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Abstract 

In this paper, we analyze the hazard rate and reversed hazard rate of 
some well-known Weibull models, which are widely used in reliability 
analysis. The comparison of reversed hazard rate with hazard rate, and 
aging intensity function is done with the help of numerical examples. 

1. Introduction 

In the context of reliability theory, some well-known functions are 
available, viz., survival function, hazard rate function, reversed hazard rate 
function, mean residual life function to study lifetime distributions or 
statistical data. The notations used throughout the paper are mentioned in the 
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sequel. We denote a continuous lifetime random variable by X with 
probability density function ( ),⋅Xf  cumulative distribution function ( ),⋅XF  

survival function ( ),⋅XF  hazard rate function ( ) ( ) ( ),⋅⋅=⋅ XXX Ffr  and 

reversed hazard rate function ( ) ( ) ( ).⋅⋅=⋅µ XXX Ff  The hazard rate ( )trX  is 

widely used in aging analysis of a device, whereas the importance of ( )tXµ  

is found in the Forensic Science, where exact time of failure (i.e., death in 
case of living beings) of a system is of importance (cf. Gupta and Arnold [6], 
Navarro et al. [15] and Marshall and Olkin [11]). ( )trX  and ( )tFX  are 

related by the well known relationship 

( )
( )

.0∫−=
t

X duur
X etF  (1.1) 

Recently, the role of aging intensity function (AI) in analyzing aging 
phenomenon quantitatively is significantly discussed by Jiang et al. [9], 
Nanda et al. [13] and Bhattacharjee et al. [1]. AI function ( )⋅XL  (cf. Jiang           

et al. [9]) is defined as ( ) ( ) ( )tHtrtL XXX =  with 

( ) ( ) .1
0







= ∫

t
XX duurttH  

It can be seen that 

( ) ( )
( ) ( )tFtF

tfttL
XX

X
X ln

−
=  for .0>t  

Pham and Lai [16] established that (1.1) facilitates to generate the 
Weibull-type lifetime distributions. Keeping in view on traditional Weibull 
distribution function, a good number of authors have proposed new statistical 
distributions. In view of the aforementioned fact, it is quite important to 
mention that Nadarajah and Kotz [12] recently pointed out that the proposed 
distributions that are published in reliability engineering journals, are either 
not new or arise from a representation suggested by Gurvich et al. [7]. 
According to them, Gurvich et al.’s [7] work needs to be recognized by the 
readers of reliability journals as they were the beginners to present a class of 
distributions generalizing the traditional Weibull distribution. 
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In Section 2, we derive the reversed hazard rate of some well-known 
Weibull models, which are widely used in reliability analysis. Here, we 
analyze some system properties having component lives from Weibull 
family. We explore the properties of series and parallel systems consisting          
of independent, and non-identically distributed random variables, viz., 
exponential, Weibull family. The comparison of reversed hazard rate with 
hazard rate, and aging intensity function is done with the help of numerical 
examples in Section 3. The paper ends with concluding remarks in Section 4. 

2. Recent Weibull Models 

Some of the families of recent Weibull models have been highlighted in 
Nadarajah and Kotz [12] and Pham and Lai [16]. The following notations 
will be used throughout the paper: 

Survival function Notation used 

( ) ( ) 0,0,,exp ≥>−= tbaattF b
X  ( )baWX ,~: 2  

   (Weibull [18]) 

( ) ( ) 0,0,0,0,exp ≥≥λ>>−= λ tbaeattF tb
X ( )λ,,~: 3 baWX  

   (cf. Lai et al. [10]) 

( ) 0,0,,exp1 ≥>βα













 β−−=

α
t

t
tFX  

( )baWX I ,~:  

  (cf. Jiang and Murthy [8]) 

*As reported in Pham and Lai [16] 

Below we state quite a few interesting results with proofs being not so 
important, thereby omitting the proofs of some results. These results have 
wide applications in reliability and survival analysis. The notations used in 
this section are same as what is defined earlier. 

Theorem 2.1. If ( ),,~ 2 βαWX  then its reversed hazard rate is a 

decreasing function of t. 

Theorem 2.2. If ( ),,,~ 3 baWX β  then the reversed hazard rate is a 

decreasing function of t. 



Satya Kr. Misra and Subarna Bhattacharjee 1968 

Proof. Here 

( ) ( ) ( ) ,exp1 β−−β β+= tbtabt
X ebtattf  

( ) ( ) ,
1

1

−

β+=µ β

−β

tae

bt
X bt

e

bttaet  (2.1) 

so that 

( )( ) ( )

( )
,

1 2−
=µ βtaeX bt

e

tWtdt
d  (2.2) 

where 

( ) { ( ) ( ){ ( ) }}222 1 β++β−+−+β+−=
ββ β+−β btebttaetaetW taetaebtbt btbt

 

[( ) { } { }]
βββ

+−β−+−−β+= β+−β taetaetaebtbt btbtbt
eetaebttae 1122  

[( ) ( ) { }]
β

+−β−β+= −β taebt bt
etWbttae 11

22  (2.3) 

with ( ) { }.11
ββ

+−−= β+ taetaebt btbt
etaetW  Note that 

( )( ) ( ),1222
1 β+−= −β+ β

btteatWdt
d taebt bt

 

which is negative for .0≥t  Thus, ( )tW1  is decreasing in t. Also, ( ) ,001 =W  

which gives ( ) ( ) .0011 =≤ WtW  Hence, in (2.3), we find that ( ) ,0≤tW  

which leads to the fact that ( )tXµ  in (2.1) is a decreasing function of t. ~ 

Theorem 2.3. If ( ),,~ αβIWX  then ( )tXµ  is a decreasing function         

of t. 

The next remark explores about a parallel system consisted by 
independent and non-identically distributed exponential random variables. 

Remark 2.1. The failure rate of a parallel system consisting of two 
components where the lifetimes of each component are independent and non-
identically distributed exponential random variables is non-monotonic. 
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Considering a parallel system consisting of two components having 

lifetimes (exponential random variables) with survival functions ( ) =tFX1  

te 2−  and ( ) ,0,3
2 ≥= − tetF t

X  respectively. Then ( ) ( )t
X etF 211 −−−=  

( ) ,0,1 3 ≥−⋅ − te t  where { }.,max 21 XXX =  The failure rate ( )trX  versus 

t is plotted in Figure 1, which shows that it is non-monotonic. 

 

Figure 1. Plot of failure function for X in Remark 2.1. 

The next remark describes the nature of failure rate of a series system 
formed with two independent components having 2-parameter Weibull (with 
different shape and scale parameters) distribution. 

Remark 2.2. If ( )1121 ,~ baWX  and ( )2222 ,~ baWX  are independent, 

then the hazard rate of { }21,min XXZ =  is: 

( ) .1
22

1
11 21 −− += bb

Z xbaxbaxr  

Moreover, we have 

( ) ( ) ( ) .11 2
222

2
111 21 −− −+−=′ bb

Z xbbaxbbaxz  

It is evident that ( )xrZ  is 

  (i) DFR if 11 <b  and ,12 <b  

 (ii) IFR if 11 >b  and ,12 >b  



Satya Kr. Misra and Subarna Bhattacharjee 1970 

(iii) non-monotonic with stationary point 

( )
( )

( )121

222
111

1
1 bb

bba
bbax

−
∗









−
−=  

if 11 >b  and 12 <b  (i.e., 1W  and 2W  are IFR and DFR, respectively) or if 

11 <b  and .12 >b  

The next remark says that a parallel system formed with two independent 
components having IFR two-parameter Weibull distributions possesses a 
non-monotonic failure rate. 

Remark 2.3. The failure rate of a parallel system consisting of two 
components where the lifetimes of each component are independent and non-
identically distributed Weibull random variables (each being IFR) is non-
monotonic. 

Considering a parallel system consisting of two components having 

lifetimes (Weibull random variables) with survival functions ( )
5.1

1
t

X etF −=  

and ( )
2.1

2
t

X etF −=  for ,0≥t  respectively. Then ( ) ( )
2.1

11 t
X etF −−−=  

( ),1
5.1te−−⋅  for ,0≥t  where { }.,max 21 XXX =  The failure rate ( )trX  

versus t is plotted in Figure 2, which shows that it is non-monotonic. 

 

Figure 2. Plot of failure rate function of X with time t in Remark 2.3. 
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The next remark highlights the behavior of a 2-component parallel 
system with components having independent Weibull distributions, both of 
which have DFR property. 

Remark 2.4. The failure rate of a parallel system consisting of two 
components where the lifetimes of each component are independent and 
identically distributed Weibull random variables (each being DFR) is non-
monotonic. 

Considering a parallel system consisting of two components having 

lifetimes (Weibull random variables) with survival functions ( )
8.0t

X etF i
−=  

for ,2,1=i  and .0≥t  Then ( ) ( ) ,11 28.0t
X etF −−−=  ,0≥t  where 

{ }.,max 21 XXX =  The failure rate ( )trX  versus t is plotted in Figure 3, 

which shows that it is non-monotonic. 

 
Figure 3. Plot of failure rate function of X with time t in Remark 2.4. 

The next remark highlights the behavior of a 2-component parallel 
system with components having independent Weibull distributions, one of 
which is IFR and other being DFR. 

Remark 2.5. The failure rate of a parallel system consisting of two 
components where the lifetimes of each component are independent and non-
identically distributed Weibull random variables is non-monotonic. 
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Considering a parallel system consisting of two components having 

lifetimes (Weibull random variables) with survival functions ( )
8.0

1
t

X etF −=  

and ( ) ,
2

2
t

X etF −=  ,0≥t  respectively. Then ( ) ( )
2

11 t
X etF −−−=  

( ),1
8.0te−−⋅  ,0≥t  where { }.,max 21 XXX =  The failure rate ( )trX  

versus t is plotted in Figure 4, which shows that it is non-monotonic. 

 

Figure 4. Plot of failure rate function for X in Remark 2.5. 

The next theorem says that a series system formed with n components 
having a BT 3-parameter Weibull distribution is BT. 

To justify the importance of the next theorem, we give an example to 
stress upon the fact that the sum of two non-negative and non-monotonic 
functions need not be non-monotonic. 

Example 2.1. Let us take 

( )






≥

≤−
=

06.0if6
62

,06.0if38.0

tt

tt
tf  (2.4) 

and 

( )






≥
≤≤−

≤
=

.08.0if08.0
,08.006.0if548.0

,06.0if3

t
tt

tt
tg  (2.5) 
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Note that ( )tf  and ( )tg  are non-negative and non-monotonic functions, 

respectively. But 

( ) ( )













≥+

≤≤+

≤

=+

08.0if6
6208.0

,08.006.0if6
3248.0

,06.0if8.0

tt
tt

t

tgtf  (2.6) 

is monotonic in .0≥t  

As a result of the discussion, we find the next theorem to be an 
interesting one. 

Theorem 2.4. Let ( )iiii baWX λ,,~ 3  for ni ...,,2,1=  be BT. Then 

{ }niXX i ≤≤= 1:min  is BT. 

Proof. Note that 

( ) ( ) ,1

1 










λ+= ∑

=

λ
n

i
ii

bt
iX tbteattr ii  

so that 

( )( ) [ { ( ) }]∑
=

λ λ+λ+−=
n

i
iiiii

bt
iX ttbbbtea

t
trdt

d ii

1

22
2 211  

[ { }]∑
=

λ λ+λ+−=
n

i
iiiii

bt
i ttbbbtea

t
ii

1

222
2 21  

[ {( ) }]∑
=

λ −λ+=
n

i
iii

bt
i btbtea

t
ii

1

2
2 .1  (2.7) 

If iX  for ni ≤≤1  is BT ( ),10 << ib  so is X. ~ 

The next remark says that a series system formed with two independent 
components having an IFR and a DFR 3-parameter Weibull distribution 
possesses a bathtub failure rate. 
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Remark 2.6. Let ( )λ,,~ 131 baWX  and ( )λ,,~ 232 baWX  having 

IFR and DFR, respectively. Then the failure rate of { }21:min ≤≤= iXX i  

is non-monotonic. Let ( )2,2.0,2~ 31 WX  and ( ).2,5,2~ 32 WX  Then 

( ) ( ) 8.08.58.42 41044.0 ttttetr t
X +++=  for ,0≥t  where { :min iXX =  

},21 ≤≤ i  which is non-monotone as is shown in Figure 5. 

 

Figure 5. Plot of failure function for X with time t in Remark 2.6. 

The next remark says that a series system formed with two independent 
components having an IFR and a DFR 3-parameter Weibull distribution 
(with different parameters) possesses a bathtub failure rate. 

Remark 2.7. Let ( )11131 ,,~ λbaWX  and ( )22232 ,,~ λbaWX  

having IFR and DFR, respectively. Then the failure rate of =X  
{ }21:min ≤≤ iX i  is non-monotonic. Let ( )5.2,2.0,2~ 31 WX  and ~2X  

( ).3,5,43W  Then ( ) ( ) ( )
8.0

5.2
43 5.22.02354

t
tettetr

t
t

X
+++=  for ,0≥t  

where { },21:min ≤≤= iXX i  which is non-monotone as is shown in 

Figure 6. 
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Figure 6. Plot of failure function for X in Remark 2.7. 

3. Numerical Examples 

One can estimate ( ) ( ) ( )ttrtF XXX µ,,  and ( )tLX  with the help of 

logical estimates, as highlighted in the present section. Let N units be put to 
test at .0=t  Further, let the number of units having survived at ordered 

times jt  be ( ).js tN  The estimates for ( ),tFX  ( )trX  and ( )tXµ  are, 

respectively, given as follows: 

( )
( )
N

tN
tF js

X =ˆ  for ,jjj tttt ∆+<<  

( )
{ ( ) ( )}

( ) jjs

jjsjs
X ttN

ttNtN
tr

∆
∆+−

=ˆ  for ,jjj tttt ∆+<<  

( )
{ ( ) ( )}

{ ( )} jjs

jjsjs
X ttNN

ttNtN
t

∆−
∆+−

=µ̂  for .jjj tttt ∆+<<  

Thus, an estimate for ( ),tLX  for ,0>t  is 

( )
{ ( ) ( )}

( )
( )
N

tN
ttN

ttNtNt
tL

js
jjs

jjsjs
X

ln

ˆ

∆

∆+−−
=  for .jjj tttt ∆+<<  
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A failure data of seventy compressors collected from Ebeling [4] are 
observed at 5-month intervals with failures as shown in Table 1. Estimates of 
( ) ( ) ( )tLttr ,, µ  computed for the failure data in Table 1 are plotted in Figure 

7. The hypothetical data given in Table 2 depict failures in one thousand                  
B-52 bombers ( )1000.,e.i =N  performing various 24-hr missions (cf. 

Shooman [17]) as shown in Table 2. ( ) ( ) ( )tLttr ,, µ  computed for the failure 

data in Table 2 are plotted in Figure 8. 

Table 1. Failure data of compressors 

Time till 
failure 

( )js tN  ( )js tN  

( )jjs ttN ∆+−
( )tf X

ˆ  ( )trXˆ  ( )tXµ̂  ( )tLX
ˆ  

0-5 70 3 0.0085714 0.0086 - - 

5-10 67 7 0.02  0.0209  0.4666667 0.47714t  

10-15 60 8 0.022857  0.0267  0.16  0.17321t  

15-20 52 9 0.025714  0.03460  0.1  0.11640t 

20-25 43 13 0.0371429 0.0605 0.0962963 0.12415t 

25-30 30 18 0.051429 0.1200 0.09 0.1416t 

30-35 12 12 0.034286 0.2 0.0413793 0.11341t 

 
Figure 7. Estimates of ( ) ( ) ( )tLttr ,, µ  versus t plotted for the data in         

Table 1. 
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Table 2. Failure data of B-52 bombers 

Time till 
Failure 

( )js tN  ( )js tN  

( )jjs ttN ∆+−  
( )jX tf̂  ( )jX tr̂  ( )jX tµ̂  ( )jX tL̂  

0-2 1000 222 0.111 0.111 - - 

2-4 778 45 0.0225  0.028920308 0.101351 0.1152t 

4-6 733 32 0.016  0.021828104 0.0599251 0.0703t 

6-8 701 27 0.0135  0.019258203 0.045150 0.0542t 

8-10 674 21 0.0105  0.015578635 0.0322086 0.0395t 

10-12 653 15 0.0075  0.011485452 0.0216138 0.0270t 

12-14 638 17 0.0085  0.013322884 0.023481 0.0297t 

14-16 621 7 0.0035  0.005636071 0.009235 0.0118t 

16-18 614 14 0.007  0.011400651 0.018135 0.0234t 

18-20 600 9 0.0045  0.0075  0.01125  0.0147t 

20-22 591 8 0.004  0.00676819  0.00978  0.0129t 

22-24 583 3 0.0015  0.002572899 0.0035971 0.0048t 

 

Figure 8. Estimates of ( ) ( ) ( )tLttr ,, µ  versus t plotted for the data in        

Table 2. 
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4. Concluding Remarks 

We look at the system properties of some well known Weibull models, 
each one of these has wide applications in appropriate scenario. Similar 
results can be studied for other Weibull models. The comparison of ( ),tL  

( ) ( )tth µ,  is studied for two numerical examples. Figure 7 and Figure 8 show 

that the AI function considerably differs from failure rate and reversed 
hazard rate functions for the given data sets. The present work can be 
extended for other Weibull distributions to help researchers to conclude 
about the nature of reversed hazard rate and other aging properties. 
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