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Abstract

A new S-type eigenvalue localization set for tensors is given by

partitioning the index set N = {1, 2, ..., n} into a subset S and its

complement. It is shown that the new set is tighter than those in Li
et al. [35]. Based on this new set, we give a checkable sufficient
condition for the positive (semi-)definiteness of tensors and an upper
bound for the spectral radius of nonnegative tensors.

1. Introduction

Let C(R) denote the set of all complex (real) numbers and N =

{1, 2,..,n}. Wecall A= (aj,...i,, ) to be a complex (real) tensor of order m

and dimension n, denoted by A e C[m'”](R[m' n]), if
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&jj-ip, € C(R),

where i; =1,.., n for j=1 .., m Obviously, a vector is a tensor of order
1 and a matrix is a tensor of order 2. A real tensor A = (ail...im) is called
symmetric [1, 2] if

&y = An(ig-igy ) VT E iy,
where I, is the permutation group of m indices. Furthermore, a real tensor
of order m and dimension n is called the unit tensor, if its entries are &; ... .
for iy, ..., iy € N, where

1 ifip = =iy,
Ojy iy = .
0, otherwise.

We now define a tensor-vector multiplication, i.e., for a tensor A =
m,n _ T n m-1 .
(@i ) € clmnl and a vector x = (X, Xp, ..., Xy) € C", Ax" ~isann
dimensional vector whose ith component is

AX™ D= D @iy X Xy

i2,...,imeN

Moreover, if there are a complex number A and a nonzero complex

vector X = (X, Xp, ..., X;)! such that
Axm—l _ kx[m—l],
then A is called an eigenvalue of A and x an eigenvector of .4 associated

with A, where

m-1 m-1 _,m-1 m—1\T
xl ]=(x1 VXD e Xy )

This definition was introduced by Qi in [1] where he assumed that A e

RM NI js symmetric and m is even. Independently, in [3], Lim gave such a
definition but restricted x to be a real vector and A to be a real number. In this
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case, we call A to be an H-eigenvalue of .4 and x to be an H-eigenvector of
A associated with A [1, 4, 5].

Eigenvalue problems of tensors have become an important topic of study
in numerical multilinear algebra, and they have a wide range of practical
applications; see [5-30]. For example, we can use the smallest H-eigenvalue
of a tensor to determine its positive (semi-)definiteness. But it is not easy to
compute the smallest H-eigenvalue of tensors when the order and dimension
are very large, so we always try to obtain a set in the complex field which
includes all eigenvalues of a given tensor.

In [1], Qi gave an eigenvalue localization set for real symmetric
tensors, which is a generalization of the well known GerS§gorin’s eigenvalue
localization set of matrices [31, 32]. This result can be easily generalized to
general tensors [2, 33].

Theorem 1.1[1, 2, 33]. Let A = (gj..j ) € clmnl Then
o(A) < I(A) = [ Ti(4),
ieN
where o(A) is the set of all the eigenvalues of A and
LA ={zeC:z-ai|<f(A} 6= D &,

i2, ..., imeN
5ii2---im =0

To obtain tighter sets than T'(A), Li et al. [33] extended the Brauer’s

eigenvalue localization set of matrices [32, 34] to tensors and gave the
following Brauer-type eigenvalue localization set for tensors.

Theorem 1.2 [33]. Let A = (gj...i ) € clmnl n> 2 Then

o(A) = K(A) = U Ki, j(A),
i, jeN
j#i
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where

Kij(A)={zeC:(z-a.i|-r(A) z-aj.j|<|aj.j ()}
and

I"IJ(A): Z |aii2...im |:r|(~A)_|a|JJ |
8iip--igy =0

8 jig- iy =0

Furthermore, C(A) < T'(A).

Theorem 1.3 [33]. Let A =(ai1...im)eC[m’”], n>2 and S be a

nonempty proper subset of N. Then
o(A) c K5(A) = { U x ,—(A)] U{ U x j(A)].
ieS,je§ ie§,je$
Furthermore, K5(A) < K(A) < T(A).

Theorem 1.4 [35]. Let A =(ai1...im)eC[m’”], n>2 and S be a

nonempty proper subset of N. Then
o(A) c Q% (A) :{ U Qﬁj(A)}U[ U Qﬁj(A)}
ieS,je§ ie§,jeS

where
Of (A)={zeC:(z-ai(z-aj. |-~ (A)

AS i -
<Ay (A)ies, jeSt
Li et al. [35] proved that

Q%(A) € £3(A) € K(A) < T(A). (1.1)
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In this paper, we continue this work on the eigenvalue localization
problem for tensors. In Section 2, a new eigenvalue inclusion set for tensors
is obtained, and it has been proved to be tighter than those in Theorems 1.1-
1.4 Based on the new set, a checkable sufficient condition for the positive
(semi-)definiteness of tensors is given in Section 3, and an upper bound for
the spectral radius of nonnegative tensor is given in Section 4.

2. A New Eigenvalue Localization Set
Given a nonempty proper subset S of N, S = N\S. We denote
AN = {(ip, i3, ..., i) : each ij e N for j=2,.., m}
AS = (i, ig, ..., i) : €ach ijeSforj=2 .,mj
and
AS = AN\AS,
This implies that for a tensor A = (aj..i )€ ci™n we have that for

ieS,

i) = 1 () + i (), 1) =1 )5 () |

where
S WS
B = Y e, b A= Y iy, |
(ip, oo i ) (ip, ooy i )eAS
Bjig iy =0

Theorem 2.1. Let A = (.. ) € cl™nl with n > 2, S be a nonempty

proper subset of N. Then
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o(A) ¢ 5 (A) = (U\PF <A>J U [U%S (A)}

ieS ieS

Ul nmna (U s na)) |
ieS ieS
jes jeS

where
S _ ) o AS
YP(A)={zeC:|z-a..i|<r (A},

P i(A)={zeC:(z-a.|- riAS (A))

\S \S S
(z=aj.j |- (A) <6 (A (AL
Proof. For any A e o(A), let x =(x, Xo, ..., xn)T e C"\{0} be an
associated eigenvector, i.e.,
AxmL — pxm-1] 2.1)
Let | x, | = max| x; | and | xq | = max| x; |. Then at least one of x, or
ieS ieS
x9 is nonzero. If
) e [U ‘{'iS(A)] U (U L5 (A)}
ieS ieS
then it is obvious that A e ‘PS(.A). Otherwise,
A e [U ‘PiS(A)J U (U‘I’is (A)}
ieS ieS

and we have

s
|n—a.i| > (A)eachies,
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and

S _
|A—aj.j|> K" (A) foreachieS.

We next prove

re | Jeonmie Ul e nni)|
ieS ieS
jeS jeS

Case |. xpxq #0 and | xp | > | Xq |, thatis, | xp | = r;la’l\lx| X |- By (2.1),

we have
m_l = . - . “ee .
(}L - app)Xp —_ Z 7ap|2...|mX|2 le
(ip,..im)eAS
(i9, . im )eAS
Spip---im =0

Taking modulus in the above equation and using the triangle inequality give

-1
|7‘_ap---p I Xp "

<Y Napgein 1 % D LAy 1% 6|

(ip,omnrim JeAS
-1 -1
< Z 7| Apiy--ipy || Xq "+ Z _ | @piy-ipy 1] Xp "
(ip, . iy )eAS (ig, i )eAS

S _ S _
=15 () xg " ()] xp M
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Hence,

5 B S _
(| 2=ap.p =15 (A xp "< rp (A)] xg " (2.2)
Similarly, we have that

1
(h —ag...q)Xq

- Z 7aqi2"'imxi2 X F Z L Agip i Xip Xy

. . S . .
(|26, ._..,|n_n)e§ (in, ..., |m)eAS
qi2-Im =

and that

-1 S -1 S -1
| A —ag..q || Xq " < rqA (A)] xq ™+ rqA (A)] xp =,

g . 5 _
(=-ag.q|-ra (A xg "< (W x "N (@23)

_ S
Note that for any jeS, |[A-aj..j|- rjA (A) >0, hence by (2.2) and
(2.3), we get

(%= g |~ & (AN A= agog |- T (A) < & (A (A),
which leads to A e ‘Pq§ p(A) c w5 (A).
Case Il. xpxq = 0 and | xq [ > ] xp |, thatis, | xq | = nla’l\lx| X; | Similar
to the argument of Case I, we can obtain that
AS m-1 _ AS m-1
(= ag...q | - Iy (A))] Xq | <0 (A)] Xp ™,
and

s B S _
(h=ap.p|-rp (A x| 1< ry (A)] xq " 1
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Thus,

(%= agp |~ (AN % - ag.q | -1 (A) < & (AR (4),

S
by the fact that for any ieS, |A—a..i|-r" (4)>0. Hence, Ae
¥y (A) < ¥o(A).

Case 1. | x, || x4 | = 0, without loss of generality, let | x4 | =0 and
| Xp | # 0. Then by (2.2),

S
[ A-ap.p|-rp (A)<0.

Hence, forany j e S,

(h-ayp -1 () 2—a, |- () < & (O (),

which leads to xewfp(A)gTS(A). The conclusions follows by

combining Cases I, Il and I11. O

To compare the sets T'(A4) in Theorem 1.1, K(A) in Theorem 1.2,

K5 (A) in Theorem 1.3, Q5(A) in Theorem 1.4 and ¥5(A) in Theorem
2.1, we need the following conclusion.

a
Lemma 2.2 [36]. () Let a, b,c >0 and d > 0. If bicad <1, then

a-(b+c) _a-b a
d “c+d  b+c+d’

a
(I Leta,b,c>0and d > 0. Ifmzl, then

a-(b+c)_ a-b a
d “c+d b+c+d’
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Theorem 2.3. Let A = (aj,...j ) € cmnl n> 2 Then

P (A)c Q5 (A) c K5(A) c K(A)  T(A).

Proof. By (1.1), Q5(A) < k5(A) < K(A) = T(A) holds. We only

prove W5 (A4) < Q5(A). Let 1 e ¥5(A). If
e (U S (A)J U (U ‘{’iS(A)j,

ieS ieS

without loss of generality, we suppose A e U ‘Pis (A) (we can also prove it
ieS

similarly if A U lI’ig(A)). Then there are index pe S and g e S such

ieS

that A e lI’E(A), ie.,

s
| L —ap..pl|< r€ (A).

5
For 1y (4)20, 50 0<[A~ap..p [ <rp(A). For | -ag..q[<rg(A),

AS AS
SO |A—ag.q|-Tqg (A) <1y (A), then we have

(A—ag.q|- rqAS (A))| 1 -ap.p| < rlo(A)rqAS (A),

which implies that A e Q5(A).

If 2 ¢ (U S (A)J U [U \I’iS(A)J, that is,

ieS ieS
S
| A —a..i|>r> (A)foreachies, (2.4)
and

S _
|A—a..i|>r" (A) foreach i e S,
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then

el oS nm) (U] s onTi) |
ieS ieS
jeS jeS

Without loss of generality, we suppose that

re [ nnia)).
ieS
jes

Then thereare p e S and q € S such that A € ‘Pglq(A) NTp(A), e,
| A —ap...p | < 1p(A), (2.5)
and

(A-ap.p|- rﬁs (AN -ag.q|- quS(A)) < rg(A)r(fS (A). (2.6)

S S
If rp (A)rg (A) =0, then by inequalities (2.4), (2.5) and (2.6), we

A A AS -
have ry (A)>0, ry (A)=0, and [A—ag.q|-Trq (A) <0, this leads

to

(A—ag.ql- rq;S(A))| A—ap.p|<0= rp(A)rqAS (A),
which implies that A e Q5 (A).
If rlDZS(A)rqAS (A) >0, then by dividing inequality (2.6) by
rlﬁis(fl)rqAS (A), we have

s \S
[ h—ap.p|-rp (A)|r—ag.q|-13 (A) 1
AS AS o
p (A) rg (A)

2.7)
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s
" |x—ap.£|—r§ (A)

>1, by Lemma 2.2 and inequality (2.7), we

S
r (A)
get
S
| L=ap.p||t=—ag.q|-Tg (A)
5
o) ()
S S
- |=r5 (A)[ A —ag.q|-13 (4) 1
< — : <1,
ry (A) rh (A)

equivalently,

(A-ag.ql- rqAS (AN L —ap.p|< rp(A)rqAS (A),

which implies that & € QS (A).

S
it |k—ap...7IO |—r€ (A)
AS
rp (A)

S
<1, equivalently, |1 —ap.p |- rﬁ (A) <

§
rpA (A), on multiplication, inequality (2.5) leads to

AS AS
A —ap.p|(r=—ap.p|=r1p (A) <rp(A)ry (A),

which implies that % e Q5(A). Hence, ¥5(A) c Q5(A). The proof is
thus completed. O
Example 2.4. Let A = (aj,i,) € clB3l where Qoo = 32 =1,

as33 = 2, ap = azgp = 3 and the other entries are zero. Let S = {1, 3},
S = {2}. By Theorem 1.4, we have

o(A)c Q5(A)={zeC:(z|-3)|z| <86}
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By Theorem 2.1, we obtain
o(A)c W3 (A)={zeC:(z]|-3)|z| <0}

at -

Figure 1. QS(A) is represented by the blue boundary, while LI’S(A) by the
red. Obviously, ¥5(A4) c Q5(A).

3. Sufficient Condition for Positive (semi-)definiteness of Tensors

As the application of Theorem 2.1, a checkable sufficient condition for
the positive (semi-)definiteness of tensors is given in this section.

Definition 3.1. Let A =(g..j )< c™nl with n>2, and S be a

nonempty proper subset of N. Then A is called an S — DSDD, (S — DSDD)
tensor if the following four statements hold:

(I) foreach i e S, a..; > (>)riAS (A):

() foreach i €S, a..; > (>)riAS (A);

(Ill) foreach i € S, j e S,

(a..; - riAS (A)(aj...j - erS(A)) > (>)ri;s(,4)rjAs (A), or a..; > (A);
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(IV)foreachie S, je S,

(&...i — nAg(A))(aj...j - rj;g(A)) > (>)riA7§(A)rjA§(A), or g...j > r(A).

Theorem 3.2. Let A= (.. )e RI™ M with n>2 and S be

a nonempty proper subset of N. If A is an even-order symmetric
S — DSDD (S — DSDDy) tensor with ay..., > (=)0 forall k € N, then A
is positive (semi-)definite.

Proof. Without loss of generality, we only need to prove that A is
positive definite (by another case, if ay.., =0, we can prove that A is

positive semi-definite). Let A be an H-eigenvalue of A. Suppose A < 0.
According to Theorem 2.1, we have A € lPS(A) which implies that there

are ig, k €S, jo, j € S such that

ne o () (% (AN T (A),
or

rew () (¥ (ANTA)).
Without loss of generality, we assume that

he v (A (¥, (N Ty (),
that is,

28
| A =8jg.ig | < 15 (A),
or
AS AS AS N
(12 = 8igig | = 18 (AN = @y =12 (A) < 12 (A)re(A),

| A - aio---o | < rio(A)'
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On the other hand, since A isan S — DSDD tensor with a..., > 0 for

all k e N, we have that for ig € S, jy € S,

S
[ %= aigig | 2 @ig.ig | > 1o (A),

or
(| % - ajg..iy | - r@s (A2 =ajy...jo |- rjAoS (A)

s WS \S S
> (y..ip — ri§ (A)@jy..jp = rjA0 (A)) > rioA (A)rjA0 (A),
| A —aiy.ip | 2] aig..iy | > Big (A).

This leads to a contradiction. Hence, A > 0, and A is positive definite. The
conclusion follows. O

4. An Upper Bound for the Spectral Radius of Nonnegative Tensors

On the basis of the results in Section 2, we give an upper bound for
nonnegative tensors in this section. Before that, we introduce some results
of nonnegative tensors [2, 33], which are generalized from nonnegative
matrices.

Theorem 4.1 [2, Theorem 2.3]. If A is a nonnegative tensor of order
m dimension n, then the spectral radius p(.A) is an eigenvalue with a
nonnegative eigenvector x = 0 corresponding to it, where

p(A) = max{|L|: 1 € o(A)}.

Theorem 4.1 is called the Perron-Frobenius theorem for nonnegative
tensors.

Lemma 4.2 [33, Lemma 3.2]. If A is a nonnegative tensor of order m
dimension n, then

p(A) = max a.. ;.
ieN
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Meanwhile, an upper bound was given in [2].

Theorem 4.3 [2, Lemma5.2]. Let A = (gy...; )€ R(™ "] be nonnegative.

Then

pA)<max D aj,..q, = max Ri(A).

Theorem 4.4 [33, Theorem 3.3]. Let A =(g .. )€ RIM N pe
nonnegative with n > 2. Then

1
p(A)<w=max _%{ai...i +aj..j + §(A) + A7 (A},
i, jeN,i#] '
where

A j(A) = (@& —aj...j + 5 (A)? +4aj...jrj(A).

Theorem 4.5 [33, Theorem 3.4]. Let Az(ail...im)eR[m'”] be

nonnegative with n > 2, S be a honempty proper subset of N. Then

p(A) < ¢ = max(y®, 6%},
where

1

S _ Lo ha g 2
b= iersnﬁ);s*ﬂa""' +aj.j 1 (A) + AF (A))

Theorem 4.6 [33, Theorem 3.5]. Let A= (.. )€ RIM N pe
nonnegative with n > 2, S be a honempty proper subset of N. Then
¢ < o < maxR;(A).
ieN

Based on Theorem 2.1, a new sharp upper bound of p(.A) is established

by the following theorem:
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Theorem 4.7. Let A = (aj...j ) € R(™ " be nonnegative with n > 2,

S be a nonempty proper subset of N. Then

p(A) < v = max{y®, v, WS, WS},

s _ A
where > = max{a;..; + i~ (A)},
ieS

S -1 AS S 3
W> = maxming % (aj..j + aj..j + §° (A)+ 1] (A)+A? (A)), Ri(A)¢,
jeS ieS 2 '

and A j(A) = (.. — aj..; + i (4) - rj;S(A))Z ; mriZS(A)r,-AS (A).

Proof. Since p(.A) is an eigenvalue of A, by Theorem 2.1, if p(A)

S
U‘PiS(A), then there is ig € S such that | p(A) - &j,...i, | < ri§ (A).
ieS
Furthermore, by Lemma 4.2, we have
A8
p(A) - &jy...j5 < G (A),
equivalently,
p(A) < &y, ...j, (A) < masx{ R s (A)} (4.1)
We can prove it similarly that if p(A) e U‘Pig(A), then there is iy € S
ieS
such that
AS AS
p(A) < aj,..jp + G (A) < rina§><{ai...i +r° (A} (4.2)
S

For the case that p(A) e U(‘{’f j(A)NT;(A)), there are pe S and
ieS
jeS

g e S such that
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| p(A) —ap...p | < 1p(A), (4.3)

and
(o) -y |- 12 (A p(A) - agq | 12 (A)

\S S
<rp (A)rg (A). (4.4)
By the inequality (4.3), we can get that
p(A) < ap...p +rp(A) = Ry(A). (4.5)

On the other hand, solving p(.A) in inequality (4.4), we can get
— 1
1 AS AS 5
p(A) < E(ap"'p +ag.qtrp (A)+r1g (A)+A% 4(A),  (46)
where
AS AS L W2 AS AS
Ap gq(A) =(@p..p —ag.q+Tp (A)—1g (A)" +4ry (Arg (A).
Combining inequality (4.5) with inequality (4.6), we have

— 1
p(A) < min{%(ap,,,p +ag..q + rﬁs (A)+ rqAS (A)+ A%lq(A)), Rp(A)},

that is,
— 1
1 s s >
p(A) < r}measx rizlsn{f(ai"'i +aj..j+ A (A)+ rjA (A)+AZ j(A)), Ri(A)}

4.7)

where

A = @i — ey + 1 () - (02 + 4 ()1 (A).
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Similarly if
p(A) e (¥ () NTi(A)),
e
that is,

_ — 1
1 5 5 1
p(A) < ng( ?;'sn{i(ai'“i +ajj+i (A)+rf (A)+AZ(A) Ri(A)f,

(4.8)

_ S S S s
where A; j(A) = (a..j—aj..j+ " (A)-rf (A7 +45% (A)rf (A),
the conclusion follows from inequalities (4.1), (4.2), (4.7) and inequality

(4.8). O

Now we compare the upper bounds in Theorems 4.3, 4.4 and 4.5 with
that in Theorem 4.7.

Theorem 4.8. Let A = (gj..i )€ RI™ ") be nonnegative with n > 2, S
be a nonempty proper subset of N. Then

y<o<o< maNX Ri(A). (4.9)

Proof. It is obvious by Theorem 2.3 and Theorem 4.6. O

Example 4.9. Consider the nonnegative tensor
A =[AG 1), AG 3, 2), AG s 3)] e RES)
where

0.0900 0.0606 0.5294
AG,: 1) =]0.3209 0.7257 0.8300 |,
05114 0.5566 0.8588
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0.7890 0.7522 0.2699
AG,: 2)=|0.3178 0.1099 0.5246 |,
0.4522 0.1097 0.9727

0.7104 0.8504 0.2554
A(,: 3)=]0.3119 0.9116 0.0887 |.
0.2915 0.6393 0.8383

We can compute the bounds with S = {1}, S = {2, 3}, then
max Rj(A) =5.2303, ® =5.2074, ¢ =5.1457,  =4.7611.
ieN
It is easy to see that the upper bound in Theorem 4.7 is sharper than those in
Theorems 4.3, 4.4 and 4.5.

Remark 4.10. How to pick S to make the upper bound as sharper as
possible is very interesting, but difficult when the dimension of the tensor A
is large. In future, we will deal with this problem.
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