JP Journal of Algebra, Number Theory and Applications

© 2016 Pushpa Publishing House, Allahabad, India

Published: December 2016

http://dx.doi.org/10.17654/NT038060561

Volume 38, Number 6, 2016, Pages 561-568

ISSN: 0972-5555

ON THE ASSOCIATED PRIME IDEALS OF GENERALIZED d-COHOMOLOGY MODULES

Mirsadegh Sayedsadeghi

Department of Mathematics Faculty of Science Payame Noor University (PNU) P. O. Box, 19395-3697, Tehran, Iran

e-mail: msayedsadeghi@gmail.com

Abstract

Let M and N be R-modules, where R is a commutative Noetherian ring with identity element. We provide conditions on modules so that associated prime ideals of generalized d-cohomology module $H^i_d(M,N)$, where d is a nonnegative integer, are finite.

1. Introduction

Throughout this note, R denotes a Noetherian (commutative with nonzero identity) ring and d a nonnegative integer. Let $\mathcal{C}(R)$ denote the category of R-modules, and M be a finitely generated R-module. The singular set $S_k^*(M)$ $(k \geq 0)$ contains all prime ideals of R satisfying $\operatorname{depth}(M_{\mathfrak{p}}) + \operatorname{dim}(R/\mathfrak{p}) \leq k$. Let

 $\Sigma = \{ \mathfrak{a} : \mathfrak{a} \text{ is an ideal of } R \text{ with } \dim(R/\mathfrak{a}) \leq d \}.$

Received: April 13, 2016; Revised: July 13, 2016; Accepted: July 29, 2016

2010 Mathematics Subject Classification: 13A30, 13D45.

Keywords and phrases: biequidimensional, finitely generated, associated prime, *d*-cohomology.

Then with the reverse inclusion, the set Σ is a system of ideals of R in the sense of [2, p. 21]. Following [1], for an R-module M, let $L_d(M) = \{m \in M \mid \exists \mathfrak{a} \in \Sigma, \mathfrak{a} m = 0\}$, and for $i \geq 0$, $H_d^i(-)$ be the ith right derived functor of $L_d(-)$. In [9], the d-transform $T_d(M) = \varinjlim_{\mathfrak{a} \in \Sigma} Hom_R(\mathfrak{a}, M)$ on the category of R-modules was defined.

Now, we define
$$L_d(-,-)$$
, $T_d(-,-)$: $\mathcal{C}(R) \times \mathcal{C}(R) \to \mathcal{C}(R)$ by
$$L_d(M,\,N) \coloneqq \varinjlim_{\mathfrak{a} \in \Sigma} Hom_R(M/\mathfrak{a}M,\,N),$$

$$T_d(M,\,N) \coloneqq \varinjlim_{\mathfrak{a} \in \Sigma} Hom_R(\mathfrak{a}M,\,N).$$

Also, for *R*-module *M*, let $H_d^i(M, -) := \mathcal{R}^i L_d(M, -)$ be defined for all nonnegative integers *i*. It is clear that

$$H_d^i(M, N) = \underset{\mathfrak{a} \in \Sigma}{\underline{\lim}} Ext_R^i(M/\mathfrak{a}M, N),$$

and call it to be the *ith generalized d-cohomology* module of M, N with support of dimension $\leq d$.

Banica and Stoia [1] have studied d-cohomology module $H_d^i(M)$. Zamani et al. [7-9] have explored $T_d(M,N)$ and $H_d^i(M,N)$ intimately. The aim of this paper is to study the associated prime ideals of $H_d^i(M,N)$ and $T_d(M,N)$ whenever M,N are finitely generated R-modules. Also, this provides some results on sets $Supp(T_d(M,N))$ and $Supp(H_d^1(M,N))$.

2. Preliminaries

In this paper, the associated prime ideals $T_d(M, N)$ and $H_d^i(M, N)$ are studied. It is obtained that $Ass_R(T_d(M, N))$ and $Ass_R(H^i(M, N))$ are finite under certain conditions for all $i \ge 0$. It is noted that a finite

dimensional Noetherian ring R is said to be biequidimensional if $\dim(R/\mathfrak{p}) + \dim(R_{\mathfrak{p}}) = \dim(R)$ for all $\mathfrak{p} \in Spec(R)$, and $\dim(R/\mathfrak{p}) = \dim(R)$, for all $\mathfrak{p} \in Ass(R)$, where Ass(R) denotes the set of all associated prime ideals of R.

The results, collected in Proposition 1, include some connections of the generalized *d*-transform functors and modules.

Proposition 1. Let M, N be two R-modules. If M is finitely generated, then

- (i) $T_d(T_d(M, N)) \cong T_d(M, N)$.
- (ii) $T_d(Hom_R(M, N)) \cong Hom_R(M, T_d(N))$.
- (iii) $T_d(Hom_R(M, N)) \cong T_d(M, N)$.

Proof. (i) Using the definition, [6, Theorem 2.75] and [4, Satz 3], tit follows that:

$$\begin{split} T_{d}(T_{d}(M,N)) &= \varinjlim_{\mathfrak{a} \in \Sigma} Hom_{R}(\mathfrak{a},\, T_{d}(M,\, N)) \\ &\cong \varinjlim_{\mathfrak{a} \in \Sigma} (Hom_{R}(\mathfrak{a},\, \varinjlim_{\mathfrak{b} \in \Sigma} Hom_{R}(\mathfrak{b}M,\, N))) \\ &\cong \varinjlim_{\mathfrak{a} \in \Sigma} (\varinjlim_{\mathfrak{b} \in \Sigma} Hom_{R}(\mathfrak{a},\, Hom_{R}(\mathfrak{b}M,\, N))) \\ &\cong \varinjlim_{\mathfrak{a} \in \Sigma} (\varinjlim_{\mathfrak{b} \in \Sigma} Hom_{R}(\mathfrak{a} \otimes \mathfrak{b}M,\, N)) \\ &\cong \varinjlim_{\mathfrak{b} \in \Sigma} (\varinjlim_{\mathfrak{a} \in \Sigma} Hom_{R}(\mathfrak{b}M,\, Hom_{R}(\mathfrak{a},\, N))) \\ &\cong \varinjlim_{\mathfrak{b} \in \Sigma} (Hom_{R}(\mathfrak{b}M,\, \varinjlim_{\mathfrak{a} \in \Sigma} Hom_{R}(\mathfrak{a},\, N))) \\ &\cong \varinjlim_{\mathfrak{b} \in \Sigma} (Hom_{R}(\mathfrak{b}M,\, 1_{d}M,\, 1_$$

Now, using [9, Theorem 2.15], we have

$$T_d(T_d(M, N)) \cong T_d(M, N).$$

(ii) By using the definition and part (i), we obtain

$$\begin{split} T_d(Hom_R(M,\,N)) &= \varinjlim_{\mathfrak{a} \in \Sigma} Hom_R(\mathfrak{a},\,Hom_R(M,\,N)) \\ &\cong \varinjlim_{\mathfrak{a} \in \Sigma} Hom_R(\mathfrak{a} \otimes M,\,N) \\ &\cong \varinjlim_{\mathfrak{a} \in \Sigma} Hom_R(M,\,Hom_R(\mathfrak{a},\,N)) \\ &\cong Hom_R(M,\,\varinjlim_{\mathfrak{a} \in \Sigma} Hom_R(\mathfrak{a},\,N)) \\ &\cong Hom_R(M,\,T_d(N)). \end{split}$$

(iii) The exact sequence

$$0 \to L_d(M, N) \to Hom_R(M, N) \to T_d(M, N) \xrightarrow{\alpha} H_d^1(M, N)$$

provides the following exact sequence

$$0 \to L_d(M, N) \to Hom_R(M, N) \to T_d(M, N) \to Im \alpha \to 0.$$
 (#)

Since $L_d(L_d(M,N)) = L_d(M,N)$ and $L_d(Im\alpha) = Im\alpha$, by [9, Corollary 2.6], $T_d(L_d(M,N)) = 0$ and $T_d(Im\alpha) = 0$. Hence, by part (i) on applying the functor $T_d(-)$ to the exact sequence (\sharp), we have

$$T_d(Hom_R(M, N)) \cong T_d(T_d(M, N)) \cong T_d(M, N).$$

Now, by Proposition 1, the result follows.

Theorem 2. Let M, N be two finitely generated R-modules. Then $Ass_R(T_d(M, N)) = Supp(M) \cap Ass_R(N/L_d(N))$ and so $Ass_R(T_d(M, N))$ is finite.

Proof. By [8, Theorem 1], $Ass_R(T_d(N)) = Ass_R(N/L_d(N))$. Now, by Proposition 1,

$$Ass_R(T_d(M, N)) = Ass_R(T_d(Hom_R(M, N)))$$
$$= Ass_R(Hom_R(M, T_d(N)))$$

$$= Supp(M) \cap Ass_R(T_d(N))$$
$$= Supp(M) \cap Ass_R(N/L_d(N)).$$

Clearly, if N is a finitely generated R-module, then $Ass_R(N/L_d(N))$ is finite and so $Ass_R(T_d(M, N))$ is finite.

Corollary 3. Let M, N be two finitely generated R-modules. Then $Supp(T_d(M, N)) \subseteq Supp(N/L_d(N))$.

Proof. Let $\mathfrak{p} \in Supp(T_d(M,N))$. Then there exists $\mathfrak{q} \in Ass_R(T_d(M,N))$ so that $\mathfrak{q} \subseteq \mathfrak{p}$. Using Theorem 2, $\mathfrak{q} \in Ass_R(N/L_d(N))$ and so there exists $0 \neq n + L_d(N) \in N/L_d(N)$ such that $\mathfrak{q} = Ann_R(n + L_d(N))$. It is clear that $\frac{n + L_d(N)}{1} \neq 0$ in the $R_\mathfrak{p}$ -module $(N/L_d(N))_\mathfrak{p}$. Hence, $\mathfrak{p} \in Supp(N/L_d(N))$ and so $Supp(T_d(M,N)) \subseteq Supp(N/L_d(N))$.

Corollary 4. Let M, N be two finitely generated R-modules. If $Ext_R^1(M, N) = 0$, then $Supp(H_d^1(M, N)) \subseteq Supp(N/L_d(N))$.

Proof. Using Proposition 1 and [9, Corollary 2], we can easily show that

$$Supp(T_d(M, N)) = Supp(T_d(\operatorname{Hom}_R(M, N)))$$

$$= Supp(Hom_R(M, N)/L_d(Hom_R(M, N))).$$

Now, the short exact sequence

 $0 \to Hom_R(M, N)/L_d(Hom_R(M, N)) \to T_d(M, N) \to H^1_d(M, N) \to 0$ yields

$$Supp(T_d(M, N)) = Supp(Hom_R(M, N)/L_d(Hom_R(M, N)))$$

$$\cup Supp(H_d^1(M, N)).$$

Hence, by Corollary 3,

$$Supp(H_d^1(M, N)) \subseteq Supp(T_d(M, N)) \subseteq Supp(N/L_d(N)).$$

By definition, we can easily show that

$$Ass_R(L_d(M, N)) = Ass_R(Hom_R(M, L_d(N)))$$
$$= Supp(M) \cap Ass_R(L_d(N)).$$

Below is the following general theorem.

Theorem 5. Let M, N be two R-modules and t be a positive integer. If M is finitely generated, then

$$Ass_R(H_d^t(M, N)) \subseteq \bigcup_{i=0}^t Ass_R(Ext_R^i(M, H_d^{t-i}(N))).$$

Proof. By [6, Theorem 10.47], there is a convergent spectral sequence

$$E_2^{r,s} := \operatorname{Ext}_R^r(M, H_d^s(N)) \Longrightarrow_r H_d^{r+s}(M, N).$$

For all $i \ge 2$, we consider the exact sequence

$$0 \to \operatorname{Ker} d_i^{0,t} \to E_i^{0,t} \stackrel{d_i^{0,t}}{\to} E_i^{i,t-i+1}. \tag{*}$$

Since $E_i^{0,t} = \operatorname{Ker} d_{i-1}^{0,t}/\operatorname{Im} d_{i-1}^{1-i,t+i-2}$ and $E_t^{i,j} = 0$ for all j < 0, we may use (*) to obtain

$$\operatorname{Ker} d_{t+2}^{i,t-i} \cong E_{t+2}^{i,t-i} \cong \cdots \cong E_{\infty}^{i,t-i}$$

for all $0 \le i \le t$. There exists a finite filtration

$$0 = \varphi^{t+1}H^t \subset \varphi^tH^t \subset \cdots \subset \varphi^1H^t \subset \varphi^0H^t = H_d^t(M, N)$$

such that $E_{\infty}^{i,t-i} \cong \varphi^i H^t/\varphi^{i+1} H^t$ for all $0 \le i \le t$. Now, the exact sequence

$$0 \to \varphi^{i+1} H^t \to \varphi^i H^t \to E_{\infty}^{i, t-i} \to 0$$

 $(0 \le i \le t)$ in conjunction with

$$E_{\infty}^{i,t-i} \cong \operatorname{Ker} d_{t+2}^{i,t-i} \subseteq \operatorname{Ker} d_{2}^{i,t-i} \subseteq E_{2}^{i,t-i}$$

vields

$$\begin{split} Ass_R(\varphi^i H^t) &\subseteq Ass_R(\varphi^{i+1} H^t) \cup Ass_R(E_{\infty}^{i,t-i}) \\ &\subseteq Ass_R(\varphi^{i+1} H^t) \cup Ass_R(E_2^{i,t-i}) \\ &\Rightarrow Ass_R(H_d^t(M,N)) \subseteq Ass_R(\varphi^1 H^t) \cup Ass_R(E_2^{0,t}) \\ &\subseteq Ass_R(\varphi^2 H^t) \cup Ass_R(E_2^{1,t-1}) \cup Ass_R(E_2^{0,t}) \subseteq \cdots \\ &\subseteq Ass_R(0) \cup Ass_R(E_2^{0,t}) \cup Ass_R(E_2^{1,t-1}) \cup \cdots \cup Ass_R(E_2^{t,0}). \end{split}$$

Then

$$Ass_R(H_d^t(M, N)) \subseteq \bigcup_{i=0}^t Ass_R(E_2^{i, t-i}) = \bigcup_{i=0}^t Ass_R(Ext_R^i(M, H_d^{t-i}(N)))$$
 and the proof is complete.

Corollary 6. Let R be a ring, quotient of a regular biequidimensional ring, M, N be two finitely generated R-modules and t be a positive integer. If $\dim(S_{t+d}^*(N)) \leq d$, then $Ass_R(H_d^t(M, N))$ is finite.

Proof. By [1, Theorem of finiteness], $H_d^i(N)$ is finitely generated for all $i \le t$ and so $Ext_R^i(M, H_d^{t-i}(N))$ is finitely generated. Hence, by Theorem 5, $Ass_R(H_d^t(M, N))$ is finite for all t > 0.

Corollary 7. Let M, N be two finitely generated R-modules and t be a positive integer. If $L_d(N) = N$, then $Ass_R(H_d^t(M, N))$ is finite.

Proof. By [9, Corollary 2.5], we have $H_d^i(N) = 0$ for all $i \ge 1$. Hence, by Theorem 5, we have

$$Ass_{R}(H_{d}^{t}(M, N)) \subseteq \bigcup_{i=0}^{t} Ass_{R}(Ext_{R}^{i}(M, H_{d}^{t-i}(N)))$$
$$= Ass_{R}(Ext_{R}^{t}(M, L_{d}(N))).$$

Since M and $L_d(N)$ are finitely generated, the proof is complete.

Acknowledgement

The author thanks the anonymous referees for their constructive suggestions and comments which helped in the improvement of the presentation of manuscript.

References

- [1] C. Banica and M. Stoia, Singular sets of a module and local cohomology, Boll. Un. Mat. Ital. B 16 (1976), 923-934.
- [2] N. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge University Press, 1998.
- [3] A. Grothendieck, Local Cohomology, Lecture Notes in Math, Springer-Verlag, 1967.
- [4] H. Lenzing, Endlich Präsentierbare Moduln, Arch. Math. (Basel) 20 (1969), 262-266.
- [5] H. Matsumura, Commutative Ring Theory, Cambridge University Press, 1986.
- [6] J. Rotman, An Introduction to Homological Algebra, Springer Science, 2009.
- [7] N. Zamani, M. H. Bijan-Zadeh and M. S. Sayedsadeghi, Cohomology with support of dimension $\leq d$, J. Algebra Appl. 15 (2016), 10 pp. DOI: 10.1142/S0219498816500420.
- [8] N. Zamani, M. H. Bijan-Zadeh and M. S. Sayedsadeghi, *d*-transform functor and some finiteness and isomorphism results, Vietnam J. Math. 43 (2014), 179-186.
- [9] N. Zamani, M. S. Sayedsadeghi, M. H. Bijan-Zadeh and K. Ahmadi-Amoli, On functors $D_d(-)$ and $D_d(M, -)$, Scientific Journal of Pure and Applied Sciences 7 (2014), 622-628.