩  

Theorem 2.1 implies that ∗A  is not the only ring C such that .BCA ⊂⊂  In 

fact, the data have been arranged so that [ ] { }BAABA ,,\, ∗  contains only one 

element, namely, .KD ×  ~ 
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