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Abstract 

A new S-type eigenvalue localization set for tensors is given by 

partitioning the index set { }nN ...,,2,1=  into a subset S and its 

complement. It is shown that the new set is tighter than those in Li       
et al. [35]. Based on this new set, we give a checkable sufficient 
condition for the positive (semi-)definiteness of tensors and an upper 
bound for the spectral radius of nonnegative tensors. 

1. Introduction 

Let ( )RC  denote the set of all complex (real) numbers and =N  

{ }....,,2,1 n  We call ( )miia 1=A  to be a complex (real) tensor of order m 

and dimension n, denoted by [ ]( [ ]),,, nmnm RC∈A  if 
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( ),1 RCa mii ∈  

where ni j ...,,1=  for ....,,1 mj =  Obviously, a vector is a tensor of order 

1 and a matrix is a tensor of order 2. A real tensor ( )miia 1=A  is called 

symmetric [1, 2] if 

( ) ,,11 miiii mm aa Π∈π∀= π  

where mΠ  is the permutation group of m indices. Furthermore, a real tensor 

of order m and dimension n is called the unit tensor, if its entries are mii1δ  

for ,...,,1 Nii m ∈  where 

⎩
⎨
⎧ ==

=δ
.otherwise,0

,if,1 1
1

m
ii

ii
m  

We now define a tensor-vector multiplication, i.e., for a tensor =A  

( ) [ ],,
1

nm
ii Ca m ∈  and a vector ( ) ,...,,, 21

nT
n Cxxxx ∈=  1−mxA  is an n 

dimensional vector whose ith component is 

( ) ∑
∈

− =
Nii

iiiiii
m

m
mm xxax

...,,

1

2
22 .A  

Moreover, if there are a complex number λ and a nonzero complex 

vector ( )Tnxxxx ...,,, 21=  such that 

[ ],11 −− λ= mm xxA  

then λ is called an eigenvalue of A  and x an eigenvector of A  associated 
with λ, where 

[ ] ( ) ....,,, 11
2

1
1

1 Tm
n

mmm xxxx −−−− =  

This definition was introduced by Qi in [1] where he assumed that ∈A  
[ ]nmR ,  is symmetric and m is even. Independently, in [3], Lim gave such a 

definition but restricted x to be a real vector and λ to be a real number. In this 
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case, we call λ to be an H-eigenvalue of A  and x to be an H-eigenvector of 
A  associated with λ [1, 4, 5]. 

Eigenvalue problems of tensors have become an important topic of study 
in numerical multilinear algebra, and they have a wide range of practical 
applications; see [5-30]. For example, we can use the smallest H-eigenvalue 
of a tensor to determine its positive (semi-)definiteness. But it is not easy to 
compute the smallest H-eigenvalue of tensors when the order and dimension 
are very large, so we always try to obtain a set in the complex field which 
includes all eigenvalues of a given tensor. 

In [1], Qi gave an eigenvalue localization set for real symmetric         
tensors, which is a generalization of the well known Geršgorin’s eigenvalue 
localization set of matrices [31, 32]. This result can be easily generalized to 
general tensors [2, 33]. 

Theorem 1.1 [1, 2, 33]. Let ( ) [ ].,
1

nm
ii Ca m ∈=A  Then 

( ) ( ) ( )∪
Ni

i
∈

Γ=Γ⊆σ ,: AAA  

where ( )Aσ  is the set of all the eigenvalues of A  and 

( ) ( ){ } ( ) ∑
=δ
∈

=≤−∈=Γ

02
2

2
...,,

.,:

miii
m

m
Nii

iiiiiiii arrazz AAA C  

To obtain tighter sets than ( ),AΓ  Li et al. [33] extended the Brauer’s 

eigenvalue localization set of matrices [32, 34] to tensors and gave the 
following Brauer-type eigenvalue localization set for tensors. 

Theorem 1.2 [33]. Let ( ) [ ] .2,,
1 ≥∈= nCa nm

ii mA  Then 

( ) ( ) ( )∪
ij
Nji

ji

≠
∈

=⊆σ
,

, ,: AKAKA  
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where 

( ) { ( ( )) ( )},:, AAAK jjijjj
j

iiiji raazrazz ≤−−−∈= C  

and 

( ) ( )∑
=δ

=δ

−==

02
2

2
0

.

miji
miii

m jijiiii
j

i arar AA  

Furthermore, ( ) ( ).AAK Γ⊆  

Theorem 1.3 [33]. Let ( ) [ ],,
1

nm
ii Ca m ∈=A  ,2≥n  and S be a 

nonempty proper subset of N. Then 

( ) ( ) ( ) ( ) .:
,

,
,

, ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=⊆σ

∈∈∈∈
∪∪ ∪

SjSi
ji

SjSi
ji

S AKAKAKA  

Furthermore, ( ) ( ) ( ).AAKAK Γ⊆⊆S  

Theorem 1.4 [35]. Let ( ) [ ],,
1

nm
ii Ca m ∈=A  ,2≥n  and S be a 

nonempty proper subset of N. Then 

( ) ( ) ( ) ( ) ,:
,

,
,

, ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
Ω

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
Ω=Ω⊆σ

∈∈∈∈
∪∪ ∪

SjSi

S
ji

SjSi

S
ji

S AAAA  

where 

( ) { ( ) ( ( ))AA
S

jjjii
S

ji razazz Δ−−−∈=Ω ::, C  

( ) ( ) }.,, SjSirr
S

ji ∈∈≤ Δ AA  

Li et al. [35] proved that 

 ( ) ( ) ( ) ( ).AAKAKA Γ⊆⊆⊆Ω SS  (1.1) 
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In this paper, we continue this work on the eigenvalue localization 
problem for tensors. In Section 2, a new eigenvalue inclusion set for tensors 
is obtained, and it has been proved to be tighter than those in Theorems 1.1-
1.4 Based on the new set, a checkable sufficient condition for the positive 
(semi-)definiteness of tensors is given in Section 3, and an upper bound for 
the spectral radius of nonnegative tensor is given in Section 4. 

2. A New Eigenvalue Localization Set 

Given a nonempty proper subset S of .\, SNSN =  We denote 

{( ) },...,,2foreach:...,,,: 32 mjNiiii jm
N =∈=Δ  

{( ) },...,,2foreach:...,,,: 32 mjSiiii jm
S =∈=Δ  

and 

.\ SNS ΔΔ=Δ  

This implies that for a tensor ( ) [ ],,
1

nm
ii Ca m ∈=A  we have that for 

,Si ∈  

( ) ( ) ( ) ( ) ( ) ( ) ,, jijii
j

iiii arrrrrr
SSSS

−+=+= ΔΔΔΔ AAAAAA  

where 

( ) ( )
( )( )

∑ ∑
=δ
Δ∈ Δ∈

ΔΔ ==

02
2 2

22
...,, ...,,

.,

miii

S
m S

m

m

S

m

S

ii ii

iiiiiiii arar AA  

Theorem 2.1. Let ( ) [ ]nm
ii Ca m

,
1 ∈=A  with ,2≥n  S be a nonempty 

proper subset of N. Then 
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( ) ( ) ( ) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ψ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ψ=Ψ⊆σ

∈∈
∪∪ ∪

Si

S
i

Si

S
i

S AAAA :  

( ( ) ( )) ( ( ) ( )) ,,,
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ΓΨ

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ΓΨ

∈∈
∈∈
∪∪ ∩∪∩∪

SjSj
Si

i
S

ji
Si

i
S

ji AAAA  

where 

( ) { ( )},: AA
S

iii
S
i razz Δ≤−∈=Ψ C  

( ) { ( ( ))AA
S

iii
S

ji razz Δ−−∈=Ψ :, C  

( ( )) ( ) ( )}.AAA
SSS

jijjj rrraz ΔΔΔ ≤−−⋅  

Proof. For any ( ),Aσ∈λ  let ( ) { }0\...,,, 21
nT

nxxxx C∈=  be an 

associated eigenvector, i.e., 

 [ ].11 −− λ= mm xxA  (2.1) 

Let i
Si

p xx
∈

= max  and .max i
Si

q xx
∈

=  Then at least one of px  or 

qx  is nonzero. If 

( ) ( ) ,
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ψ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ψ∈λ

∈∈
∪∪ ∪

Si

S
i

Si

S
i AA  

then it is obvious that ( ).ASΨ∈λ  Otherwise, 

( ) ( ) ,
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ψ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ψ∉λ

∈∈
∪∪ ∪

Si

S
i

Si

S
i AA  

and we have 

( )A
S

iii ra Δ>−λ  each ,Si ∈  
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and 

( )A
S

iii ra Δ>−λ  for each .Si ∈  

We next prove 

( ( ) ( )) ( ( ) ( )) .,,
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ΓΨ

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ΓΨ∈λ

∈∈
∈∈
∪∪ ∩∪∩

SjSj
Si

i
S

ji
Si

i
S

ji AAAA  

Case I. 0≠qpxx  and ,qp xx ≥  that is, .max i
Ni

p xx
∈

=  By (2.1), 

we have 

( )
( )
∑

Δ∈

− =−λ
S

m

mm
ii

iiipi
m
ppp xxaxa

...,,

1

2

22  

( )

∑
=δ
Δ∈

+

02
2

22

...,,

.

mipi

S
m

mm

ii

iiipi xxa  

Taking modulus in the above equation and using the triangle inequality give 

1−−λ m
ppp xa  

( )( )
∑ ∑

Δ∈ Δ∈
=δ

+≤
S

m

mipi

S
m

mmmm
ii ii

iiipiiiipi xxaxxa
...,, ...,,2

02
2

2222  

( )( )
∑ ∑

Δ∈ Δ∈

−−

=δ

+≤
S

m

mipi

S
m

mm
ii ii

m
pipi

m
qipi xaxa

...,, ...,,

11

2
02

2

22  

( ) ( ) .11 −Δ−Δ += m
pp

m
qp xrxr

SS
AA  
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Hence, 

 ( ( )) ( ) .11 −Δ−Δ ≤−−λ m
qp

m
pppp xrxra

SS
AA  (2.2) 

Similarly, we have that 

( ) 1−−λ m
qqq xa  

( )( )
∑ ∑

=δ
Δ∈ Δ∈

+=

02
2 2

2222
...,, ...,,

miqi

S
m S

m

mmmm
ii ii

iiiqiiiiqi xxaxxa  

and that 

( ) ( ) ,111 −Δ−Δ− +≤−λ m
pq

m
qq

m
qqq xrxrxa

SS
AA  

i.e., 

 ( ( )) ( ) .11 −Δ−Δ ≤−−λ m
pq

m
qqqq xrxra

SS
AA  (2.3) 

Note that for any ,Sj ∈  ( ) ,0>−−λ Δ A
S

jjj ra  hence by (2.2) and 

(2.3), we get 

( ( )) ( ( )) ( ) ( ),AAAA
SSSS

qpqqqppp rrrara ΔΔΔΔ ≤−−λ−−λ  

which leads to ( ) ( )., AA SS
pq Ψ⊆Ψ∈λ  

Case II. 0≠qpxx  and ,pq xx ≥  that is, .max i
Ni

q xx
∈

=  Similar 

to the argument of Case I, we can obtain that 

( ( )) ( ) ,11 −Δ−Δ ≤−−λ m
pq

m
qqqq xrxra

SS
AA  

and 

( ( )) ( ) .11 −Δ−Δ ≤−−λ m
qp

m
pppp xrxra

SS
AA  
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Thus, 

( ( )) ( ( )) ( ) ( ),AAAA
SSSS

qpqqqppp rrrara ΔΔΔΔ ≤−−λ−−λ  

by the fact that for any ,Si ∈  ( ) .0>−−λ Δ A
S

iii ra  Hence, ∈λ  

( ) ( )., AA SS
qp Ψ⊆Ψ  

Case III. ,0=qp xx  without loss of generality, let 0=qx  and 

.0≠px  Then by (2.2), 

( ) .0≤−−λ Δ A
S

ppp ra  

Hence, for any ,Sj ∈  

( ( )) ( ( )) ( ) ( ),AAAA
SSSS

jpjjjppp rrrara ΔΔΔΔ ≤−−λ−−λ  

which leads to ( ) ( )., AA SS
pj Ψ⊆Ψ∈λ  The conclusions follows by 

combining Cases I, II and III. ~ 

To compare the sets ( )AΓ  in Theorem 1.1, ( )AK  in Theorem 1.2, 

( )AKS  in Theorem 1.3, ( )ASΩ  in Theorem 1.4 and ( )ASΨ  in Theorem 

2.1, we need the following conclusion. 

Lemma 2.2 [36]. (I) Let 0,, ≥cba  and .0>d  If ,1≤
++ dcb

a  then 

( ) .dcb
a

dc
ba

d
cba

++
≤

+
−≤+−  

(II) Let 0,, ≥cba  and .0>d  If ,1≥
++ dcb

a  then 

( ) .dcb
a

dc
ba

d
cba

++
≥

+
−≥+−  



Aiquan Jiao 618 

Theorem 2.3. Let ( ) [ ] .2,,
1 ≥∈= nCa nm

ii mA  Then 

( ) ( ) ( ) ( ) ( ).AAKAKAA Γ⊆⊆⊆Ω⊆Ψ SSS  

Proof. By (1.1), ( ) ( ) ( ) ( )AAKAKA Γ⊆⊆⊆Ω SS  holds. We only 

prove ( ) ( ).AA SS Ω⊆Ψ  Let ( ).ASΨ∈λ  If 

( ) ( ) ,
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ψ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ψ∈λ

∈∈
∪∪ ∪

Si

S
i

Si

S
i AA  

without loss of generality, we suppose ( )∪
Si

S
i

∈
Ψ∈λ A  (we can also prove it 

similarly if ( )).∪
Si

S
i

∈
Ψ∈λ A  Then there are index Sp ∈  and Sq ∈  such 

that ( ),AS
pΨ∈λ  i.e., 

( ).A
S

ppp ra Δ≤−λ  

For ( ) ,0≥Δ A
S

pr  so ( ).0 Appp ra ≤−λ<  For ( ),Aqqq ra ≤−λ  

so ( ) ( ),AA
SS

qqqq rra ΔΔ ≤−−λ  then we have 

( ( )) ( ) ( ),AAA
SS

qpppqqq rrara ΔΔ ≤−λ−−λ  

which implies that ( ).ASΩ∈λ  

If ( ) ( ) ,⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
Ψ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
Ψ∉λ

∈∈
∪∪ ∪

Si

S
i

Si

S
i AA  that is, 

 ( )A
S

iii ra Δ>−λ  for each ,Si ∈  (2.4) 

and 

( )A
S

iii ra Δ>−λ  for each ,Si ∈  
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then 

( ( ) ( )) ( ( ) ( )) .,,
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ΓΨ
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ΓΨ∈λ

∈∈
∈∈
∪∪ ∩∪∩

SjSj
Si

i
S

ji
Si

i
S

ji AAAA  

Without loss of generality, we suppose that 

( ( ) ( ))∪ ∩

Sj
Si

i
S

ji

∈
∈

ΓΨ∈λ ., AA  

Then there are Sp ∈  and Sq ∈  such that ( ) ( ),, AA p
S

qp ΓΨ∈λ ∩  i.e., 

 ( ),Appp ra ≤−λ  (2.5) 

and 

 ( ( )) ( ( )) ( ) ( ).AAAA
SSSS

qpqqqppp rrrara ΔΔΔΔ ≤−−λ−−λ  (2.6) 

If ( ) ( ) ,0=ΔΔ AA
SS

qp rr  then by inequalities (2.4), (2.5) and (2.6), we 

have ( ) ,0>Δ A
S

pr  ( ) ,0=Δ A
S

qr  and ( ) ,0≤−−λ Δ A
S

qqq ra  this leads 

to 

( ( )) ( ) ( ),0 AAA
SS

qpppqqq rrara ΔΔ =≤−λ−−λ  

which implies that ( ).ASΩ∈λ  

If ( ) ( ) ,0>ΔΔ AA
SS

qp rr  then by dividing inequality (2.6) by 

( ) ( ),AA
SS

qp rr ΔΔ  we have 

 
( )

( )

( )

( )
.1≤

−−λ−−λ

Δ

Δ

Δ

Δ

A

A

A

A
S

S

S

S

q

qqq

p

ppp

r

ra

r

ra
 (2.7) 
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If 
( )

( )
,1≥

−−λ

Δ

Δ

A

A
S

S

p

ppp

r

ra
 by Lemma 2.2 and inequality (2.7), we 

get 

( )
( )

( )A

A
A S

S

q

qqq

p

pp

r

ra
r

a
Δ

Δ−−λ−λ
 

( )

( )

( )

( )
,1≤

−−λ−−λ
≤

Δ

Δ

Δ

Δ

A

A

A

A
S

S

S

S

q

qqq

p

ppp

r

ra

r

ra
 

equivalently, 

( ( )) ( ) ( ),AAA
SS

qpppqqq rrara ΔΔ ≤−λ−−λ  

which implies that ( ).ASΩ∈λ  

If 
( )

( )
,1≤

−−λ

Δ

Δ

A

A
S

S

p

ppp

r

ra
 equivalently, ( ) ≤−−λ Δ A

S
ppp ra  

( ),A
S

prΔ  on multiplication, inequality (2.5) leads to 

( ( )) ( ) ( ),AAA
SS

ppppppp rrraa ΔΔ ≤−−λ−λ  

which implies that ( ).ASΩ∈λ  Hence, ( ) ( ).AA SS Ω⊆Ψ  The proof is 

thus completed. ~ 

Example 2.4. Let ( ) [ ],3,3
321 C∈= iiiaA  where ,1132122 == aa  

,2233 =a  3312212 == aa  and the other entries are zero. Let { },3,1=S  

{ }.2=S  By Theorem 1.4, we have 

( ) ( ) ( ){ }.63: ≤−∈=Ω⊆σ zzzS CAA  
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By Theorem 2.1, we obtain 

( ) ( ) ( ){ }.03: ≤−∈=Ψ⊆σ zzzS CAA  

 

Figure 1. ( )ASΩ  is represented by the blue boundary, while ( )ASΨ  by the 

red. Obviously, ( ) ( ).AA SS Ω⊆Ψ  

3. Sufficient Condition for Positive (semi-)definiteness of Tensors 

As the application of Theorem 2.1, a checkable sufficient condition for 
the positive (semi-)definiteness of tensors is given in this section. 

Definition 3.1. Let ( ) [ ]nm
ii Ca m

,
1 ∈=A  with ,2≥n  and S be a 

nonempty proper subset of N. ThenA  is called an ( )DSDDSDSDDS −− 0  

tensor if the following four statements hold: 

  (I) for each ( ) ( );, A
S

iii raSi Δ>≥∈  

 (II) for each ( ) ( );, A
S

iii raSi Δ>≥∈  

(III) for each ,, SjSi ∈∈  

( ( )) ( ( )) ( ) ( ) ( ),AAAA
SSSS

jijjjiii rrrara ΔΔΔΔ >≥−−  or ( );Aiii ra >  
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(IV) for each ,, SjSi ∈∈  

( ( )) ( ( )) ( ) ( ) ( ),AAAA
SSSS

jijjjiii rrrara ΔΔΔΔ >≥−−  or ( ).Aiii ra >  

Theorem 3.2. Let ( ) [ ]nm
ii Ra m

,
1 ∈=A  with ,2≥n  and S be                     

a nonempty proper subset of N. If A  is an even-order symmetric 
( )0DSDDSDSDDS −−  tensor with ( )0≥>kka  for all ,Nk ∈  then A  

is positive (semi-)definite. 

Proof. Without loss of generality, we only need to prove that A  is 
positive definite (by another case, if ,0≥kka  we can prove that A  is 

positive semi-definite). Let λ be an H-eigenvalue of .A  Suppose .0≤λ  

According to Theorem 2.1, we have ( )ASΨ∈λ  which implies that there 

are SjjSii ∈∈ 1010 ,,,  such that 

( ) ( ( ) ( ))∪ ∩ ,0000 , AAA i
S

ji
S
i ΓΨΨ∈λ  

or 

( ) ( ( ) ( ))∪ ∩ .1111 , AAA j
S

ij
S
j ΓΨΨ∈λ  

Without loss of generality, we assume that 

( ) ( ( ) ( ))∪ ∩ ,0000 , AAA i
S

ji
S
i ΓΨΨ∈λ  

that is, 

( ),
000 A

S

iii ra Δ≤−λ  

or 

( ( )) ( ( )) ( ) ( ),
00000000 AAAA
SSSS

jijjjiii rrrara ΔΔΔΔ ≤−−λ−−λ  

( ).000 Aii ra ≤−λ  
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On the other hand, since A  is an DSDDS −  tensor with 0>kka  for 

all ,Nk ∈  we have that for ,, 00 SjSi ∈∈  

( ),
00000 A

S

iiiii raa Δ>≥−λ  

or 

( ( )) ( ( ))AA
SS

jjjiii rara ΔΔ −−λ−−λ
000000  

( ( )) ( ( )) ( ) ( ),
00000000 AAAA
SSSS

jijjjiii rrrara ΔΔΔΔ >−−≥  

( ).00000 Aiiiii raa >≥−λ  

This leads to a contradiction. Hence, ,0>λ  and A  is positive definite. The 
conclusion follows. ~ 

4. An Upper Bound for the Spectral Radius of Nonnegative Tensors 

On the basis of the results in Section 2, we give an upper bound for 
nonnegative tensors in this section. Before that, we introduce some results          
of nonnegative tensors [2, 33], which are generalized from nonnegative 
matrices. 

Theorem 4.1 [2, Theorem 2.3]. If A  is a nonnegative tensor of order   
m dimension n, then the spectral radius ( )Aρ  is an eigenvalue with a 

nonnegative eigenvector 0≠x  corresponding to it, where 

( ) ( ){ }.:max Aσ∈λλ=ρ A  

Theorem 4.1 is called the Perron-Frobenius theorem for nonnegative 
tensors. 

Lemma 4.2 [33, Lemma 3.2]. If A  is a nonnegative tensor of order m 
dimension n, then 

( ) .max ii
Ni

a
∈

≥ρ A  
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Meanwhile, an upper bound was given in [2]. 

Theorem 4.3 [2, Lemma 5.2]. Let ( ) [ ]nm
ii Ra m

,
1 ∈=A  be nonnegative. 

Then 

( ) ( )∑
∈ ∈∈

=≤ρ
Nii

i
Ni

iii
Ni

m
m Ra

...,,2
2 .maxmax AA  

Theorem 4.4 [33, Theorem 3.3]. Let ( ) [ ]nm
ii Ra m

,
1 ∈=A  be 

nonnegative with .2≥n  Then 

( ) { ( ) ( )},2
1max 2

1

,,,
AAA ji

j
ijjii

jiNji
raaw Δ+++=≤ρ

≠∈
 

where 

( ) ( ( )) ( ).42
, AAA jjij

j
ijjiiji raraa ++−=Δ  

Theorem 4.5 [33, Theorem 3.4]. Let ( ) [ ]nm
ii Ra m

,
1 ∈=A  be 

nonnegative with ,2≥n  S be a nonempty proper subset of N. Then 

( ) { },,max SS φφ=φ≤ρ A  

where 

{ ( ) ( )}.2
1max 2

1

,,
AA ji

j
ijjii

SjSi
S raa Δ+++=φ

∈∈
 

Theorem 4.6 [33, Theorem 3.5]. Let ( ) [ ]nm
ii Ra m

,
1 ∈=A  be 

nonnegative with ,2≥n  S be a nonempty proper subset of N. Then 

( ).max Ai
Ni

R
∈

≤ω≤φ  

Based on Theorem 2.1, a new sharp upper bound of ( )Aρ  is established 

by the following theorem: 
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Theorem 4.7. Let ( ) [ ]nm
ii Ra m

,
1 ∈=A  be nonnegative with ,2≥n     

S be a nonempty proper subset of N. Then 

( ) { },,,,max SSSS WWψψ=ψ≤ρ A  

where { ( )},max A
S

iii
Si

S ra Δ

∈
+=ψ  

( ( ) ( ) ( )) ( ) ,,2
1minmax 2

1

,
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Λ++++= ΔΔ

∈∈
AAAA ijijijjii

SiSj
S RrraaW

SS
 

and ( ) ( ( ) ( )) ( ) ( ).42
, AAAAA

SSSS
jijijjiiji rrrraa ΔΔΔΔ +−+−=Λ  

Proof. Since ( )Aρ  is an eigenvalue of ,A  by Theorem 2.1, if ( ) ∈ρ A  

( )∪
Si

S
i

∈
Ψ ,A  then there is Si ∈0  such that ( ) ( ).

000 AA
S

iii ra Δ≤−ρ  

Furthermore, by Lemma 4.2, we have 

( ) ( ),
000 AA

S

iii ra Δ≤−ρ  

equivalently, 

 ( ) ( ) { ( )}.max
000 AAA

SS
iii

Siiii rara Δ

∈

Δ +≤+≤ρ  (4.1) 

We can prove it similarly that if ( ) ( )∪
Si

S
i

∈
Ψ∈ρ ,AA  then there is Si ∈0  

such that 

 ( ) ( ) { ( )}.max
000 AAA

SS
iii

Siiii rara Δ

∈

Δ +≤+≤ρ  (4.2) 

For the case that ( ) ( ( ) ( ))∪ ∩

Sj
Si

i
S

ji

∈
∈

ΓΨ∈ρ ,, AAA  there are Sp ∈  and 

Sq ∈  such that 
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 ( ) ( ),AA ppp ra ≤−ρ  (4.3) 

and 

( ( ) ( )) ( ( ) ( ))AAAA
SS

qqqppp rara ΔΔ −−ρ−−ρ  

( ) ( ).AA
SS

qp rr ΔΔ≤  (4.4) 

By the inequality (4.3), we can get that 

 ( ) ( ) ( ).AAA pppp Rra =+≤ρ  (4.5) 

On the other hand, solving ( )Aρ  in inequality (4.4), we can get 

( ) ( ( ) ( ) ( )),2
1 2

1

, AAAA qpqpqqpp
SS

rraa Λ++++≤ρ ΔΔ  (4.6) 

where 

( ) ( ( ) ( )) ( ) ( ).42
, AAAAA

SSSS
qpqpqqppqp rrrraa ΔΔΔΔ +−+−=Λ  

Combining inequality (4.5) with inequality (4.6), we have 

( ) ( ( ) ( ) ( )) ( ) ,,2
1min 2

1

,
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Λ++++≤ρ ΔΔ AAAAA pqpqpqqpp Rrraa
SS

 

that is, 

( ) ( ( ) ( ) ( )) ( ) .,2
1minmax 2

1

,
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Λ++++≤ρ ΔΔ

∈∈
AAAAA ijijijjii

SiSj
Rrraa

SS
 

 (4.7) 

where  

( ) ( ( ) ( )) ( ) ( ).42
, AAAAA

SSSS
jijijjiiji rrrraa ΔΔΔΔ +−+−=Λ  
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Similarly if 

( ) ( ( ) ( ))∪ ∩

Sj
Si

i
S

ji

∈
∈

ΓΨ∈ρ ,, AAA  

that is, 

( ) ( ( ) ( ) ( )) ( ) ,,2
1minmax 2

1

,
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Λ++++≤ρ ΔΔ

∈∈
AAAAA ijijijjii

SiSj
Rrraa

SS
 

 (4.8) 

where ( ) ( ( ) ( )) ( ) ( ),42
, AAAAA

SSSS
jijijjiiji rrrraa ΔΔΔΔ +−+−=Λ  

the conclusion follows from inequalities (4.1), (4.2), (4.7) and inequality 

(4.8).  

Now we compare the upper bounds in Theorems 4.3, 4.4 and 4.5 with 
that in Theorem 4.7. 

Theorem 4.8. Let ( ) [ ]nm
ii Ra m

,
1 ∈=A  be nonnegative with Sn ,2≥  

be a nonempty proper subset of N. Then 

 ( ).max Ai
Ni

R
∈

≤ω≤φ≤ψ  (4.9) 

Proof. It is obvious by Theorem 2.3 and Theorem 4.6. ~ 

Example 4.9. Consider the nonnegative tensor 

( ) ( ) ( )[ ] [ ],3:,:,,2:,:,,1:,:, 3,3RAAA ∈=A  

where 

( ) ,
8588.05566.05114.0
8300.07257.03209.0
5294.00606.00900.0

1:,:,
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=A  
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( ) ,
9727.01097.04522.0
5246.01099.03178.0
2699.07522.07890.0

2:,:,
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=A  

( ) .
8383.06393.02915.0
0887.09116.03119.0
2554.08504.07104.0

3:,:,
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=A  

We can compute the bounds with { } { },3,2,1 == SS  then 

( ) .7611.4,1457.5,2074.5,2303.5max =ψ=φ=ω=
∈

Ai
Ni

R  

It is easy to see that the upper bound in Theorem 4.7 is sharper than those in 
Theorems 4.3, 4.4 and 4.5. 

Remark 4.10. How to pick S to make the upper bound as sharper as 
possible is very interesting, but difficult when the dimension of the tensor A  
is large. In future, we will deal with this problem. 
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