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Abstract

The aim of this paper is to study some aspects of matrix theory
through pasting and reversing using linear mappings. We obtain new
properties and new sets in matrix theory. In particular, we introduce
new linear mappings: palindromicing and antipalindromicing
mappings, which allow us to obtain palindromic and antipalindromic
vectors and matrices.

1. Introduction

Pasting and reversing as mathematical operations were introduced by the
first author in [2] and after extended in [1, 3-7]. Recently, in [10] were
studied some properties of palindromic and antipalindromic polynomials. In
this paper, we obtain new results in the framework of elementary matrix
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theory which arise from links with pasting and reversing. In particular, we
study pasting and reversing from linear mappings, proving some interesting
results in matrix theory and introducing new linear mappings such as
palindromicing and antipalindromicing mappings for vectors and matrices,
among others’. For a complete theoretical background in matrix theory, see
[8, 9].

We start considering the vector space V = K", where K is a field of
characteristic zero, and we write W <V to say that W is a subspace of V.
In this way, M. (K) denotes the set of nxm matrices with elements

belonging to K. We should keep in mind that when we write M,p,, we

mean M, (K). In the same way, for (i, j)e Z* x Z*, we know that

8jj =1 while &; =0 for all i j. Finally, floor and ceiling functions,

denoted by | | and [ ], respectively, are defined as

| x| =max{meZ|m < x}, [x]=min{neZ|n=>x}.
2. Main Results

We introduce the reversing mapping, denoted by R, as follows:
R : \Y - \Y
(M, Vo, iy V) > (Vy, oy Vo, V7).
Proposition 2.1. The following statements hold:
(1) R € Aut(V).
(2) The transformation matrix of R is given by
Mz = (i, n-j+Lnxn-
(3) Minimal and characteristic polynomials of R are given, respectively,
by

YThis publication is sponsored by Vicerrectoria de Investigaciones - Universidad Simén
Bolivar (Barranquilla - Colombia).



Pasting and Reversing Approach to Matrix Theory 537

Q) =2%-1 PO) =+ 1)bJ (O — 1)H.
(4) ker(R —id)* = ker(R +id), id(v) = v, Vv e V.

(5) V =ker(R —id) @ ker(R +id).
(6) dimker(R —id) = [gw dimker(R +id) = EJ

Proof. Assume v,weV, o e K such that v=(v, .., v,), W=
(W, ..., Wy). By definition of reversing, we have R :V —V it follows
that R(v+w)=Rv+Rw and R(av)=aRv. Owing to R:V -V
and R =v, it implies that R is left-right invertible, then R is an

automorphism of V and

R(V1, Vo, vy Vo1, V) = (V1, Vo, ooy Vg, Vn)(ai,n—j+1)nxn-

We observe that R? =id and R =id, therefore Q) = -1 is
the minimal polynomial of R, that is, Q(8; n—j+1) = On € Muyxm (Op is
the zero matrix of size nxn). Now, assuming n =2, we have that the
characteristic polynomial of R is given by P(A) = (A + 1) (A — 1), assuming
n=3 we obtain P(X)=(k+1)(h—1)% Therefore, the characteristic

polynomial of R is obtained inductively and it is given by

A+)™x-1D™,  for n=2m,
P(L) = de'[(5i,n—j+1 —-Aly) = m Ml
A+)"(x-1"", forn=2m+1.

That is, by definition of floor and ceiling functions, we conclude

2

PAM)=(A+1) (r-1) .
Assume Vv € ker(R —id) and w e ker(R +id), for instance Rv =v,

R(W)=-w and v-w=-v-w=0. In this way, ker(R —id)" =ker(R +id).
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Due to R?—id = (R —id)(R +id), then V = ker(R —id)® ker(R +id),

which implies that dimker(R —id) = (%W dimker(R +id) = L%J and

HEER :

Remark 2.2. Proposition 2.1 summarizes some results given in
[5, Section 1], without the formalism of endomorphism. In particular, W, :=

ker(R —id), W, = ker(R +id) and R is an endomorphism associated to a
permutation matrix. Recall that A; is a permutation matrix, defined over a

given o € Sy, whether its associated linear mapping R is given by

\ — \Y

Rs:
(Vl, ey Vn) = (VG(]_), vy Vcs(n))-

Reversing corresponds to R, = R, where the permutation matrix is

As; = My and the permutation o is given by

1 2 3 - n-1n
o = .

nn-1n-2 .. 2 1

To illustrate this formalism, we rewrite the following properties obtained
in [5]:

(1) R2(v) =v.
(2) R(av +bw) = aR(v) + bR(w), a,b e K, v, we V.
B) v-w="TR(V) R(w).
(@) R(vV x W) = R(W) x R(V), Vv, w e K3,

Definition 2.3. A mapping is palindromicing (resp. antipalindromicing)
whether it transforms any vector of a given vector space into a palindromic
(resp. antipalindromic) vector. These mappings are called canonical, denoted
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by 7, and F,, respectively, whether they are linear mappings and for all
v eV, theysatisfy v = (F, + Fa)(v) and R(v) = (Fp — Fa) (V).

We can see that palindromicing and antipalindromicing mappings are
epimorphism from V to ker(R + id) but they are not isomorphisms due to

they are not monomorphisms. From now on we only consider canonical
palindromicing and canonical antipalindromicing mappings, which will be
called palindromicing and antipalindromicing mappings.

Proposition 2.4. The following statements hold:
(1) F, and F, are given by
Fp: V. — ker(R-id) Fo: V. - ker(R+id)
Vb SR Vo (V- R(V).

(2) ker(F ) =im(F,), ker(F4) = im(F ).

(3) The companion matrices of 7, and F, are Mg +1, and
Mp — Ip.

Proof. Consider v = (v, ..., V). We proceed according to each item:

(1) We can see that F, and F, are linear mappings due to R and id

are linear mappings. Now,
1
Fplv) = E(Vl + Vp, Vo + V_1, oy Vp1 + Vo, V, + Vy)

is a palindromic vector, F4(v) =%(v1 —Vp, V2 =Vp_1, s Vn_1 — V2,V — V1)
is an antipalindromic vector, for instance #, and 7, are epimorphisms
from V to ker(R —id) and from V to ker(R —id). Furthermore, we see
that (Fp +Fa)(V)=Fp(V)+ Fav)=v and (Fp - Fa)(v)=F (V)
— Fa(v) = R(v). Thus, F is the palindromicing mapping and F, is the

antipalindromicing mapping.
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(2) Assume v eker 7, and we ker F,. We see that F(v) =0
implies that R(v) = —v, thus v e W, = ker(R +id) = im(F ). Similarly,
we see that F,(w) = 0 implies that R(w) = w, thus w e W,, = ker(R —id)

(3) It follows directly from the companion matrices of the linear
mappings R and id. 0

Definition 2.5 (Pasting of vectors). Let V, W and Z be K -vector
spaces. Consider v = (vq, ..., V) €V and w = (wy, ..., W) € W. Pasting is

the mapping P such that

VW — Z
(v, w) > P(v,w) =z,

where z = (vq, ..., Vyy, Wy, ..., Wy, ). Furthermore,
PNV, W)= {P(v,w):veV,weW}.

Theorem 2.6. Consider V = K", W = K™, z=K"™M Vv'<Z and
W' < Z generated by

By =1, ., ep™™ and B, ={ei", .., ep M},
respectively, where ef is the ith vector of the canonical basis of K". The
mappings ¢, ¢, @ and S are given by

¢V oV, oW ->W,

Vo e(v) =V, vi =V, Vi<n w—o @o(w)=w, w =w,, Vi<m,
Qo:VxW >V xW', S:V'xW' > Z,

(v, W) = (v, W) = (@1(v), 92(W)),  (V, W) = S(V', W) =V +W.

The following statements hold:
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(1) Mappings ¢, and @, are linear isomorphisms.
(2) The transformation matrices of @; and ¢, are given by My, =

(3i, Inx(n+m) @nd Mg, = (3i, j-n)mx(nsm): respectively.
(3) im(gy) @ im(ez) = V.

(@) (im(o1))" = im(py).

(5) The diagram
VxW —— Z
w=(P1.p2)

V' x W'

is commutative, i.e., P = S o .
Proof. We proceed according to each item:

(1) Assume o, BeK, v,v, eV and w, wp, e W such that v; =

(Vi1 s Vi) V2 = (Va1 oo Vo), W = (W1, .y W), Wp = (Wap, ..., Wap).
By definitions of ¢; and ¢,, we have that

(pl(Vl) = (Vll' - V1 0, . 0), (Pl(VZ) = (V21, < Vo, O, veey 0),
%,—J %,_/

mtimes m times

(|)2(W1) = (0, .y 0, Wi1s o Wln), (|)2(W2) = (0, oy 0, Wo1, vony WZH)'
5,—/ 5,—/
ntimes ntimes

Therefore, — @(avy +Bvp) = oy (vy) + Bpr(vo) and  @p(awy + pwy) =
a@y (W) + Beo(wy). Now, due to ¢q(v) = 0y if and only if v =0y and
op(w) = 0y if and only if w =0y, we get kerp, = {0y} and ker ¢,
= {Oy }. Finally, for all v' eV’ and for all w e W', we get that there exist
veV and w e W such that @q(v) e V' and @y(w) e W/, i.e., im(p) =V’
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and im(p5) =W'. Thus, we conclude that ¢; and ¢, are linear mappings,
monomorphisms and epimorphisms.

(2) We see that for all v eV and for all w e W, we obtain
P1(V) = Vi, jInx(nsm) = Mg 92(W) = Wi, j_n)mx(nsm) = WM, -

(3) By item (1), we have that im(p;) =V’ and im(p,) =W'. We see
that V' NW'={0,}and Z ={av +Pw: o, Be K, veV, weW}.

(4) Owing to v'-w' =0 forall v'eV' and w' e W' and by previous
item, we have that W' is the orthogonal subspace of V'.

(5) Let veV and w e W. Then

(S o 0) (v, W) = S(@1(V), 92(W))
= ¢1(V) + p2(W)

= P(v, w).

Therefore, P =S o o. O

Corollary 2.7. If v, we K", then ¢ is a linear mapping and its
transformation matrix is given by M, = [m;; ], 45, Where
1 i=1]
mij =41, i = j—3n,
0, otherwise.
Proof. Due to ¢; and ¢, are linear mappings, it follows that

o(av + Bw) = (p1(av + pw), @o(av + pw)) = ap(v) + Be(w). Moreover,

o(v) =((vy, -+ Vp, 0, .., 0,0, ..., 0), Vg, ..., V) = VM,
——
ntimes ntimes

where M, = [m;; ], 4, defined above.
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To illustrate this formalism, we recover the following results obtained in
[5]:

(1) PV, W)= K™,

(2) dim(P(V, W)) = dimV + dimW,

(3) R(P(v, w)) = P(R(V), R(W)),

(4) P(P(v, w), z) = P(v, P(w, 2)).

Definition 2.8 (Reversing of matrices). Assume A = (&jj),,n, &j € K.

Reversing for rows of A, denoted by R (A), reversing for columns of A,

denoted by R.(A), and reversing of A, denoted by R(A), are given by
Re(A) = @ims1- )nxm: Re(A) = @n11-j) jInxm:
R(A) = (&(n+1-i) (m+1- j) Inxm>

respectively.

To avoid confusion, assume reversing of vectors and reversing of
matrices transformations denoted by R, and R, respectively. The

“vectorization” mapping, denoted by p,,, transforms a matrix belonging to

Mpym(K) in a vector belonging to K™ . From the following lemma, we

get the analogue version for matrices of Theorem 2.6.
Lemma 2.9 (Vectorization mapping). Mapping p,n IS a linear

isomorphism between M., and K"".

Proof. It follows due to M., and K"™ are isomorphic vector spaces,
for instance p,, Is a linear transformation, is a monomorphism and is an
epimorphism. O

Definition 2.10 (Pasting mappings by rows, columns and blocks).
Assume A e Mp,m, Be My, and C e Mg, p, pasting by rows of A
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with B, denoted by P, (A, B) is given by

(Soo)(ag, by)
P.(A B) = : , Where g € K™, b e KP.

(S°9)(@n, bn)

Pasting by columns of A with C, denoted by P.(A, C), is given by
Pe(A C)=((S-o)(an, &) (S °¢)(@n, tm)),
where aj e K", cj e K9,
Pasting by blocks of B with C, denoted by P, (B, C), is given by
Pp(B, C) = Pc(Pr(B, Onxm). Pr(Ogxp, C))-

Remark 2.11. We can see that previous definition allows to recover the
formalism related with pasting and reversing of vectors, that is,

R(ay)
Re(A)=| i |witha e K",
R(an)

Re(A) = (R(ay)- R(ap)) with a; K",

R(A) = (R(ap) - R(a)) with aj € K",

P(ag, by)
P.(A B) = : , where a; € K™, by € KP
P(an, by)
and

Pc(A C) = (P(ag, &)+ P(am, ¢y)), where aj e K", ¢cj e K9,
We rewrite the following properties (results) obtained in [5] and [3].
(1) RE(A) = A,

(2) RE(A) = A
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(3) Re(Pr(A, B)) = Pr(R(B), R((A)),
(4) Re(Pc(A, B)) = Po(Rc(B), Re(A)),
(5) P, (P.(A B),C)="P. (A P.(B, C)),
(6) P.(P.(A B), C)="P.(A P.(B, C)),
(7) Re(aA+BB) =aR,(A)+BR,(B),
(8) Re(aA + PB) = aR¢(A) + BR(B),
9) Pr(Muem: Mnwp) = Mus(ms p),
(10) Pc(Mpxms Mixm) = M(nsl)xm:
(11) Pr(A B) = APr(Pc(In, On-myxm): Onxp) + Pr(Onum, B),
(12) P(A, B) = AP¢(Pr(In, Onx(m-q)) Onxp) + Pc(Onxm: B),
(13) (Re(A)" = Re(AT),
(14) (Re(A)" = Ry (AT),
(15) (P¢(A, B)) = Pr(AT, BT),
(16) (Pr(A B)) = P¢(AT, BT),
(17) R,(AB) = AR,(B),

(18) R.(AB) = R.(A)B,

i

(19) det(R¢(A)) = (-1)  det A,

)

(20) det(R,(A)) = (1) ~det A,

(21) (Re(A) ™' = R (AD),
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(22) (Re(A) " = Re(A),

23) Ry(M®)) = MOk Dr(, 1<k <n,
B

(24) i/:\er(Vi):(_l) Rr(i/:\l(vi)}

(25) R(A) = Mz _AMp

(26) R(R(A)) = A,

(27) R(P(A, B)) = P(R(B), R(A)),

(28) P(P(A, B), C) = P(A, P(B, C)),

(29) b, c e K, p=n, q=m, R(bA +cB) = bR(A) + CR(B),

(30) P(A, B) = Myys(K),

(3L) R(I,) = 1y,

(32) R(A) = Re(R(A)),

(33) R(A) = Rr(Rc(A)),

(34) R(AB) = R(A)R(B),

(35) (R(A)*R(A™Y),

(36) det(R(A)) = det A,

(37) Tr(R(A)) = TrA,

(38) R(AT) = (R(A))',

(39) R(Pp(A, B)) = Pg(R(B), R(A)),

(40) Pp(Pp(A B), C) = Py(A Py(B, C)),

(41) Py(A B) e M(n+ p)x(m+q)»
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(42) Py(A, B)' = Py(AT, BT),
(43) det(P,(A, B)) = det Adet B,
(44) Tr(Py(A, B)) = TrA + TrB,
45) Pp(A BY L =P (AL, B,
Proposition 2.12. Consider V. = M. The following statements hold:
(1) {Re, Ry R} < Aut(V).

(2) The transformation matrices of R, R, and R., are given,
respectively, by

Mz = (i nm-j+Dnmxnm: MR, = @i, m—j+1mxm:
Mz, = Bn-i+1, jnxn:
where Mg acts over A written as vector in K"™, Mz, acts over A
multiplying it by right and My, actsover A multiplying it by left.
(3) R(A) =My AMp .

(4) MRCMRr = |n < n=m

(5) ker(R —id )’ = ker(R +id).
(6) ker(R —id) = ker(R, — R¢).
(7) ker(R +id) = ker(R, + R¢).

(8)
V = ker(R —id) @ ker(R +id) = (ker(R. —id) N ker(R, —id))

® (ker(R +id) N ker(R, +id)) ® (ker(R¢ + id) N ker(R, —id))

® (ker(Re —id) N ker(R, +id)).
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9)
dim ker(R — id) = [?1 dim ker(R +id) = {%J

dim(ker(R — id) ) ker(R, — id)) = (g (m]

2

: : : nilm
dim(ker(R +id) N ker(R, +id)) = Al
. : . nifm]
dim(ker(R. +id) N ker(R, —id)) = 22|

dim(ker(R,, —id) N ker(R, +id)) = | 2 % .
Proof. It follows from Proposition 2.1 and the vectorization mapping

Pnm given in Lemma 2.9. O

Remark 2.13. In [5] were defined and studied the subspaces associated
with items (3)-(5) of Proposition 2.12. We see that for square matrices
Mg, = Mg, although they are acting in different ways (left for columns

and right for rows). From now on for square matrices we write M.
Proposition 2.14. The following statements hold:
(1) Consider A € My, and B € My, then
T T T
(Pr(A, B)) =Pc(A,B).
(2) Consider A € My, then R(AdjA) = Adj(R(A)).

(3) Consider A" as the augmented matrix of A with b, then A’ =
P, (A D).

Proof. We proceed according to each item.

(1) Assume A € M,y and B € My, 5. Then

(P(A B) =(P(aj, b)), where a; e K™, by e KP.
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Now, by Theorem 2.6, we have
(Pai, )" = (S o) (aj, b))
= (S(p1(aj), @2(B))"

= (p2(ai) + p2(by)"

Therefore, by properties of transpose matrices, we arrive to
(@1(ai) + @2(0)" = o) +@a(by)"

and for instance
or(a)" +@a(0)" = S(e1(a)" ., @),
(Seoe)(a b ) =P, b).

Therefore,

(Pr(A B))' =P(A", B").
(2) Due to AdjA = | A|A‘1, we have that

Adj(R(A)) = | R(A)|(R(A) ™

Due to property (36), we get |7€(A)|(7€(A))_1 = | A|(R(A))_1. Now, by
property (35), we obtain | A|(R(A))_1 = | A|R(A_1) =R(| A|A_1), which
implies that R(AdjA) = Adj(R(A)).
(3) We see that
ayp - am | b
Aol : )
8 -+ amm | by
Moreover, ¢1(A) € Mpy(m+1) and @2(A) € M, (m41)- In this way, A" =

@1(A) + 92(A) = S(@1(A), 92(A)), for instance (S < @)(A b) =P(A b),
as A'=P (A b). O
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Remark 2.15. We note that item (2) is not true for reversing by rows and
columns due to R(A™Y) = (R.(A)) ™} and Ry(A™) = (Re(A) L.
Considering the vector space of n x m matrices, we say that a mapping

is palindromicing by rows (resp. by columns) whether it transforms any
nxm matrix into a palindromic matrix by rows (resp. by columns),

i.e., it is epimorphism from M,y to Wy(nxm) (resp. Wg(nxm)). Ina
similar way, we say that a mapping is antipalindromicing by rows (resp. by
columns) whether it transforms any n x m matrix into an antipalindromic
matrix by rows (resp. by columns), i.e., it is epimorphism from M, to
W, (n x m) (resp. WS (n x m)). Moreover, we say that palindromicing and
antipalindromicing mappings by rows (resp. by columns) are canonical,

denoted by F|, and Fj (resp. F5 and Fg), respectively, whether they
are linear mappings and for all Ae M, they satisfy A=(F},+77)(A)=

(FS+F(A), Re(A) = (F - FL)(A) and R =(F - Fg)(A). From

now on we only consider canonical palindromicing and antipalindromicing
mappings by rows (resp. by columns), which will be called palindromicing
and antipalindromicing mappings by rows (resp. by columns). Nevertheless,
we can consider palindromicing and antipalindromicing mappings for
matrices with respect R = Ry o R, denoted as F , and F,, respectively.

Proposition 2.16 (Palindromicing and antipalindromicing mappings in
M «m)- The following statements hold:

(1) Flo. Fh, F%, Fa, Fp and F, are given by

Foi Mpm —  Wp(hxm)  Fp: Mym — Wy (nxm)

A b L(ArR(A) A S(A-R(A),
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Fo: Mpym = Wplnxm)  Fo: Mym — Wy (nxm)

A b L(A+R(A) A S(A-Re(A)),

Fp: Mpm —  PAMxm) Fu: Mpym —  aPA(nxm)

A B %(A+R(A))’ A B %(A—R(A)).

)

ker(F) = im(F3), ker(Fg) = im(FY), ker(Fj) = im(F3),
ker(Fg) = im(F%), ker(F ) = im(Fy), ker(F,) = im(F p).

©)

Fo(A) = AMz + 1), Fa(A) = AMg — 1), FR(A) = (Mg + 1) A,
FS(A) = Mg — 1) A, F o(A) = MgAMz + A and
Fa(A) = MgAMp — A

Proof. We can see any matrix A € M,,,,, as an array of n row vectors

belonging to K™ or an array of m column vectors belonging to K" or

a vector belonging to K"™. Thus, the results are obtained in virtue of
Proposition 2.4 and Lemma 2.9. O

It is well known that main diagonal (diag) and trace (Tr) of matrices are

linear mappings, see [8, 9], which lead us to the following lemma:

Lemma 2.17. Let D be a diagonal matrix and A = (ajj ), Then the

following statements hold:
(1) R(diag(A)) = diag(R(A)),

(2) Tr(A) = Tr(R(A)),
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(3) Rc(D) = R((D) < diag(D) = diag(R(D)),

(4) R(diag(D)) = diag(D) < RD = D.

Proof. We proceed according to each item:

(1) By Proposition 2.12, we see that R(diag(A)) = Mz diag(A)M ., for
instance R(diag(A)) = diag(Mz AM 1, ) = diag(R(A)).

(2) It follows from previous item.

(3) Consider
d; 0 - 0
o| 0t
0 0 - dy

By definition of reversing by columns and rows, we have

0 0 - 0 dy
Rc(D) = : :
d; 0 - 0 O
and
0 0 -~ 0 dpg
R,(D) = ' : :
dpp O - 0 O

Owing to R¢(D) = R(D), we have that dyx = d(n_k+1)(n-k-+1), then
diag(D) = (dqq, d9y, ..., dyp, d11) = diag(R(D)). Conversely, consider
dy 0 - 0
p-| ° 2 0

0 0 - dpy
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due to diag(D) = diag(R(D)), then diag(D) = (dq1, doy, ..., d2p, d11). Now,
applying R. and R, over D, we have

0 0 -+ 0 dpy 0 0 - 0 dpy
R.(D)=| : =+ "~ = i . 1 |1=R,D.
dy 0 - 0 0 dy 0 - 0 0
(4) By item (1), we have that R(diag(D)) = diag(R(D)) and by
hypothesis, we have that diag(R(D)) = diag(D). Now, by item (3), we
obtain that R.(D) = R,(D) and applying R, we get RE(D) = R(D).
Therefore, D="TR(D). Conversely, due to R =R.oR;, R¢(R;(D))=D.
Applying R, we have R (D)= R.(D) and items (3) and (1) lead us to
diag(D) = diag(R(D)) = R(diag(D)). O
Remark 2.18. In item (3) of Lemma 2.17, we can see that the main
diagonal of D is palindromic, while in item (4), we observe an equivalence

between the palindromic of the diagonal matrix with the palindromic of the
main diagonal of the matrix.

Theorem 2.19. Let p, g, r and s be the characteristic polynomials
of nxn matrices A, R(A), R.(A) and R (A), respectively. Then the

following statements hold:
(1) diag(R(A) - A1) = R(diag(A - Al)),
() p=q,
@) r=s,
@) p(A) = p(R(A)),

(5) P(Rr(A) = P(Re(A)).
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Proof. We proceed according to each item:

(1) Due to diag is a linear mapping and Al is a palindromic matrix, we
obtain diag(R(A) — Al ) = diag(R(A)) — diag(R(A1)). By item (1) in Lemma
2.17, we conclude diag(R(A) — Al) = R(diag(A — Al)).

(2) Consider A = (8jj);p, thus A=Al = (by;), where

aij -, i= j,
bij = {a-- i
ij .
Now R(A) - Al = (cjj), where

{a(n—i+l)(n—j+l) A n-it+l=n-j+1
ij =

3(n-i+1)(n-j+1): n-i+lzn-j+1
This leads us to
Ci = {a(n_”l)(n—jﬂ) A, 0=,
ij A(n—i+1)(n—j+1)» i # J.

Due to R(A—Al)=R(A)—-Al, in virtue of property (36), we have
det(R(A - Al)) = det(R(A) — Al), which implies that p = g.
(3) Owing to R2 = I, we can write det(R.A—Al) as

n

det(ReA — AR21) = det(Ro(A - AR1)) = (-1) ? det(A — AR ).

Dueto Rel =Ryl and [8; n_ji1lhun -1 =1 [8i n—js1lyxn, We obtain

n n

2 2
(-1) " det(A-AR.l)=(-1) ~det(A-AR,l)=det(R,A-2Al),
which implies r = s.

Items (4) and (5) correspond to the application of Cayley-Hamilton
theorem for reversing, followed by items (1) and (2). O
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Remark 2.20. Analysis of reversing to characteristic polynomials can be
done exactly as in [4] and [10], in where were also studied palindromic and
antipalindromic polynomials.

Theorem 2.21 (Reversing Jordan form). Assume V = K", B, and By
canonical basis of palindromic and antipalindromic vectors of V. Let 9t

and 2, be matrices formed by the pasting by rows (resp. by columns)
of palindromic and antipalindromic vectors by column (resp. by rows),
respectively. Then, up to isomorphisms, Jordan form and similarity matrix of
My are given by

Jr = Pb(l[q, _IPJ) and  Pp = P(M, M,), respectively.
2 2

Furthermore, Py is a symmetric matrix.

Proof. Assume v eV as column vectors. In virtue of Proposition 2.1,
we obtain Ji. Now, due to the eigenvalues 1 and -1 correspond to
palindromic and antipalindromic eigenvectors, respectively, we can choose
those belonging to B, and B,, respectively, that is, Vi € B, and

Va, € Ba. Thus, M, = Pr(v ) and My = Pr(Va, - V.

1)

Finally, P is obtained as Pp = P(M,, M,), which is symmetric. Under

pLr vp{q
2

assumption of v e V as row vectors, the proof is similar. O

Theorem 2.22. Suppose that the n x n matrix A admits a Jordan form.
The following statements hold:

(1) Jordan form is preserved under reversing, where similarity matrix
associated to reversing of A is reversing by columns of similarity matrix
associated to A.

(2) If the Jordan form is palindromic (resp. antipalindromic) and the
similarity matrix associated to A is palindromic (resp. antipalindromic), then
A is palindromic (resp. antipalindromic).
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Proof. Due to A admits a Jordan form, there exists a similarity matrix P,

ie, A=PIJPL Now, we proceed according to each item:

(1) By item (3) of Proposition 2.12, we have that R(A) = Mz AMz .,
that is R(A) = MRCPJP‘lMRr = Rc(P)IR,(P71). Now, by properties
(32) to (35), we get R(A) = QJQL, where Q = Rc(P).

(2) By hypothesis and properties (34) and (35) we have that R(A) =
R(PIPY) = R(P)R(I)(R(P))™ = PIP~L = A Similarly, assuming R(J)
=-J and R(P)=-P, we have that R(A) = R(PIP7) = R(P)R(J)x
(R(P) L =-PIPL=-A 0

Remark 2.23. In general, reversing of a Jordan form is not a Jordan
form. Moreover, the converse of item (2) in general is not true.

Theorem 2.24. Consider f € R[x] and the nxn matrices A and

R (A) with eigenvalues A; and Xi, respectively, where 1< i <m < n. The

following statements hold:
(1) f(xj) iseigenvalue of f(R(A)),
2 f(7~»i) is eigenvalue of f(R.(A)).

Proof. For basic linear algebra, we know that f(%;),1<i<m<n, are

the eigenvalues of f(A). Now we proceed according to each item:

(1) By Theorem 2.19, we have that eigenvalues of A are the same of
R(A). Thus, f(A;) iseigenvalue of f(R(A)) for1<i<m<n.

(2) By Theorem 2.19, we have that eigenvalues of R, A are the same of

Rc(A). Thus, f(ii) is eigenvalue of f(R (A)) for1<i<m<n.

The proof is done. O
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Theorem 2.25. Assume f :2A < R — B < R is analytic and let A be

an n x n matrix. Then the following statements hold:
@) f(Rr(A) = R(F(Re(A))),
@ f(Re(A) = R(F(R(A)),
@) f(R(A) = R(f(A)).
Proof. Due to f is analytic, we have that
f(A) = iakAk.
k=0
Using the property M% = |,, we proceed according to each item:
(1) We see that
(R (A = (AMR)K = MpMp AMp AM £ - AM o AM 1o
= MrBMy = R(B),
where B = MpAMzA---MrpAMz A = (RC(A))k, therefore f(R,(A)) =
R(F(Re(A).
(2) We see that
(Re(A)K = (MrAK = Mg AMRA--- Mg AM g AM M 5
= MzBMy = R(B),
where B = AMpAMp - AMp AM o = (R, (A))¥, therefore f(R(A)) =
R(f(Re(A))).

(3) By property (34), taking A = B, and proceeding inductively, we
obtain (R(A))X = R(AX), therefore f(R(A)) = R(f(A)). O
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In this paper, we presented original results concerning to pasting
and reversing in the framework of matrix theory. Such results can be
implemented in undergraduate and graduate courses of linear algebra.
Currently, there are some research projects involving pasting and reversing
over other mathematical structures, some of them include applications
to orthogonal polynomials, differential equations, difference equations,
guantum mechanics, topology, group theory, algebraic varieties, Ore rings,
combinatorial dynamics, numerical analysis, graph theory, coding theory,
statistics, among others.
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