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Abstract

Let A < B be (commutative) rings (with the same 1); let A* denote

the integral closure of A in B. Suppose that A = A* and A* = B are
minimal ring extensions whose crucial maximal ideals are M and N,
respectively. Then A" is the only ring C such that A = C < B ifand
only if N A= M. This generalizes a recent for integral domains
due to Ben Nasr and Zeidi [2]. We give examples with nontrivial zero-
divisors to illustrate both possibilities (i.e., where N (1 A may or may
not be M).

1. Introduction

All rings considered in this note are commutative with identity; all
subrings, inclusions of rings, and ring homomorphisms are unital. If A < B

is a ring extension, it is convenient to let [A, B] denote the set of intermediate
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rings (that is, the set of rings C such that A = C < B). Recall from [1] that
if A c B is aring extension, then A — B is said to satisfy FIP if there are
only finitely many rings contained between A and B (that is, if |[A, B]| < ).
Whenever A — B satisfies FIP, one has a finite (maximal) chain of rings
A=A c..c AcAjyc...c Ay =B for some positive integer n,
such that A; < Aj,; is a minimal ring extension for all i =0, ..., n —1. (As

usual, < denotes proper inclusion. Some useful background on minimal ring
extensions will be given in the next paragraph.) Not all such “compositions”
of minimal ring extensions produce a ring extension A — B that satisfies
FIP. In [7], Dobbs and Shapiro focussed on the case n = 2. Indeed, if
A c C and C < B are each minimal ring extensions [7, Theorem 4.1] gave
13 mutually exclusive conditions on these minimal ring extensions and their
crucial maximal ideals to characterize when A B satisfies FIP. As | [A, B]|

> 3 in general, much of the subsequent material in [7] began to examine the
relationship between each of the 13 conditions from [7, Theorem 4.1] and the
possible conclusion that | [A, B]| = 3 (that is, the possible conclusion that C

is the only ring that is properly contained between A and B).

That study continued in [3, Theorem 2.9], where it was shown that there
are two of the 13 conditions from [7, Theorem 4.1] which each implies that C
is the only ring properly contained between A and B; there are seven (of the
13) conditions which each implies that C is not the only ring properly
contained between A and B; and for each of the remaining four conditions,
some examples satisfying the condition are such that C is the only ring
properly contained between A and B while other examples satisfying the
condition do not have this feature. The main purpose of this note is to
characterize “|[A, B]| = 3" for one of those four “ambiguous” conditions,
namely, the context where the minimal ring extension A < C is integral and
the minimal ring extension C < B is integrally closed (in the sense that C is
integrally closed in B). Equivalently, since integrality is transitive, one can
describe this context as consisting of minimal ring extensions A < C and
C = B where C is the integral closure of A in B. We will state the
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characterization of “|[A, B]| = 3 for this context after a brief paragraph of
background information.

Recall (cf. [8]) that a ring extension R — T is a minimal ring extension
if there does not exist a ring properly contained between R and T. A minimal
ring extension R < T is either integral or integrally closed. If R T is a
minimal ring extension, it follows from [8, Théoréme 2.2(i) and Lemme 1.3]
that there exists a unique maximal ideal M of R (called the crucial maximal
ideal of R < T) such that the canonical injective ring homomorphism

Rm = Tm (= Tr\m ) can be viewed as a minimal ring extension while the
canonical ring homomorphism Rp — Tp is an isomorphism for all prime

ideals P of R except M.

For the context of interest, where C is the integral closure of A in B and
A c C and C < B are minimal ring extensions having crucial maximal ideals

M and N, respectively, Theorem 2.1 establishes that | [A, B]| = 3 if and only
if NN A=M. Incase A and B are (commutative integral) domains, this
result was obtained recently by Ben Nasr and Zeidi [2, Corollary 2.11] as a
consequence of the two main results in [2], namely, Theorems 2.1 and 2.7 of
[2]. The proofs of those two theorems are extremely domain-theoretic in
nature, as they involve several intersections of localizations which would be
meaningless (for lack of a universe of discourse) in a more general ring-
theoretic setting. On the other hand, our proof of the ring-theoretic
generalization in Theorem 2.1 is comparatively short and involves no new
technical results. To show that this is a meaningful generalization, Example
2.3 provides data showing that both of the possible conclusions (i.e., |[A, B]|

=3 and |[A, B]| > 3) can be realized by extensions involving rings that are
not domains. For the sake of completeness, Remark 2.2 provides data that
accomplish the same for ring extensions involving domains.

If A is a ring, then Spec(A) (resp., Max(A)) denotes the set of prime
(resp., maximal) ideals of A. For rings A < B, Supp(B/A) = Suppa(B/A)
= {P e Spec(A)| Ap < Bp}. Following [11, p. 28], we let INC and GU,
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respectively, denote the incomparable and going-up properties of ring
extensions. By the “dimension” of a ring, we mean its Krull dimension. As
usual, if S is a set, then |S| denotes the cardinal number of S. Any

unexplained material is standard, as in [9, 11].
2. Results

Before giving our main result, we recall a definition and some related
facts. A ring extension R < T is said to satisfy FCP (also known as FC) if

each chain of rings in [R, T] is finite. While FIP = FCP, the converse is

false.

Theorem 2.1. Let A — B be rings, with A* denoting the integral closure
of A in B. Suppose that A = A* and A* — B are minimal ring extensions

whose crucial maximal ideals are M and N, respectively. Then A™ is the only
ring Csuchthat Ac C < B ifandonlyif N1 A= M.

Proof. By integrality, A — A" satisfies both GU and INC (cf. [11,
Theorem 42]). It follows that N 1 A € Max(A), and so the condition that

NNA=M is equivalent to NN Ac M. We will first prove the
contrapositive of the “only if” assertion. Assume, then, that N (1 A = M; our
task is to show that [A, B]\{A, B, A*} is nonempty. By the above comment,
N N A¢Z M. Hence, by the Crosswise Exchange Lemma [5, Lemma 2.7],

there exists D e [A, B] such that A — D inherits from A* — B the property

of being an integrally closed minimal ring extension. Thus, D e [A, B]\

{A, B, A"} as desired.

Next, we will prove the contrapositive of the “if” assertion. Assume,
then, that there exists a ring E e [A, B]\{A, B, A™}; our task is to show that

N N A= M. As mentioned in the introduction, the present context ensures
that A — B satisfies FIP. (This part of [7, Theorem 4.1] actually followed



Intermediate Rings 19

from the proof of [6, Proposition 2.1 (c)]. The main focus of [6] was on the
FCP property.) In particular, A — B satisfies FCP. Hence, sodo A c E and
E < B. Since any decreasing chain in [A, E] must terminate in finitely many

steps, there exists E; € [A, E] such that A < E; is a minimal ring extension.
It is straightforward to verify that E; € [A, B]\{A, B, A*}; also, E; c B
satisfies FCP. Thus, it is harmless to change notation and take E = E;; that
is, to assume that A < E is a minimal ring extension.

Let Q denote the crucial maximal ideal of A — E. Since A* = E, we

get A" N E = A that is, the extension A c E is integrally closed. Hence, by
[8, Théoréme 2.2(ii)], no prime ideal of E can lie over Q, that is, Q is not in
the image of the canonical map Spec(E) — Spec(A). Next, by considering

increasing chains in [E, B], we get (since E — B satisfies FCP) a chain

E=A)c..cAcAjgc...cA, =8B
where n is a positive integer and A < Aj,1 is a minimal ring extension for
all i =0,.., n-1. Foreach i, let Q; denote the crucial maximal ideal of

A < Ai;1- As no prime ideal of E can lie over Q, we have Qp N A = Q.
Next, consider the finite maximal chain of minimal ring extensions

AcAhc..cAcAjjc...cA =B
Applying [5, Corollary 3.2] to this chain, we get that
S = Suppa(B/A) = {Q}U{Q N Ali=0,..,n-1}
In particular, S o {Q, Qg N A}, and so |S|> 2. On the other hand, by

applying [5, Corollary 3.2] to the chain A< A" < B, we get that S =
{M, N N A}. Therefore, | {M, N N A}|> 2, whence M = N A O

We pause to collect some domain-theoretic data realizing the possible
cases in Theorem 2.1, namely, where N (] A is or is not M.

Remark 2.2. (a) It was shown in [3, Theorem 2.4] (with nearly all the
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relevant work being done in [3, Lemma 2.3]) that if A < C is an integral
minimal ring extension and C — B is an integrally closed minimal ring
extension (so that C is necessarily the integral closure of A in B) and if A is
quasi-local, then |[A, B]| = 3; that is, C is the only ring H such that A = H
c B. Therefore, by Theorem 2.1, N (1 A= M, where M and N denote the
crucial maximal ideals of A = C and C < B, respectively. (This equality is
also clear directly since A is assumed quasi-local and integrality ensures that
N N A e Max(A).) One way to build such data is to take A to be a
(necessarily quasi-local one-dimensional) domain, with quotient field B,

whose integral closure (in B) is a one-dimensional valuation domain C such
that A — C is a minimal ring extension. (One example of such data is found

by using A = R + XC[[X]], where X is an analytic indeterminate over C; the
integral closure of A'is C = C + XC[[X]] = C[[X]]. This ring will also play

an auxiliary role in Example 2.3.) To complete the verification, it remains
only to show that C — B is an integrally closed minimal ring extension. This,
in turn, is standard: cf. [11, Theorem 65], [9, Theorem 26.1 (2)].

(b) If Ac C is an integral minimal ring extension and C — B is an
integrally closed minimal ring extension (so that C is necessarily the integral
closure of A in B), then it need not be the case that | [A, B]| = 3. Anexample

illustrating this was essentially given in [7, Remark 4.2 (d)]. This involves
taking A= Z[2i], C :=Z[i] (the ring of Gaussian integers), and B =
Mp.q Cp, where the index set for this intersection consists of all the prime
ideals P of C other than Q = 3C. It is well known that A — C is an integral
minimal ring extension. Hence, by [8, Théoreme 2.2(ii)], its crucial maximal
ideal is M = (A:C) = (2, 2i)C = 2Z + 2Zi. It was shown in [7, Remark
4.2(d)] that C < B is an integrally closed minimal ring extension. Since

every prime ideal of C except Q is lain over from B, it follows from [8,
Théoréme 2.2(ii)] that N := Q is the crucial maximal ideal of C < B. Note

that N A=3Z +6Zi = M. So, by Theorem 2.1, [A B]\{A, B, C} is
nonempty. In fact, it was shown in [7, Remark 4.2(d)] that A[1/3] € [A, B]\
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{A, B, C}. Thus, C is not the only ring H such that A< H < B. This

completes the verification.

(c) Recall that the domain-theoretic case of Theorem 2.1 was given
earlier by Ben Nasr and Zeidi in [2, Corollary 2.11]. To illustrate that result,
they gave, in [2, Example 2.12], an example of a one-dimensional quasi-local
domain (A, M) and a one-dimensional valuation overring B of A such that

A c A" and A" c B are minimal ring extensions, each of which has crucial
maximal ideal M. Two significant ways in which that example differs from

our construction in (a) are the following: the ring A* (resp., B) in [2,
Example 2.12] is not quasi-local (resp., is not a field). In any event, one can
fairly conclude that the main point of (a) was anticipated in [2, Example
2.12]. However, the same cannot be said of the point made in (b). Indeed, [2]
did not address the possible existence of data that would fit the context of [2,
Corollary 2.11] but fail to satisfy the equivalent conditions in that result. As
explained in (a), results from [3] show that any such data (for instance, the
data in (b)) must feature a base ring that is not quasi-local.

We close with examples showing that rings that have non-trivial zero-
divisors can exhibit the same diversity of behavior as in parts (a) and (b) of
Remark 2.2. Recall from [10] that a (necessarily quasi-local) domain D is
said to be a pseudo-valuation domain if there is a (uniquely determined)
valuation overring V of D (inside the guotient field of D) that has the same
maximal ideal as D; V is referred to as the canonically associated valuation
overring of D.

Example 2.3. Let (D, m) be a one-dimensional pseudo-valuation domain

with quotient field K such that the integral closure of D (in K) is the
canonically associated valuation overring V of D and also such that D — V is

a minimal ring extension. (For instance, take D = R + XC[[X]], where X is

an analytic indeterminate over C.) Then:

() Let E be any nonzero ring. Put A:=DxE and B := K x E. Then

the integral closure of Ain Bis A" =V x E, A — A" is an integral minimal
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ring extension whose crucial maximal ideal is M :=mxE, A" < B is an
integrally closed minimal ring extension whose crucial maximal ideal is N :=

mxE (= M), and A" is the only ring C such that A = C < B.

(b) Put A:= D xV and B :=V x K. Then the integral closure of Ain B
is A" =V xV, Ac A" isan integral minimal ring extension whose crucial
maximal ideal is M = mxV, A* c B is an integrally closed minimal ring
extension whose crucial maximal ideal is N :=V x m, and A" is not the only
ring C such that A = C < B. Indeed, the only such C other than A" is D x K.

Proof. It is well known that Spec(D) = Spec(V ) as sets. In particular,

dim(V) = dim(D) = 1. (The latter conclusion also follows via integrality, as

in [11, Theorem 48].) In addition, V < K is an integrally closed minimal
ring extension, necessarily with crucial maximal ideal m (cf. [11, Theorem
65], [9, Theorem 26.1 (2)]).

(a) The hypothesis that E # 0 has been made only to ensure that A, B
and A* are non-domains. It is straightforward to show that the integral
closure of Ain Bis A* :=V x E. Hence, A" is integrally closed in B. Since

the assignment H — H x E gives a bijection [D, V] — [A, A"]and D c V

is a minimal ring extension, we now have that A = A" is an integral minimal
ring extension. By [8, Théoréme 2.2(ii)], m = (D : V), the crucial maximal

ideal of D — V. Thus, the crucial maximal ideal of A = A" is
(A:A")=(DxE:VxE)=(D:V)xE=mxE =M.

Since the assignment H — H x E gives a bijection [V, K] — [A*, B] and
V < K is a minimal ring extension, it now follows that A" = B is an
integrally closed minimal ring extension. By [8, Théoréme 2.2(ii)], the crucial

maximal ideal of this extension is the only maximal ideal of A* which is not
lain over from B, namely, m x E = N(= M). Of course, N N1 A= M, and
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so by Theorem 2.1, A" is the only ring C such that A = C — B. A direct
proof of the last assertion is also available, since [A, B] = [D, K]x {E}.

(b) Insofar as possible, we will argue as in (a). It is straightforward to
show that the integral closure of A in B is A* =V xV. Hence, A" is

integrally closed in B. To show that A — A" is a(n integral) minimal ring
extension with crucial maximal ideal M := m xV, one need only observe that

(A:A")=(D:V)xV = M. (Here is another way to show that the integral
extension A — A" is minimal, with crucial maximal ideal M. Note that A/M
= D/m and A*/M =V/m. Hence by [4, Proposition 11.4] (cf. also [12,
Theorem 3.3]), the minimality of D < V implies that of D/m < V/m, hence
that of A/M < A*/M, hence that of A c A"; the cited references can also

be used to show that M is the crucial maximal ideal of A = A*. Of course,
this alternate reasoning could also have been used at the corresponding point

in the proof of (a).) Next, to show that A* < B is a(n integrally closed)
minimal ring extension with crucial maximal ideal N :=V x m, note that N

is the only maximal ideal of A* which is not lain over from B. Finally, since

NNA=NVND)x(mMNV)=Dxm=mxV =M,

Theorem 2.1 implies that A* is not the only ring C such that A= C < B. In

fact, the data have been arranged so that [A, B]\{A, A", B} contains only one
element, namely, D x K. O

References

[1] D. D. Anderson, D. E. Dobbs and B. Mullins, The primitive element theorem for
commutative algebras, Houston J. Math. 25 (1999), 603-623.

[2] M. Ben Nasr and N. Zeidi, When is the integral closure comparable to all
intermediate rings, Bull. Austral. Math. Soc. (to appear).

[3] D. E. Dobbs, When the juxtaposition of two minimal ring extensions produces no
new intermediate rings, Pales. J. Math. 6(1) (2017) (to appear).



24
[4]

(5]

(6]

[7]

(8]

(9]
[10]

[11]
[12]

David E. Dobbs

D. E. Dobbs, B. Mullins, G. Picavet and M. Picavet-L’Hermitte, On the FIP
property for extensions of commutative rings, Comm. Algebra 33 (2005),
3091-3119.

D. E. Dobbs, G. Picavet and M. Picavet-L’Hermitte, Characterizing the ring
extensions that satisfy FIP or FCP, J. Algebra 371 (2012), 391-429.

D. E. Dobbs and J. Shapiro, On chains of intermediate rings resulting from the
juxtaposition of minimal ring extensions, Pales. J. Math. 4 (2015), 263-270.

D. E. Dobbs and J. Shapiro, When only finitely many intermediate rings result
from juxtaposing two minimal ring extensions, Pales. J. Math. 5 (2016), 13-31.

D. Ferrand and J.-P. Olivier, Homomorphismes minimaux d’anneaux, J. Algebra
16 (1970), 461-471.

R. Gilmer, Multiplicative ldeal Theory, Dekker, New York, 1972.

J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 75
(1978), 137-147.

I. Kaplansky, Commutative Rings, Rev. ed., Univ. Chicago Press, Chicago, 1974.

G. Picavet and M. Picavet-L’Hermitte, About minimal morphisms, pp. 369-386,
Multiplicative Ideal Theory in Commutative Algebra, Springer-Verlag, New
York, 2006.



